1
|
Hu H, Ning S, Liu F, Zhang Z, Zeng W, Liu Y, Liao Z, Zhang H, Zhang Z. Hafnium Metal-Organic Framework-Based Glutamine Metabolism Disruptor For Potentiating Radio-Immunotherapy in MYC-Amplified Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19367-19381. [PMID: 40116395 DOI: 10.1021/acsami.4c21998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Hepatocellular carcinoma (HCC) with MYC oncogene amplification remains a serious challenge in clinical practice. Recent advances in comprehensive treatment strategies, particularly the combination of radiotherapy and immunotherapy, offer new hope. To further improve efficacy while lowering radiation doses, nanopharmaceuticals based on high-Z elements have been extensively studied in radio-immunotherapy. In this work, a hafnium-based metal-organic framework (Hf-MOF), UiO-66-Hf(2OH)-CB-839/BSO@HA (UiO-66-Hf(2OH)-C/B@HA), was designed to codeliver telaglenastat (CB-839) and buthionine sulfoximine (BSO), which synergistically inhibited glutamine metabolism and alleviated tumor hypoxia. Further modification with hyaluronic acid (HA) enhanced tumor targeting, ultimately strengthening the efficacy of radiotherapy in MYC-amplified HCC. Beyond increasing reactive oxygen species (ROS) generation, promoting DNA damage, and inducing tumor apoptosis, more importantly, UiO66-Hf(2OH)-C/B@HA triggered immunogenic cell death (ICD), driving the antitumor immune response. Combination with immune checkpoint blockade (ICB) further enhanced the efficacy, accompanied by increased infiltration of T cells with high granzyme B expression (GZMB+ T cells) within the tumor microenvironment (TME). In the orthotopic HCC model, established with MYC-amplified tumor cells, intravenous administration of UiO66-Hf(2OH)-C/B@HA significantly potentiated the efficacy of radio-immunotherapy, resulting in superior tumor regression. In summary, our study provides insights into the design of Hf-MOF for radio-immunotherapy and proposes a promising therapeutic approach for MYC-amplified HCC.
Collapse
Affiliation(s)
- Haofan Hu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Shangwu Ning
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Ze Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Weifeng Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| |
Collapse
|
2
|
Peng H, Wang W, Gao J, Jiang F, Li B, Wang Y, Wu Y, Wang Y, Li J, Peng J, Hu W, Wen Z, Wang D, Zhang E, Zhai M. Symmetry Breaking in Rationally Designed Copper Oxide Electrocatalyst Boosts the Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411928. [PMID: 39680478 PMCID: PMC11809328 DOI: 10.1002/advs.202411928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Oxygen reduction reaction (ORR) kinetics is critically dependent on the precise modulation of the interactions between the key oxygen intermediates and catalytic active sites. Herein, a novel electrocatalyst is reported, featuring nitrogen-doped carbon-supported ultra-small copper oxide nanoparticles with the broken-symmetry C4v coordination filed sites, achieved by a mild γ-ray radiation-induced method. The as-synthesized catalyst exhibits an excellent ORR activity with a half-wave potential of 0.873 V and shows no obvious decay over 50 h durability in alkaline solution. This superior catalytic activity is further corroborated by the high-performance in both primary and rechargeable Zn-air batteries with an ultrahigh-peak-power density (255.4 mW cm-2) and robust cycling stability. The experimental characterizations and density functional theory calculations show that the surface Cu atoms are configured in a compressed octahedron coordination. This geometric arrangement interacts with the key intermediate OH*, facilitating localized charge transfer and thereby weakening the Cu─O bond, which promotes the efficient transformation of OH* to OH- and the subsequent desorption, and markedly accelerates kinetics of the rate-determining step in the reaction. This study provides new insights for developing the utilization of γ-ray radiation chemistry to construct high-performance metal oxide-based catalysts with broken symmetry toward ORR.
Collapse
Affiliation(s)
- Haoyu Peng
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Weiyi Wang
- Hefei National Research Center for Physical Sciences at the MicroscaleDepartment of Chemical PhysicsUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Jiyuan Gao
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Provincial Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
| | - Fan Jiang
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Bowei Li
- Future Photovoltaic Research CenterGlobal Institute of Future TechnologyShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yicheng Wang
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Yiqian Wu
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Yue Wang
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Jiuqiang Li
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Jing Peng
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Wei Hu
- Hefei National Research Center for Physical Sciences at the MicroscaleDepartment of Chemical PhysicsUniversity of Science and Technology of ChinaHefei230026P. R. China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Provincial Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
| | - Dingsheng Wang
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Erhuan Zhang
- Future Battery Research CenterInstitute of Future TechnologyShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular SciencesRadiochemistry and Radiation Chemistry Key Laboratory of Fundamental ScienceThe Key Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
3
|
Xu Y, Mu BS, Tu Z, Liang W, Li J, Sang Z, Liu Z. Radiation-induced aerobic oxidation via solvent-derived peroxyl radicals. Chem Sci 2025; 16:1867-1875. [PMID: 39720132 PMCID: PMC11665616 DOI: 10.1039/d4sc05558f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024] Open
Abstract
Oxidation is a fundamental transformation in synthesis. Developing facile and effective aerobic oxidation processes under ambient conditions is always in high demand. Benefiting from its high energy and good penetrability, ionizing radiation can readily produce various reactive species to trigger chemical reactions, offering another option for synthesis. Here, we report an ionizing radiation-induced aerobic oxidation strategy to synthesize oxygen-containing compounds. We discovered that molecular oxygen (O2) could be activated by reactive particles generated from solvent radiolysis to produce solvent-derived peroxyl radicals (RsolOO·), which facilitated the selective oxidation of sulfides and phosphorus(iii) compounds at room temperature without catalysts. Density functional theory (DFT) calculations further revealed that multiple RsolOO· enable the oxidation reaction through an oxygen atom transfer process. This aerobic oxidation strategy broadens the research scope of radiation-induced chemical transformations while offering an opportunity to convert nuclear energy into chemical energy.
Collapse
Affiliation(s)
- Yang Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Bo-Shuai Mu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Zhiyu Tu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Weiqiu Liang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jiahao Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Ziyang Sang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
- Peking University-Tsinghua University Center for Life Sciences, Peking University Beijing 100871 China
- Changping Laboratory Beijing 102206 China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute Beijing 100142 China
| |
Collapse
|
4
|
Mu BS, Xu Y, Tu Z, Zhang Y, Liang W, Li J, Wang X, Shen S, Chen J, Liu Z. Radiocatalytic ammonia synthesis from nitrogen and water. Natl Sci Rev 2024; 11:nwae302. [PMID: 39440259 PMCID: PMC11493089 DOI: 10.1093/nsr/nwae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 10/25/2024] Open
Abstract
The development of alternative methods to the Haber-Bosch process for ammonia (NH3) synthesis is a pressing and formidable challenge. Nuclear energy represents a low-carbon, efficient and stable source of power. The harnessing of nuclear energy to drive nitrogen (N2) reduction not only allows 'green' NH3 synthesis, but also offers the potential for the storage of nuclear energy as a readily transportable zero-carbon fuel. Herein, we explore radiocatalytic N2 fixation to NH3 induced by γ-ray radiation. Hydrated electrons (e- aq) that are generated from water radiolysis enable N2 reduction to produce NH3. Ru-based catalysts synthesized by using γ-ray radiation with excellent radiation stability substantially improve NH3 production in which the B5 sites of Ru particles may play an important role in the activation of N2. By benefitting from the remarkable penetrating power of γ-ray radiation, radiocatalytic NH3 synthesis can proceed in an autoclave under appropriate pressure conditions, resulting in an NH3 concentration of ≤5.1 mM. The energy conversion efficiency of the reaction is as high as 563.7 mgNH3·MJ-1. This radiocatalytic chemistry broadens the research scope of catalytic N2 fixation while offering promising opportunities for converting nuclear energy into chemical energy.
Collapse
Affiliation(s)
- Bo-Shuai Mu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiyu Tu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yugang Zhang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weiqiu Liang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiahao Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianglin Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
5
|
Mu BS, Zhang Y, Peng M, Tu Z, Guo Z, Shen S, Xu Y, Liang W, Wang X, Wang M, Ma D, Liu Z. Radiocatalytic Synthesis of Acetic Acid from CH 4 and CO 2. Angew Chem Int Ed Engl 2024; 63:e202407443. [PMID: 39058370 DOI: 10.1002/anie.202407443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
The C-C coupling of methane (CH4) and carbon dioxide (CO2) to generate acetic acid (CH3COOH) represents a highly atom-efficient chemical conversion, fostering the comprehensive utilization of greenhouse gases. However, the inherent thermodynamic stability and kinetic inertness of CH4 and CO2 present obstacles to achieving efficient and selective conversion at room temperature. Our study reveals that hydroxyl radicals (⋅OH) and hydrated electrons (eaq -) produced by water radiolysis can effectively activate CH4 and CO2, yielding methyl radicals (⋅CH3) and carbon dioxide radical anions(⋅CO2 -) that facilitate the production of CH3COOH at ambient temperature. The introduction of radiation-synthesized CuO-anchored TiO2 bifunctional catalyst could further enhance reaction efficiency and selectivity remarkably by boosting radiation absorption and radical stability, resulting in a concentration of 7.1 mmol ⋅ L-1 of CH3COOH with near-unity selectivity (>95 %). These findings offer valuable insights for catalyst design and implementation in radiation-induced chemical conversion.
Collapse
Affiliation(s)
- Bo-Shuai Mu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yugang Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiyu Tu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhenbo Guo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Weiqiu Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xianglin Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking University-Tsinghua University Center for Life Sciences, Peking University, 100871, Beijing, China
- Changping Laboratory, 102206, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| |
Collapse
|
6
|
Fang F, Sun X, Liu Y, Huang W. Water Radiocatalysis for Selective Aqueous-Phase Methane Carboxylation with Carbon Dioxide into Acetic Acid at Room Temperature. J Am Chem Soc 2024; 146:8492-8499. [PMID: 38477578 DOI: 10.1021/jacs.3c14632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Methane (CH4) carboxylation with carbon dioxide (CO2) into acetic acid (CH3COOH) is an ideal chemical reaction to utilize both greenhouse gases with 100% atom efficiency but remains a great challenge under mild conditions. Herein, we introduce a concept of water (H2O) radiocatalysis for efficient and selective aqueous-phase CH4 carboxylation with CO2 into CH3COOH at room temperature. H2O radiolysis occurs under γ-ray radiation to produce ·OH radicals and hydrated electrons that efficiently react with CH4 and CO2, respectively, to produce ·CH3 radicals and ·CO2- species facilely coupling to produce CH3COOH. CH3COOH selectivity as high as 96.9 and 96.6% calculated respectively from CH4 and CO2 and a CH3COOH production rate of as high as 121.9 μmol·h-1 are acquired. The water radiocatalysis driven by γ-rays is also applicable to selectively produce organic acids from other hydrocarbons and CO2.
Collapse
Affiliation(s)
- Fei Fang
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao Sun
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuanxu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, P. R. China
| | - Weixin Huang
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
7
|
Yu H, Hu M, Chen C, Hu C, Li Q, Hu F, Peng S, Ma J. Ambient γ-Rays-Mediated Noble-Metal Deposition on Defect-Rich Manganese Oxide for Glycerol-Assisted H 2 Evolution at Industrial-Level Current Density. Angew Chem Int Ed Engl 2023; 62:e202314569. [PMID: 37942995 DOI: 10.1002/anie.202314569] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Developing novel synthesis technologies is crucial to expanding bifunctional electrocatalysts for energy-saving hydrogen production. Herein, we report an ambient and controllable γ-ray radiation reduction to synthesize a series of noble metal nanoparticles anchored on defect-rich manganese oxides (M@MnO2-x , M=Ru, Pt, Pd, Ir) for glycerol-assisted H2 evolution. Benefiting from the strong penetrability of γ-rays, nanoparticles and defect supports are formed simultaneously and bridged by metal-oxygen bonds, guaranteeing structural stability and active site exposure. The special Ru-O-Mn bonds activate the Ru and Mn sites in Ru@MnO2-x through strong interfacial coordination, driving glycerol electrolysis at low overpotential. Furthermore, only a low cell voltage of 1.68 V is required to achieve 0.5 A cm-2 in a continuous-flow electrolyzer system along with excellent stability. In situ spectroscopic analysis reveals that the strong interfacial coordination in Ru@MnO2-x balances the competitive adsorption of glycerol and OH* on the catalyst surface. Theoretical calculations further demonstrate that the defect-rich MnO2 support promotes the dissociation of H2 O, while the defect-regulated Ru sites promote deprotonation and hydrogen desorption, synergistically enhancing glycerol-assisted hydrogen production.
Collapse
Affiliation(s)
- Hanzhi Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Mengyu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Chong Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Changjiang Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Qiuhao Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Jun Ma
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
8
|
Jiang Z, Clavaguéra C, Hu C, Denisov SA, Shen S, Hu F, Ma J, Mostafavi M. Direct time-resolved observation of surface-bound carbon dioxide radical anions on metallic nanocatalysts. Nat Commun 2023; 14:7116. [PMID: 37932333 PMCID: PMC10628153 DOI: 10.1038/s41467-023-42936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Time-resolved identification of surface-bound intermediates on metallic nanocatalysts is imperative to develop an accurate understanding of the elementary steps of CO2 reduction. Direct observation on initial electron transfer to CO2 to form surface-bound CO2•- radicals is lacking due to the technical challenges. Here, we use picosecond pulse radiolysis to generate CO2•- via aqueous electron attachment and observe the stabilization processes toward well-defined nanoscale metallic sites. The time-resolved method combined with molecular simulations identifies surface-bound intermediates with characteristic transient absorption bands and distinct kinetics from nanosecond to the second timescale for three typical metallic nanocatalysts: Cu, Au, and Ni. The interfacial interactions are further investigated by varying the important factors, such as catalyst size and the presence of cation in the electrolyte. This work highlights fundamental ultrafast spectroscopy to clarify the critical initial step in the CO2 catalytic reduction mechanism.
Collapse
Affiliation(s)
- Zhiwen Jiang
- School of Nuclear Science and Technology, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Changjiang Hu
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 211106, Nanjing, P. R. China
| | - Sergey A Denisov
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Shuning Shen
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 211106, Nanjing, P. R. China
| | - Feng Hu
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 211106, Nanjing, P. R. China
| | - Jun Ma
- School of Nuclear Science and Technology, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
| | - Mehran Mostafavi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France.
| |
Collapse
|
9
|
Zhou LL, Guan Q, Zhou W, Kan JL, Teng K, Hu M, Dong YB. A Multifunctional Covalent Organic Framework Nanozyme for Promoting Ferroptotic Radiotherapy against Esophageal Cancer. ACS NANO 2023; 17:20445-20461. [PMID: 37801392 DOI: 10.1021/acsnano.3c06967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Radiotherapy is inevitably accompanied by some degree of radiation resistance, which leads to local recurrence and even therapeutic failure. To overcome this limitation, herein, we report the room-temperature synthesis of an iodine- and ferrocene-loaded covalent organic framework (COF) nanozyme, termed TADI-COF-Fc, for the enhancement of radiotherapeutic efficacy in the treatment of radioresistant esophageal cancer. The iodine atoms on the COF framework not only exerted a direct effect on radiotherapy, increasing its efficacy by increasing X-ray absorption, but also promoted the radiolysis of water, which increased the production of reactive oxygen species (ROS). In addition, the ferrocene surface decoration disrupted redox homeostasis by increasing the levels of hydroxyl and lipid peroxide radicals and depleting intracellular antioxidants. Both in vitro and in vivo experiments substantiated the excellent radiotherapeutic response of TADI-COF-Fc. This study demonstrates the potential of COF-based multinanozymes as radiosensitizers and suggests a possible treatment integration strategy for combination oncotherapy.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Wei Zhou
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Kai Teng
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Man Hu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
10
|
Hu C, Jiang Z, Wu Q, Cao S, Li Q, Chen C, Yuan L, Wang Y, Yang W, Yang J, Peng J, Shi W, Zhai M, Mostafavi M, Ma J. Selective CO 2 reduction to CH 3OH over atomic dual-metal sites embedded in a metal-organic framework with high-energy radiation. Nat Commun 2023; 14:4767. [PMID: 37553370 PMCID: PMC10409780 DOI: 10.1038/s41467-023-40418-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
The efficient use of renewable X/γ-rays or accelerated electrons for chemical transformation of CO2 and water to fuels holds promise for a carbon-neutral economy; however, such processes are challenging to implement and require the assistance of catalysts capable of sensitizing secondary electron scattering and providing active metal sites to bind intermediates. Here we show atomic Cu-Ni dual-metal sites embedded in a metal-organic framework enable efficient and selective CH3OH production (~98%) over multiple irradiated cycles. The usage of practical electron-beam irradiation (200 keV; 40 kGy min-1) with a cost-effective hydroxyl radical scavenger promotes CH3OH production rate to 0.27 mmol g-1 min-1. Moreover, time-resolved experiments with calculations reveal the direct generation of CO2•‒ radical anions via aqueous electrons attachment occurred on nanosecond timescale, and cascade hydrogenation steps. Our study highlights a radiolytic route to produce CH3OH with CO2 feedstock and introduces a desirable atomic structure to improve performance.
Collapse
Affiliation(s)
- Changjiang Hu
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Zhiwen Jiang
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Qunyan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuiyan Cao
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Qiuhao Li
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Chong Chen
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunlong Wang
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Wenyun Yang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Jinbo Yang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Jing Peng
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maolin Zhai
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Mehran Mostafavi
- Institut de Chimie Physique, UMR8000 CNRS/Université Paris-Saclay, 91405, Orsay, France.
| | - Jun Ma
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China.
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|