1
|
Dettmer SJ, Williams HD, Napier R, Beames JM, Walker-Griffiths S, Craggs TD, Hannon MJ. Supramolecular Recognition of a DNA Four-Way Junction by an M 2L 4 Metallo-Cage, Inspired by a Simulation-Guided Design Approach. Angew Chem Int Ed Engl 2025:e202504866. [PMID: 40243103 DOI: 10.1002/anie.202504866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/18/2025]
Abstract
DNA four-way junctions (4WJs) play an important biological role in DNA repair and recombination, and viral regulation, and are attractive therapeutic targets. Compounds that recognise the junction structure are rare; in this work, we describe cationic metallo-supramolecular M2L4 cages as a new type of 4WJ binder with nanomolar affinities. A combination of molecular dynamics (MD) simulations and biophysical experiments show that the size and shape of a compound comprising square planar Pd or Pt and anthracene-based ligands is an excellent fit for the 4WJ cavity. Whilst the cage is also capable of binding to three-way junctions (3WJs) and Y-fork structures, we show that the 4WJ is the preferred DNA target, and that duplex B-DNA is not a competitor. Among 3WJs, T-shape bulged 3WJs are bound more preferably than perfect Y-shaped 3WJs. Whilst previous work studying M2L4 metallo-supramolecular cages has focused on binding inside their structures, this work exploits the external aromatic surfaces of the supramolecule, creating a supramolecular guest that ideally matches the DNA host cavity. This approach allows available structures to be identified as potential junction binders and then screened for their fit to a nucleic acid junction target using simulations. This has potential to significantly accelerate discovery.
Collapse
Affiliation(s)
- Samuel J Dettmer
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hugo D Williams
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Joseph M Beames
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Timothy D Craggs
- School of Mathematical and Physical Sciences, Centre for Single-Molecule Biology, University of Sheffield, Sheffield, S3 7HF, UK
| | - Michael J Hannon
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Pickl T, Mollik P, Anneser MR, Sixt F, Geißer K, Storcheva O, Halter DP, Pöthig A. Endohedral Coordination of Bulky Substrates in Metalloenzyme-Like Organometallic Nanotubes. Chemistry 2025:e202500775. [PMID: 40231771 DOI: 10.1002/chem.202500775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025]
Abstract
Artificial receptors inspired by metalloenzymes share three key properties: a structurally flexible cavity, substrate binding via metal-ligand coordination, and metal-based redox activity. Herein, we report an organometallic nanotube with such features based on our supramolecular pillarplex platform, incorporating eight CuI centers in its cavitand walls. The structurally adaptable cavity of this receptor enables the endohedral coordination of tetrahydrofuran (THF) as a hydrophilic model substrate with remarkable binding affinity despite a steric mismatch between the host and guest. Evidence from SC-XRD, 1H NMR titration in aqueous solution, and DFT modelling confirms that metal-ligand coordination governs substrate binding. Electrochemical analysis of a derived rotaxane reveals metal-centered redox activity.
Collapse
Affiliation(s)
- Thomas Pickl
- Department of Chemistry, Catalysis Research Center (CRC) & TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer Str. 1, 85747, Garching, Germany
| | - Patrick Mollik
- Department of Chemistry, Catalysis Research Center (CRC) & TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer Str. 1, 85747, Garching, Germany
| | - Markus R Anneser
- Department of Chemistry, Catalysis Research Center (CRC) & TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer Str. 1, 85747, Garching, Germany
| | - Florian Sixt
- Department of Chemistry, Catalysis Research Center (CRC) & TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer Str. 1, 85747, Garching, Germany
| | - Korbinian Geißer
- Department of Chemistry, Catalysis Research Center (CRC) & TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer Str. 1, 85747, Garching, Germany
| | - Oksana Storcheva
- Department of Chemistry, Catalysis Research Center (CRC) & TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer Str. 1, 85747, Garching, Germany
| | - Dominik P Halter
- Department of Chemistry, Catalysis Research Center (CRC) & TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer Str. 1, 85747, Garching, Germany
- Department of Biochemical and Chemical Engineering, Research Group Applied Electrochemistry & Catalysis (ELCAT), Faculty of Applied Engineering, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Alexander Pöthig
- Department of Chemistry, Catalysis Research Center (CRC) & TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer Str. 1, 85747, Garching, Germany
| |
Collapse
|
3
|
Gibney A, Kellett A. Gene Editing with Artificial DNA Scissors. Chemistry 2024; 30:e202401621. [PMID: 38984588 DOI: 10.1002/chem.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Artificial metallo-nucleases (AMNs) are small molecule DNA cleavage agents, also known as DNA molecular scissors, and represent an important class of chemotherapeutic with high clinical potential. This review provides a primary level of exploration on the concepts key to this area including an introduction to DNA structure, function, recognition, along with damage and repair mechanisms. Building on this foundation, we describe hybrid molecules where AMNs are covalently attached to directing groups that provide molecular scissors with enhanced or sequence specific DNA damaging capabilities. As this research field continues to evolve, understanding the applications of AMNs along with synthetic conjugation strategies can provide the basis for future innovations, particularly for designing new artificial gene editing systems.
Collapse
Affiliation(s)
- Alex Gibney
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Andrew Kellett
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
4
|
Malina J, Crowley JD, Brabec V. Interaction of dinuclear Co(III) cylinders with higher-order DNA structures. Chem Biol Interact 2024; 395:111031. [PMID: 38703805 DOI: 10.1016/j.cbi.2024.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Alternative DNA structures play critical roles in fundamental biological processes linked to human diseases. Thus, targeting and stabilizing these structures by specific ligands could affect the progression of cancer and other diseases. Here, we describe, using methods of molecular biophysics, the interactions of two oxidatively locked [Co2L3]6+ cylinders, rac-2 and meso-1, with diverse alternative DNA structures, such as junctions, G quadruplexes, and bulges. This study was motivated by earlier results demonstrating that both Co(III) cylinders exhibit potent and selective activity against cancer cells, accumulate in the nucleus of cancer cells, and prove to be efficient DNA binders. The results show that the bigger cylinder rac-2 stabilizes all DNA structures, while the smaller cylinder meso-1 stabilizes just the Y-shaped three-way junctions. Collectively, the results of this study suggest that the stabilization of alternative DNA structures by Co(III) cylinders investigated in this work might contribute to the mechanism of their biological activity.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, CZ-61200, Brno, Czech Republic
| | - James D Crowley
- Department of Chemistry, University of Otago, Dunedin, 9016, Otago, New Zealand
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, CZ-61200, Brno, Czech Republic; Department of Biophysics, Faculty of Science, Palacky University, CZ-78371, Olomouc, Czech Republic.
| |
Collapse
|
5
|
Nautiyal A, Thakur M. Prokaryotic DNA Crossroads: Holliday Junction Formation and Resolution. ACS OMEGA 2024; 9:12515-12538. [PMID: 38524412 PMCID: PMC10956419 DOI: 10.1021/acsomega.3c09866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/26/2024]
Abstract
Cells are continually exposed to a multitude of internal and external stressors, which give rise to various types of DNA damage. To protect the integrity of their genetic material, cells are equipped with a repertoire of repair proteins that engage in various repair mechanisms, facilitated by intricate networks of protein-protein and protein-DNA interactions. Among these networks is the homologous recombination (HR) system, a molecular repair mechanism conserved in all three domains of life. On one hand, HR ensures high-fidelity, template-dependent DNA repair, while on the other hand, it results in the generation of combinatorial genetic variations through allelic exchange. Despite substantial progress in understanding this pathway in bacteria, yeast, and humans, several critical questions remain unanswered, including the molecular processes leading to the exchange of DNA segments, the coordination of protein binding, conformational switching during branch migration, and the resolution of Holliday Junctions (HJs). This Review delves into our current understanding of the HR pathway in bacteria, shedding light on the roles played by various proteins or their complexes at different stages of HR. In the first part of this Review, we provide a brief overview of the end resection processes and the strand-exchange reaction, offering a concise depiction of the mechanisms that culminate in the formation of HJs. In the latter half, we expound upon the alternative methods of branch migration and HJ resolution more comprehensively and holistically, considering the historical research timelines. Finally, when we consolidate our knowledge about HR within the broader context of genome replication and the emergence of resistant species, it becomes evident that the HR pathway is indispensable for the survival of bacteria in diverse ecological niches.
Collapse
Affiliation(s)
- Astha Nautiyal
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Manoj Thakur
- Sri
Venkateswara College, Benito Juarez Road, University of Delhi, New Delhi 110021, India
| |
Collapse
|
6
|
Casini A, Pöthig A. Metals in Cancer Research: Beyond Platinum Metallodrugs. ACS CENTRAL SCIENCE 2024; 10:242-250. [PMID: 38435529 PMCID: PMC10906246 DOI: 10.1021/acscentsci.3c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 03/05/2024]
Abstract
The discovery of the medicinal properties of platinum complexes has fueled the design and synthesis of new anticancer metallodrugs endowed with unique modes of action (MoA). Among the various families of experimental antiproliferative agents, organometallics have emerged as ideal platforms to control the compounds' reactivity and stability in a physiological environment. This is advantageous to efficiently deliver novel prodrug activation strategies, as well as to design metallodrugs acting only via noncovalent interactions with their pharmacological targets. Noteworthy, another justification for the advance of organometallic compounds for therapy stems from their ability to catalyze bioorthogonal reactions in cancer cells. When not yet ideal as drug leads, such compounds can be used as selective chemical tools that benefit from the advantages of catalytic amplification to either label the target of interest (e.g., proteins) or boost the output of biochemical signals. Examples of metallodrugs for the so-called "catalysis in cells" are considered in this Outlook together with other organometallic drug candidates. The selected case studies are discussed in the frame of more general challenges in the field of medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Angela Casini
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry,
School of Natural Sciences, Technical University
of Munich, Lichtenbergstraße 4, D-85748 Garching b. München, Germany
| | - Alexander Pöthig
- Catalysis
Research Center & Department of Chemistry, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer Str. 1, D-85748 Garching b. München, Germany
| |
Collapse
|
7
|
Alcalde-Ordóñez A, Barreiro-Piñeiro N, McGorman B, Gómez-González J, Bouzada D, Rivadulla F, Vázquez ME, Kellett A, Martínez-Costas J, López MV. A copper(ii) peptide helicate selectively cleaves DNA replication foci in mammalian cells. Chem Sci 2023; 14:14082-14091. [PMID: 38098723 PMCID: PMC10718067 DOI: 10.1039/d3sc03303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
The use of copper-based artificial nucleases as potential anticancer agents has been hampered by their poor selectivity in the oxidative DNA cleavage process. An alternative strategy to solve this problem is to design systems capable of selectively damaging noncanonical DNA structures that play crucial roles in the cell cycle. We designed an oligocationic CuII peptide helicate that selectively binds and cleaves DNA three-way junctions (3WJs) and induces oxidative DNA damage via a ROS-mediated pathway both in vitro and in cellulo, specifically at DNA replication foci of the cell nucleus, where this DNA structure is transiently generated. To our knowledge, this is the first example of a targeted chemical nuclease that can discriminate with high selectivity 3WJs from other forms of DNA both in vitro and in mammalian cells. Since the DNA replication process is deregulated in cancer cells, this approach may pave the way for the development of a new class of anticancer agents based on copper-based artificial nucleases.
Collapse
Affiliation(s)
- Ana Alcalde-Ordóñez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Bríonna McGorman
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin Dublin 9 Ireland
| | - Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - David Bouzada
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Francisco Rivadulla
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Física, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Andrew Kellett
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin Dublin 9 Ireland
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|