1
|
Łazarski G, Rajtar N, Romek M, Jamróz D, Rawski M, Kepczynski M. Interaction of Polystyrene Nanoplastic with Lipid Membranes. J Phys Chem B 2025; 129:4110-4122. [PMID: 40205692 PMCID: PMC12035802 DOI: 10.1021/acs.jpcb.5c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
As demonstrated in in vitro studies, polystyrene nanoplastics (PSNPs) are effectively internalized by various cells. All known mechanisms of PSNP internalization involve the initial step of their interaction with the cell membrane, highlighting the importance of understanding such interactions at the molecular level. Here we consider the effects of PSNPs obtained from disposable food packaging on zwitterionic lipid membranes, used as a model system for protein-free cell membranes. We combined microscopic imaging and unbiased atomistic molecular dynamics (MD) to investigate the behavior of PSNPs on the surface and inside the lipid membrane. Our results show that PSNPs are hydrated and have a high negative surface charge when dispersed in an aqueous media. The penetration of PS nanoparticles into the lipid bilayer requires the removal of water molecules at the nanoparticle-membrane interface, which is an effective barrier to the entry of PSNPs into its hydrophobic region. Overcoming this energy barrier by slightly inserting the PS nanoparticle into the polar region of the membrane leads to its rapid penetration into the center of the bilayer and coating its surface with lipid molecules. PS nanoplastics do not disaggregate after penetrating the lipid membrane, which affects the molecular structure of the bilayer. In addition, our MD simulations demonstrated that small-molecule additives (e.g., unreacted monomers) present in nanoplastics can be released into lipid membranes if they are located close to the nanoparticle surface. The outcomes of this study are important for understanding the passive uptake of nanoplastics by cells.
Collapse
Affiliation(s)
- Grzegorz Łazarski
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Prof. S.
Łojasiewicza 11, Krakow 30-348, Poland
| | - Natan Rajtar
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Prof. S.
Łojasiewicza 11, Krakow 30-348, Poland
| | - Marek Romek
- Department
of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 9 Gronostajowa Street, Kraków 30-387, Poland
| | - Dorota Jamróz
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
| | - Michał Rawski
- National
Synchrotron Radiation Centre SOLARIS, Jagiellonian
University, 98 Czerwone
Maki Street, Kraków 30-392, Poland
| | - Mariusz Kepczynski
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, Kraków 30-387, Poland
| |
Collapse
|
2
|
Zhu J, Xu L, Wang W, Xiao M, Li J, Wang L, Jiang X. Molecular Dynamics Simulations Reveal Octanoylated Hyaluronic Acid Enhances Liposome Stability, Stealth and Targeting. ACS OMEGA 2024; 9:33833-33844. [PMID: 39130542 PMCID: PMC11307277 DOI: 10.1021/acsomega.4c03526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Liposome-based drug delivery systems have been widely used in drug and gene delivery. However, issues such as instability, immune clearance, and poor targeting have significantly limited their clinical utility. Consequently, there is an urgent need for innovative strategies to improve liposome performance. In this study, we explore the interaction mechanisms of hyaluronic acid (HA), a linear anionic polysaccharide composed of repeating disaccharide units of d-glucuronic acid and N-acetyl-d-glucosamine connected by alternating β-1,3 and β-1,4 glycosidic linkages, and its octanoylated derivates (OHA) with liposomes using extensive coarse-grained molecular dynamics simulations. The octyl moieties of OHA spontaneously inserted into the phospholipid bilayer of liposomes, leading to their effective coating onto the surface of liposome and enhancing their structural stability. Furthermore, encapsulating liposome with OHA neutralized their surface potential, interfering with the formation of a protein corona known to contribute to liposomal immune clearance. Importantly, the encapsulated OHA maintained its selectivity and therefore targeting ability for CD44, which is often overexpressed in tumor cells. These molecular-scale findings shed light on the interaction mechanisms between HA and liposomes and will be useful for the development of next-generation liposome-based drug delivery systems.
Collapse
Affiliation(s)
- Jingyi Zhu
- State
Key Laboratory of Microbial Technology, National Glycoengineering
Research Center, Shandong University, Qingdao 266237, China
| | - Limei Xu
- State
Key Laboratory of Microbial Technology, National Glycoengineering
Research Center, Shandong University, Qingdao 266237, China
| | - Wenxin Wang
- Shandong
Institute for Food and Drug Control, Jinan 250000, China
| | - Min Xiao
- State
Key Laboratory of Microbial Technology, National Glycoengineering
Research Center, Shandong University, Qingdao 266237, China
| | - Jian Li
- Biomedicine
Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Lushan Wang
- State
Key Laboratory of Microbial Technology, National Glycoengineering
Research Center, Shandong University, Qingdao 266237, China
| | - Xukai Jiang
- State
Key Laboratory of Microbial Technology, National Glycoengineering
Research Center, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Guo X, Yang L, Deng C, Ren L, Li S, Zhang X, Zhao J, Yue T. Nanoparticles traversing the extracellular matrix induce biophysical perturbation of fibronectin depicted by surface chemistry. NANOSCALE 2024; 16:6199-6214. [PMID: 38446101 DOI: 10.1039/d3nr06305d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
While the filtering and accumulation effects of the extracellular matrix (ECM) on nanoparticles (NPs) have been experimentally observed, the detailed interactions between NPs and specific biomolecules within the ECM remain poorly understood and pose challenges for in vivo molecular-level investigations. Herein, we adopt molecular dynamics simulations to elucidate the impacts of methyl-, hydroxy-, amine-, and carboxyl-modified gold NPs on the cell-binding domains of fibronectin (Fn), an indispensable component of the ECM for cell attachment and signaling. Simulation results show that NPs can specifically bind to distinct Fn domains, and the strength of these interactions depends on the physicochemical properties of NPs. NP-NH3+ exhibits the highest affinity to domains rich in acidic residues, leading to strong electrostatic interactions that induce severe deformation, potentially disrupting the normal functioning of Fn. NP-CH3 and NP-COO- selectively occupy the RGD/PHSRN motifs, which may hinder their recognition by integrins on the cell surface. Additionally, NPs can disrupt the dimerization of Fn through competing for residues at the dimer interface or by diminishing the shape complementarity between dimerized proteins. The mechanical stretching of Fn, crucial for ECM fibrillogenesis, is suppressed by NPs due to their local rigidifying effect. These results provide valuable molecular-level insights into the impacts of various NPs on the ECM, holding significant implications for advancing nanomedicine and nanosafety evaluation.
Collapse
Affiliation(s)
- Xing Guo
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Lin Yang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Chaofan Deng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Luyao Ren
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Shixin Li
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| |
Collapse
|