1
|
Marques SM, Borko S, Vavra O, Dvorsky J, Kohout P, Kabourek P, Hejtmanek L, Damborsky J, Bednar D. Caver Web 2.0: analysis of tunnels and ligand transport in dynamic ensembles of proteins. Nucleic Acids Res 2025:gkaf399. [PMID: 40337920 DOI: 10.1093/nar/gkaf399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/17/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
Enzymes with buried active sites utilize molecular tunnels to exchange substrates, products, and solvent molecules with the surface. These transport mechanisms are crucial for protein function and influence various properties. As proteins are inherently dynamic, their tunnels also vary structurally. Understanding these dynamics is essential for elucidating structure-function relationships, drug discovery, and bioengineering. Caver Web 2.0 is a user-friendly web server that retains all Caver Web 1.0 functionalities while introducing key improvements: (i) generation of dynamic ensembles via automated molecular dynamics with YASARA, (ii) analysis of dynamic tunnels with CAVER 3.0, (iii) prediction of ligand trajectories in multiple snapshots with CaverDock 1.2, and (iv) customizable ligand libraries for virtual screening. Users can assess protein flexibility, identify and characterize tunnels, and predict ligand trajectories and energy profiles in both static and dynamic structures. Additionally, the platform supports virtual screening with FDA/EMA-approved drugs and user-defined datasets. Caver Web 2.0 is a versatile tool for biological research, protein engineering, and drug discovery, aiding the identification of strong inhibitors or new substrates to bind to the active sites or tunnels, and supporting drug repurposing efforts. The server is freely accessible at https://loschmidt.chemi.muni.cz/caverweb.
Collapse
Affiliation(s)
- Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, 65691 Brno, Czech Republic
| | - Simeon Borko
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, 65691 Brno, Czech Republic
| | - Ondrej Vavra
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, 65691 Brno, Czech Republic
| | - Jan Dvorsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, 65691 Brno, Czech Republic
| | - Petr Kohout
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Petr Kabourek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, 65691 Brno, Czech Republic
| | - Lukas Hejtmanek
- Institute of Computer Science, Masaryk University, 60200 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, 65691 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, 65691 Brno, Czech Republic
| |
Collapse
|
2
|
Zhao S, Lin Y, Wang J, Li D, Wang F, Shoji O, Xu J. Regioselective aromatic O-demethylation with an artificial P450BM3/sugar alcohol oxidase peroxygenase system. Int J Biol Macromol 2025; 309:142768. [PMID: 40180086 DOI: 10.1016/j.ijbiomac.2025.142768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
The enzymatic demethylation of aromatic compounds presents a major challenge in the valorization of lignin. The main goal was to develop an efficient artificial peroxygenase system combining engineered P450BM3 with AldO (sugar alcohol oxidase) and DFSM (dual function small molecule) for the regioselective O-demethylation of lignin-derived aromatic ethers. P450BM3 serves as a versatile biocatalyst, and its engineered variants demonstrate expanded substrate promiscuity toward non-native substrates. AldO, served as the H2O2 in situ generation system. The DFSM, a rationally designed catalytic auxiliary, facilitates precise control of enzymatic reactions and enhances the efficiency of O-demethylation. We hypothesize that by combining P450BM3 with AldO and DFSM, we can better control the generation of H2O2 and direct the enzymatic system toward efficient O-demethylation. The engineered P450BM3 F87A/V78A/T268D/A328F mutant achieved a TON of 1895 ± 4 for guaiacol, more than double that of the native P450BM3/H2O2 system (TON = 872 ± 7). Moreover, the F87A/T268D mutant efficiently catalyzed double-demethylation of syringol, achieving the highest turnover number (TON) of 483 ± 7. This DFSM-assisted P450BM3/AldO system represents a significant advancement in the biocatalytic degradation of lignin and offers a cost-effective and scalable alternative to traditional NADPH-dependent P450 monooxygenases. Our findings open new pathways for sustainable biotechnological applications in lignin valorization and aromatic compound catabolism.
Collapse
Affiliation(s)
- Sijia Zhao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences), Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yingwu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jinghan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences), Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Dong Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences), Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Fang Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences), Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Jiakun Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences), Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China.
| |
Collapse
|
3
|
Akter J, Lee JHZ, Whelan F, De Voss JJ, Bell SG. Characterisation of the Cytochrome P450 Monooxygenase CYP116B46 from Tepidiphilus thermophilus as a Homogentisic Acid Generating Enzyme and its Conversion to a Peroxygenase. Chembiochem 2025; 26:e202400880. [PMID: 39714419 DOI: 10.1002/cbic.202400880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/24/2024]
Abstract
The heme enzymes of the cytochrome P450 superfamily (CYPs) catalyse the selective hydroxylation of unactivated C-H bonds in organic molecules. There is great interest in applying these enzymes as biocatalysts with a focus on self-sufficient CYP 'fusion' enzymes, comprising a single polypeptide chain with the electron transfer components joined to the heme domain. Here we elucidate the function of the self-sufficient CYP116B46 fusion enzyme, from the thermophilic bacterium Tepidiphilus thermophilus. We demonstrate that it efficiently hydroxylates aromatic organic acids, exemplified by oxidation of 2-hydroxyphenylacetic acid to homogentisic acid (2,5-dihydroxyphenylacetic acid), an important metabolite in bacterial catabolism. In line with the thermophilic nature of the source bacterium, activity increased at higher temperatures, (50 °C), with a catalytic preference for NADPH over NADH. While self-sufficient fusion enzymes simplify biocatalysis; engineered peroxygenase activity is also a key advance in the application of these enzymes as biocatalysts as it eliminates the need for electron transfer partner proteins and nicotinamide cofactors. We demonstrate that a T278E mutation in the heme domain of CYP116B46, confers peroxygenase activity. This engineered peroxygenase enzyme is stable to elevated temperatures and catalytic concentrations of hydrogen peroxide, with an observed optimal activity resulting in a total turnover number of ~650.
Collapse
Affiliation(s)
- Jina Akter
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Joel H Z Lee
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Fiona Whelan
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Microscopy, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
4
|
Bian SQ, Wang ZK, Gong JS, Su C, Li H, Xu ZH, Shi JS. Protein Engineering of Substrate Specificity toward Nitrilases: Strategies and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1775-1789. [PMID: 39791507 DOI: 10.1021/acs.jafc.4c09599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Nitrilase is extensively applied across diverse sectors owing to its unique catalytic properties. Nevertheless, in industrial production, nitrilases often face issues such as low catalytic efficiency, limited substrate range, suboptimal selectivity, and side reaction products, which have garnered heightened attention. With the widespread recognition that the structure of enzymes has a direct impact on their catalytic properties, an increasing number of researchers are beginning to optimize the functional characteristics of nitrilases by modifying their structures, in order to meet specific industrial or biotechnology application needs. Particularly in the artificial intelligence era, the innovative application of computer-aided design in enzyme engineering offers remarkable opportunities to tailor nitrilases for the widespread production of high-value products. In this discussion, we will briefly examine the structural mechanism of nitrilase. An overview of the protein engineering strategies of substrate preference, regioselectivity and stereoselectivity are explored combined with some representative examples recently in terms of the substrate specificity of enzyme. The future research trends in this field are also prospected.
Collapse
Affiliation(s)
- Shi-Qian Bian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zi-Kai Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| |
Collapse
|
5
|
Kong D, Wang L, Yuan Y, Xia W, Liu Z, Shi M, Wu J. Review of key issues and potential strategies in bio-degradation of polyolefins. BIORESOURCE TECHNOLOGY 2024; 414:131557. [PMID: 39357608 DOI: 10.1016/j.biortech.2024.131557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Polyolefins are the most widely used plastic product and a major contributor to white pollution. Currently, studies on polyolefin degradation systems are mainly focused on microorganisms and some redox enzymes, and there is a serious black-box phenomenon. The use of polyolefin-degrading enzymes is limited because of the small number of enzymes; in addition, the catalytic efficiency of these enzymes is poor and their catalytic mechanism is unclear, which leads to the incomplete degradation of polyolefins to produce microplastics. In this review, three questions are addressed: the generation and degradation of action targets that promote the degradation of polyolefins, the different modes by which enzymes bind substrates and their application scenarios, and possible multienzyme systems in a unified system. This review will be valuable for mining or modifying polyolefin degradation enzymes and constructing polyolefins degradation systems and may provide novel ideas and opportunities for polyolefin degradation.
Collapse
Affiliation(s)
- Demin Kong
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuan Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhanzhi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Meng Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
6
|
Wang A, Wang Y, You Y, Huang Z, Zhang X, Li S, Chen H. One-Pot Biocatalytic Conversion of Chemically Inert Hydrocarbons into Chiral Amino Acids through Internal Cofactor and H 2O 2 Recycling. Angew Chem Int Ed Engl 2024; 63:e202410260. [PMID: 39187620 DOI: 10.1002/anie.202410260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Chemically inert hydrocarbons are the primary feedstocks used in the petrochemical industry and can be converted into more intricate and valuable chemicals. However, two major challenges impede this conversion process: selective activation of C-H bonds in hydrocarbons and systematic functionalization required to synthesize complex structures. To address these issues, we developed a multi-enzyme cascade conversion system based on internal cofactor and H2O2 recycling to achieve the one-pot deep conversion from heptane to chiral (S)-2-aminoheptanoic acid under mild conditions. First, a hydrogen-borrowing-cycle-based NADH regeneration method and H2O2 in situ generation and consumption strategy were applied to realize selective C-H bond oxyfunctionalization, converting heptane into 2-hydroxyheptanoic acid. Integrating subsequent reductive amination driven by the second hydrogen-borrowing cycle, (S)-2-aminoheptanoic acid was finally accumulated at 4.57 mM with eep>99 %. Hexane, octane, 2-methylheptane, and butylbenzene were also successfully converted into the corresponding chiral amino acids with eep>99 %. Overall, the conversion system employed internal cofactor and H2O2 recycling, with O2 as the oxidant and ammonium as the amination reagent to fulfill the enzymatic conversion from chemically inert hydrocarbons into chiral amino acids under environmentally friendly conditions, which is a highly challenging transformation in traditional organic synthesis.
Collapse
Affiliation(s)
- Aiwen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yongze Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yuanxiang You
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhiqing Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Hui Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
7
|
Qin Z, Yuan B, Qu G, Sun Z. Rational enzyme design by reducing the number of hotspots and library size. Chem Commun (Camb) 2024; 60:10451-10463. [PMID: 39210728 DOI: 10.1039/d4cc01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biocatalysts that are eco-friendly, sustainable, and highly specific have great potential for applications in the production of fine chemicals, food, detergents, biofuels, pharmaceuticals, and more. However, due to factors such as low activity, narrow substrate scope, poor thermostability, or incorrect selectivity, most natural enzymes cannot be directly used for large-scale production of the desired products. To overcome these obstacles, protein engineering methods have been developed over decades and have become powerful and versatile tools for adapting enzymes with improved catalytic properties or new functions. The vastness of the protein sequence space makes screening a bottleneck in obtaining advantageous mutated enzymes in traditional directed evolution. In the realm of mathematics, there are two major constraints in the protein sequence space: (1) the number of residue substitutions (M); and (2) the number of codons encoding amino acids as building blocks (N). This feature review highlights protein engineering strategies to reduce screening efforts from two dimensions by reducing the numbers M and N, and also discusses representative seminal studies of rationally engineered natural enzymes to deliver new catalytic functions.
Collapse
Affiliation(s)
- Zongmin Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Bo Yuan
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Ge Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| |
Collapse
|
8
|
Gu C, Zhang Y, He P, Gan M, Zhu J, Yin H. Bioinspired axial S-coordinated single-atom cobalt catalyst to efficient activate peroxymonosulfate for selective high-valent Co-Oxo species generation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134515. [PMID: 38703676 DOI: 10.1016/j.jhazmat.2024.134515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The efficient activation and selective high-valent metal-oxo (HVMO) species generation remain challenging for peroxymonosulfate (PMS)-based advanced oxidation processes (PMS-AOPs) in water purification. The underlying mechanism of the activation pathway is ambiguous, leading to a massive dilemma in the control and regulation of HVMO species generation. Herein, bioinspired by the bio-oxidase structure of cytochrome P450, the axial coordination strategy was adopted to tailor a single-atom cobalt catalyst (CoN4S-CB) with an axial S coordination. CoN4S-CB high-selectively generated high-valent Co-Oxo species (Co(IV)=O) via PMS activation. Co(IV)=O demonstrated an ingenious oxygen atom transfer (OAT) reaction to achieve the efficient degradation of sulfamethoxazole (SMX), and this allowed robust operation in various complex environments. The axial S coordination modulated the 3d orbital electron distribution of the Co atom. Density functional theory (DFT) calculation revealed that the axial S coordination decreased the energy barrier for PMS desorption and lowered the free energy change (ΔG) for Co(IV)=O generation. CoN4S-PMS* had a narrow d-band close to the Fermi level, which enhanced charge transfer to accelerate the cleavage of O-O and O-H bonds in PMS. This work provides a broader perspective on the activator design with natural enzyme structure-like active sites to efficient activate PMS for selective HVMO species generation.
Collapse
Affiliation(s)
- Chunyao Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Yaqin Zhang
- College of Food Science and Technology, Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China.
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China.
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| |
Collapse
|
9
|
Dias AHS, Cao Y, Skaf MS, de Visser SP. Machine learning-aided engineering of a cytochrome P450 for optimal bioconversion of lignin fragments. Phys Chem Chem Phys 2024; 26:17577-17587. [PMID: 38884162 DOI: 10.1039/d4cp01282h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Using machine learning, molecular dynamics simulations, and density functional theory calculations we gain insight into the selectivity patterns of substrate activation by the cytochromes P450. In nature, the reactions catalyzed by the P450s lead to the biodegradation of xenobiotics, but recent work has shown that fungi utilize P450s for the activation of lignin fragments, such as monomer and dimer units. These fragments often are the building blocks of valuable materials, including drug molecules and fragrances, hence a highly selective biocatalyst that can produce these compounds in good yield with high selectivity would be an important step in biotechnology. In this work a detailed computational study is reported on two reaction channels of two P450 isozymes, namely the O-deethylation of guaethol by CYP255A and the O-demethylation versus aromatic hydroxylation of p-anisic acid by CYP199A4. The studies show that the second-coordination sphere plays a major role in substrate binding and positioning, heme access, and in the selectivity patterns. Moreover, the local environment affects the kinetics of the reaction through lowering or raising barrier heights. Furthermore, we predict a site-selective mutation for highly specific reaction channels for CYP199A4.
Collapse
Affiliation(s)
- Artur Hermano Sampaio Dias
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
- Institute of Chemistry and Centre for Computing in Engineering & Sciences, University of Campinas, Campinas, SP 13083-861, Brazil
| | - Yuanxin Cao
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Munir S Skaf
- Institute of Chemistry and Centre for Computing in Engineering & Sciences, University of Campinas, Campinas, SP 13083-861, Brazil
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
10
|
Lee JHZ, Coleman T, Mclean MA, Podgorski MN, Hayball EF, Stone ISJ, Bruning JB, Whelan F, Voss JJD, Sligar SG, Bell SG. Selective α-Hydroxyketone Formation and Subsequent C-C Bond Cleavage by Cytochrome P450 Monooxygenase Enzymes. ACS Catal 2024; 14:8958-8971. [PMID: 39911918 PMCID: PMC11793330 DOI: 10.1021/acscatal.4c01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The heme enzymes of the cytochrome P450 superfamily (CYPs) catalyze oxidation reactions with a high level of selectivity. Here, the CYP199A4 enzyme from the bacterium Rhodopseudomonas palustris HaA2 is used to catalyze the hydroxylation of carbonyl-containing compounds to generate α-hydroxyketones. Both 4-propionyl- and 4-(2-oxopropyl)-benzoic acids were regioselectively hydroxylated by this enzyme to generate α-hydroxyketone metabolites, 4-(2-hydroxypropanoyl)benzoic acid and 4-(1-hydroxy-2-oxopropyl)benzoic acid, respectively, with high stereoselectivity. Co-crystallization of CYP199A4 with each substrate allowed high-resolution X-ray crystal structures of the enzyme bound with both to be determined. These provide a rationale for biochemical observations related to substrate binding and activity. As these versatile enzymes have a demonstrated ability to support carbon-carbon (C-C) bond cleavage (lyase) reactions on α-hydroxyketones, we assessed if this activity would be catalyzed by wild-type (WT) CYP199A4. Molecular dynamics (MD) simulations predicted the regioselective hydroxylation of each substrate but indicated that the WT enzyme would not be a good catalyst for lyase activity, in agreement with the experimental observations. The MD simulations also suggested the F182L mutant of CYP199A4 would permit closer approach of the substrate to the ferric-peroxo intermediate, enabling the formation of the lyase transition state. Indeed, this variant was observed to catalyze the cleavage reaction. Furthermore, the F182A variant of CYP199A4 was used to catalyze both the hydroxylation and C-C bond cleavage reactions with both 4-propionyl- and 4-(2-oxopropyl)-benzoic acids using hydrogen peroxide as the oxidant. This dual CYP activity is analogous to that supported by the mammalian CYP17A1 enzyme in steroid biosynthesis.
Collapse
Affiliation(s)
- Joel H Z Lee
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Tom Coleman
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mark A Mclean
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew N Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eva F Hayball
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Isobella S J Stone
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Fiona Whelan
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen G Sligar
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
11
|
Peng F, Shen Q, Zou LP, Cheng F, Xue YP, Zheng YG. Design of NAMPTs with Superior Activity by Dual-Channel Protein Engineering Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38842002 DOI: 10.1021/acs.jafc.4c02698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The nicotinamide phosphoribosyltransferase (NAMPT)-catalyzed substitution reaction plays a pivotal role in the biosynthesis of nucleotide compounds. However, industrial applications are hindered by the low activity of NAMPTs. In this study, a novel dual-channel protein engineering strategy was developed to increase NAMPT activity by enhancing substrate accessibility. The best mutant (CpNAMPTY13G+Y15S+F76P) with a remarkable 5-fold increase in enzyme activity was obtained. By utilizing CpNAMPTY13G+Y15S+F76P as a biocatalyst, the accumulation of β-nicotinamide mononucleotide reached as high as 19.94 g L-1 within 3 h with an impressive substrate conversion rate of 99.8%. Further analysis revealed that the newly generated substrate channel, formed through crack propagation, facilitated substrate binding and enhanced byproduct tolerance. In addition, three NAMPTs from different sources were designed based on the dual-channel protein engineering strategy, and the corresponding dual-channel mutants with improved enzyme activity were obtained, which proved the effectiveness and practicability of the approach.
Collapse
Affiliation(s)
- Feng Peng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lu-Ping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
12
|
Zhao P, Jiang Y, Wang Q, Chen J, Yao F, Cong Z. Crucial gating residues govern the enhancement of peroxygenase activity in an engineered cytochrome P450 O-demethylase. Chem Sci 2024; 15:8062-8070. [PMID: 38817576 PMCID: PMC11134341 DOI: 10.1039/d4sc02418d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
P450-catalyzed O-demethylation reactions have recently attracted particular attention because of their potential applications in lignin bioconversion. We recently enabled the peroxygenase activity of CYP199A4, a NADH-dependent cytochrome P450 monooxygenase from Rhodopseudomonas palustris, by engineering a hydrogen peroxide (H2O2) tunnel. In this report, we reveal by crystallography and molecule dynamics simulations that key residues located at one of the water tunnels in CYP199A4 play a crucial gating role, which enhances the peroxygenase activity by regulating the inflow of H2O2. These results provide a more complete understanding of the mechanism by which monooxygenase is converted into peroxygenase activity through the H2O2 tunnel engineering (HTE) strategy. Furthermore, a library of engineered CYP199A4 peroxygenases was constructed to explore their application potentials for O-demethylation of various methoxy-substituted benzoic acid derivatives. The engineered CYP199A4 peroxygenases showed good functional group tolerance and preferential O-demethylation at the meta- or para-position, indicating potential O-demethylation of H- and G-type lignin monomers. This work reveals the feasibility of the HTE strategy in creating P450 peroxygenase from a mechanistic perspective, laying the foundation for developing an effective P450 O-demethylase applicable in lignin bioconversion.
Collapse
Affiliation(s)
- Panxia Zhao
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong P. R. China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong P. R. China
- Shandong Energy Institute Qingdao Shandong 266101 China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong P. R. China
| | - Qian Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong P. R. China
| | - Jie Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong P. R. China
- Shandong Energy Institute Qingdao Shandong 266101 China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong P. R. China
| | - Fuquan Yao
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong P. R. China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong P. R. China
- Shandong Energy Institute Qingdao Shandong 266101 China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong P. R. China
| |
Collapse
|
13
|
Decembrino D, Cannella D. The thin line between monooxygenases and peroxygenases. P450s, UPOs, MMOs, and LPMOs: A brick to bridge fields of expertise. Biotechnol Adv 2024; 72:108321. [PMID: 38336187 DOI: 10.1016/j.biotechadv.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Many scientific fields, although driven by similar purposes and dealing with similar technologies, often appear so isolated and far from each other that even the vocabularies to describe the very same phenomenon might differ. Concerning the vast field of biocatalysis, a special role is played by those redox enzymes that employ oxygen-based chemistry to unlock transformations otherwise possible only with metal-based catalysts. As such, greener chemical synthesis methods and environmentally-driven biotechnological approaches were enabled over the last decades by the use of several enzymes and ultimately resulted in the first industrial applications. Among what can be called today the environmental biorefinery sector, biomass transformation, greenhouse gas reduction, bio-gas/fuels production, bioremediation, as well as bulk or fine chemicals and even pharmaceuticals manufacturing are all examples of fields in which successful prototypes have been demonstrated employing redox enzymes. In this review we decided to focus on the most prominent enzymes (MMOs, LPMO, P450 and UPO) capable of overcoming the ∼100 kcal mol-1 barrier of inactivated CH bonds for the oxyfunctionalization of organic compounds. Harnessing the enormous potential that lies within these enzymes is of extreme value to develop sustainable industrial schemes and it is still deeply coveted by many within the aforementioned fields of application. Hence, the ambitious scope of this account is to bridge the current cutting-edge knowledge gathered upon each enzyme. By creating a broad comparison, scientists belonging to the different fields may find inspiration and might overcome obstacles already solved by the others. This work is organised in three major parts: a first section will be serving as an introduction to each one of the enzymes regarding their structural and activity diversity, whereas a second one will be encompassing the mechanistic aspects of their catalysis. In this regard, the machineries that lead to analogous catalytic outcomes are depicted, highlighting the major differences and similarities. Finally, a third section will be focusing on the elements that allow the oxyfunctionalization chemistry to occur by delivering redox equivalents to the enzyme by the action of diverse redox partners. Redox partners are often overlooked in comparison to the catalytic counterparts, yet they represent fundamental elements to better understand and further develop practical applications based on mono- and peroxygenases.
Collapse
Affiliation(s)
- Davide Decembrino
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| | - David Cannella
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| |
Collapse
|
14
|
Lee JHZ, Bruning JB, Bell SG. An In Crystallo Reaction with an Engineered Cytochrome P450 Peroxygenase. Chemistry 2024; 30:e202303335. [PMID: 37971151 DOI: 10.1002/chem.202303335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
The cytochrome P450 monooxygenases (CYPs) are a class of heme-thiolate enzymes that insert oxygen into unactivated C-H bonds. These enzymes can be converted into peroxygenases via protein engineering, which enables their activity to occur using hydrogen peroxide (H2 O2 ) without the requirement for additional nicotinamide co-factors or partner proteins. Here, we demonstrate that soaking crystals of an engineered P450 peroxygenase with H2 O2 enables the enzymatic reaction to occur within the crystal. Crystals of the designed P450 peroxygenase, the T252E mutant of CYP199A4, in complex with 4-methoxybenzoic acid were soaked with different concentrations of H2 O2 for varying times to initiate the in crystallo O-demethylation reaction. Crystal structures of T252E-CYP199A4 showed a distinct loss of electron density that was consistent with the O-demethylated metabolite, 4-hydroxybenzoic acid. A new X-ray crystal structure of this enzyme with the 4-hydroxybenzoic acid product was obtained to enable comparison alongside the existing substrate-bound structure. The visualisation of enzymatic catalysis in action is challenging in structural biology and the ability to initiate the reactions of P450 enzymes, in crystallo by simply soaking crystals with H2 O2 will enable new structural biology methods and techniques to be applied to study their mechanism of action.
Collapse
Affiliation(s)
- Joel H Z Lee
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
15
|
Fan S, Cong Z. Emerging Strategies for Modifying Cytochrome P450 Monooxygenases into Peroxizymes. Acc Chem Res 2024. [PMID: 38293787 DOI: 10.1021/acs.accounts.3c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
ConspectusCytochrome P450 monooxygenase is a versatile oxidizing enzyme with great potential in synthetic chemistry and biology. However, the dependence of its catalytic function on the nicotinamide cofactor NAD(P)H and redox partner proteins limits the practical catalytic application of P450 in vitro. An alternative to expensive cofactors is low-cost H2O2, which can be used directly to exploit the catalytic potential of P450s. However, the peroxide shunt pathway is generally inefficient at driving P450 catalysis compared to normal NAD(P)H-dependent activity. Over the last few decades, the scientific community has made continuous efforts to use directed evolution or site-directed mutagenesis to modify P450 monooxygenases into their peroxizyme modes─peroxygenase and peroxidase. Despite significant progress, obtaining efficient P450 peroxizymes remains a huge challenge. Here, we summarize our efforts to modulate peroxizyme activity in P450 monooxygenases and exploit their catalytic applications in challenging selective C-H oxidation, oxygenation, and oxyfunctionalization over the past seven years. We first developed a dual-functional small molecule (DFSM) strategy for transforming P450BM3 monooxygenase into peroxygenase. In this strategy, the typical DFSM, such as N-(ω-imidazolyl)-hexanoyl-l-phenylalanine (Im-C6-Phe), binds to the P450BM3 protein with an anchoring group at one end and plays a general acid-base catalytic role in the activation of H2O2 with an imidazolyl group at the other end. Compared with the O-O homolysis mechanism in the absence of DFSM, the addition of DFSM efficiently enables the heterolytic O-O cleavage of the adduct Fe-O-OH, thus being favored for the formation of active species compound I, which has been demonstrated by combining crystallographic and theoretical calculations. Furthermore, protein engineering showed the unique catalytic performance of DFSM-facilitated P450 peroxygenase for the highly difficult selective oxidation of C-H bonds. This catalytic performance was demonstrated during the chemoselective hydroxylation of gaseous alkanes, regioselective O-demethylation of aryl ethers, highly (R)-enantioselective epoxidation of styrene, and regio- and enantiomerically diverse hydroxylation of alkylbenzenes. Second, we demonstrated that DFSM-facilitated P450BM3 peroxygenase could be effectively switched to an efficient peroxidase mode through mechanism-guided protein engineering of redox-sensitive residues. Utilizing the peroxidase function of P450 enabled the direct nitration of unsaturated hydrocarbons including phenols, aromatic amines, and styrene derivatives, which was not only the P450-catalyzed direct nitration of phenols and aromatic amines for the first time but also the first example of the direct biological nitration of olefins. Finally, we report an H2O2 tunnel engineering strategy to enable peroxygenase activity in several different P450 monooxygenases for the first time, providing a general approach for accessing engineered P450 peroxygenases. In this Account, we highlight the emerging strategies we have developed for producing practical P450 peroxizyme biocatalysts. Although the DFSM strategy is primarily applied to P450BM3 to date, both strategies of redox-sensitive residue engineering and H2O2 tunnel engineering show great potential to extend to other P450s. These strategies have expanded the scope of applications of P450 chemistry and catalysis. Additionally, they provide a unique solution to the challenging selective oxidation of inert C-H bonds in synthetic chemistry.
Collapse
Affiliation(s)
- Shengxian Fan
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| |
Collapse
|
16
|
Xu Y, Zhao N, Li F, Wang C, Xie H, Wu J, Cheng L, Wang L, Wang Z. Application of Vitreoscilla Hemoglobin as a Green and Efficient Biocatalyst for the Synthesis of Benzoxazoles in Water. Chembiochem 2024; 25:e202300609. [PMID: 37877236 DOI: 10.1002/cbic.202300609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
We report an efficient and eco-friendly method for the Vitreoscilla hemoglobin (VHb)-catalyzed synthesis of benzoxazoles in water at room temperature. tert-Butyl hydroperoxide and 2,2,6,6-tetramethyl-1-piperidinyloxy were used as oxidant and radical scavenger, respectively. A total of 27 functionally diverse benzoxazoles were prepared in moderate to high yields (62 %-94 %) by the annulation reaction of phenols with amines in the presence of VHb in 1 h. Thus, this method is highly viable for practical applications. This work broadens the application of hemoglobin to organic synthesis.
Collapse
Affiliation(s)
- Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Nan Zhao
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130023, P. R. China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Junhao Wu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Lei Cheng
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| | - Zhi Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130023, P. R. China
| |
Collapse
|
17
|
Taher M, Dubey KD, Mazumdar S. Computationally guided bioengineering of the active site, substrate access pathway, and water channels of thermostable cytochrome P450, CYP175A1, for catalyzing the alkane hydroxylation reaction. Chem Sci 2023; 14:14316-14326. [PMID: 38098704 PMCID: PMC10718072 DOI: 10.1039/d3sc02857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Understanding structure-function relationships in proteins is pivotal in their development as industrial biocatalysts. In this regard, rational engineering of protein active site access pathways and various tunnels and channels plays a central role in designing competent enzymes with high stability and enhanced efficiency. Here, we report the rational evolution of a thermostable cytochrome P450, CYP175A1, to catalyze the C-H activation reaction of longer-chain alkanes. A strategy combining computational tools with experiments has shown that the substrate scope and enzymatic activity can be enhanced by rational engineering of certain important channels such as the substrate entry and water channels along with the active site of the enzyme. The evolved enzymes showed an improved catalytic rate for hexadecane hydroxylation with high regioselectivity. The Q67L/Y68F mutation showed binding of the substrate in the active site, water channel mutation L80F/V220T showed improved catalytic activity through the peroxide shunt pathway and substrate entry channel mutation W269F/I270A showed better substrate accessibility to the active pocket. All-atom MD simulations provided the rationale for the inactivity of the wild-type CYP175A1 for hexadecane hydroxylation and predicted the above hot-spot residues to enhance the activity. The reaction mechanism was studied by QM/MM calculations for enzyme-substrate complexes and reaction intermediates. Detailed thermal and thermodynamic stability of all the mutants were analyzed and the results showed that the evolved enzymes were thermally stable. The present strategy showed promising results, and insights gained from this work can be applied to the general enzymatic system to expand substrate scope and improve catalytic activity.
Collapse
Affiliation(s)
- Mohd Taher
- Department of Chemical Sciences, Tata Institute of Fundamental Research Homi Bhabha Road, Colaba Mumbai 400005 India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence Delhi-NCR NH91, Tehsil Dadri Greater Noida Uttar Pradesh 201314 India
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research Homi Bhabha Road, Colaba Mumbai 400005 India
| |
Collapse
|
18
|
Xu S, Zheng P, Sun P, Chen P, Wu D. Biosynthesis of 3-Hydroxyphloretin Using Rational Design of 4-Hydroxyphenylacetate 3-Monooxygenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19457-19464. [PMID: 38029276 DOI: 10.1021/acs.jafc.3c06479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The compound 3-hydroxyphloretin is a typical dihydrochalcone that can be obtained in plants by the 3-hydroxylation of phloretin. Here, the flavin-dependent two-component monooxygenase (HpaBC) derived from Pseudomonas aeruginosa was used to convert phloretin into 3-hydroxyphloretin. Following molecular docking and sequence alignment, modifications to the substrate pocket and loop of PaHpaBC were rationally designed, and mutant residues were selected. The results showed that the mutant Q212G/F292A/Q376N gave the best yield of 3-hydroxyphloretin and showed improved catalytic efficiency. Under optimal reaction condition, 2.03 g/L of 3-hydroxyphloretin was produced in the whole-cell catalysis experiment. Molecular docking and molecular dynamics simulations were used to analyze mutants and elucidate the potential mechanism. It was found that the increase in 3-hydroxyphloretin yield was due to the improvement in the flexibility of the loop and the expansion of its substrate pocket. This strategy based on loop and substrate pocket modification has significance in the engineering of PaHpaB.
Collapse
Affiliation(s)
- Shuping Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Pu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ping Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Pengcheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Dan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
19
|
Pereira RW, Ramabhadran RO. Accurate Computation of Aqueous p Kas of Biologically Relevant Organic Acids: Overcoming the Challenges Posed by Multiple Conformers, Tautomeric Equilibria, and Disparate Functional Groups with the Fully Black-Box p K-Yay Method. J Phys Chem A 2023; 127:9121-9138. [PMID: 37862610 DOI: 10.1021/acs.jpca.3c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The use of static electronic structure calculations to compute solution-phase pKas offers a great advantage in that a macroscopic bulk property could be computed via microscopic computations involving very few molecules. There are various sources of errors in the quantum chemical calculations though. Overcoming these errors to accurately compute pKas of a plethora of acids is an active area of research in physical chemistry pursued by both computational as well as experimental chemists. We recently developed the pK-Yay method in our attempt to accurately compute aqueous pKas of strong and weak acids. The method is fully black-box, computationally inexpensive, and is very easy for even a nonexpert to use. However, the method was thus far tested on very few molecules (only 16 in all). Herein, in order to assess the future applicability of pK-Yay, we study the effect of multiple conformers, the presence of tautomers under equilibrium, and the impact of a wide variety of functional groups (derivatives of acetic acid with substituents at various positions, dicarboxylic acids, aromatic carboxylic acids, amines and amides, phenols and thiols, and fluorine bearing organic acids). Starting with more than 1000 conformers and tautomers, this study establishes that overall errors of ∼ 1.0 pKa units are routinely obtained for a majority of the molecules. Larger errors are noted in cases where multiple charges, intramolecular hydrogen bonding, and several ionizable functional groups are simultaneously present. An important conclusion to emerge from this work is that, the computed pKas are insensitive (difference <0.5) to whether we consider multiple conformers/tautomers or only choose the most stable conformer/tautomer. Further, pK-Yay captures the stereoelectronic effects arising due to differing axial vs equatorial pattern, and is useful to predict the dominant acid-base equilibrium in a system featuring several equilibria. Overall, pK-Yay may be employed in several chemical applications featuring organic molecules and biomonomers.
Collapse
Affiliation(s)
- Roshni W Pereira
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh 517507, India
- Centre for Atomic Molecular Optical Sciences and Technology (CAMOST), Tirupati, Andhra Pradesh 517507, India
| | - Raghunath O Ramabhadran
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh 517507, India
- Centre for Atomic Molecular Optical Sciences and Technology (CAMOST), Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
20
|
Ma L, Sun T, Liu Y, Zhao Y, Liu X, Li Y, Chen X, Cao L, Kang Q, Guo J, Du L, Wang W, Li S. Enzymatic synthesis of indigo derivatives by tuning P450 BM3 peroxygenases. Synth Syst Biotechnol 2023; 8:452-461. [PMID: 37448528 PMCID: PMC10336827 DOI: 10.1016/j.synbio.2023.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Indigoids, a class of bis-indoles, have long been applied in dyeing, food, and pharmaceutical industries. Recently, interest in these 'old' molecules has been renewed in the field of organic semiconductors as functional building blocks for organic electronics due to their excellent chemical and physical properties. However, these indigo derivatives are difficult to access through chemical synthesis. In this study, we engineer cytochrome P450 BM3 from an NADPH-dependent monooxygenase to peroxygenases through directed evolution. A select number of P450 BM3 variants are used for the selective oxidation of indole derivatives to form different indigoid pigments with a spectrum of colors. Among the prepared indigoid organic photocatalysts, a majority of indigoids demonstrate a reduced band gap than indigo due to the increased light capture and improved charge separation, making them promising candidates for the development of new organic electronic devices. Thus, we present a useful enzymatic approach with broad substrate scope and cost-effectiveness by using low-cost H2O2 as a cofactor for the preparation of diversified indigoids, offering versatility in designing and manufacturing new dyestuff and electronic/sensor components.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Tianjian Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yunjie Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yue Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaohui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yuxuan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xinwei Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Lin Cao
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Qianqian Kang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
21
|
Liu F, He L, Dong S, Xuan J, Cui Q, Feng Y. Artificial Small Molecules as Cofactors and Biomacromolecular Building Blocks in Synthetic Biology: Design, Synthesis, Applications, and Challenges. Molecules 2023; 28:5850. [PMID: 37570818 PMCID: PMC10421094 DOI: 10.3390/molecules28155850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Enzymes are essential catalysts for various chemical reactions in biological systems and often rely on metal ions or cofactors to stabilize their structure or perform functions. Improving enzyme performance has always been an important direction of protein engineering. In recent years, various artificial small molecules have been successfully used in enzyme engineering. The types of enzymatic reactions and metabolic pathways in cells can be expanded by the incorporation of these artificial small molecules either as cofactors or as building blocks of proteins and nucleic acids, which greatly promotes the development and application of biotechnology. In this review, we summarized research on artificial small molecules including biological metal cluster mimics, coenzyme analogs (mNADs), designer cofactors, non-natural nucleotides (XNAs), and non-natural amino acids (nnAAs), focusing on their design, synthesis, and applications as well as the current challenges in synthetic biology.
Collapse
Affiliation(s)
- Fenghua Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling He
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Xuan
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Hancock JT. Are Protein Cavities and Pockets Commonly Used by Redox Active Signalling Molecules? PLANTS (BASEL, SWITZERLAND) 2023; 12:2594. [PMID: 37514209 PMCID: PMC10383989 DOI: 10.3390/plants12142594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
It has been well known for a long time that inert gases, such as xenon (Xe), have significant biological effects. As these atoms are extremely unlikely to partake in direct chemical reactions with biomolecules such as proteins, lipids, and nucleic acids, there must be some other mode of action to account for the effects reported. It has been shown that the topology of proteins allows for cavities and hydrophobic pockets, and it is via an interaction with such protein structures that inert gases are thought to have their action. Recently, it has been mooted that the relatively inert gas molecular hydrogen (H2) may also have its effects via such a mechanism, influencing protein structures and actions. H2 is thought to also act via interaction with redox active compounds, particularly the hydroxyl radical (·OH) and peroxynitrite (ONOO-), but not nitric oxide (NO·), superoxide anions (O2·-) or hydrogen peroxide (H2O2). However, instead of having a direct interaction with H2, is there any evidence that these redox compounds can also interact with Xe pockets and cavities in proteins, either having an independent effect on proteins or interfering with the action of inert gases? This suggestion will be explored here.
Collapse
Affiliation(s)
- John T Hancock
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|