1
|
Gao Y, Dong Y, Wang X, Su W, Cloutier P, Zheng Y, Sanche L. Comparisons between the Direct and Indirect Effect of 1.5 keV X-rays and 0-30 eV Electrons on DNA: Base Lesions, Stand Breaks, Cross-Links, and Cluster Damages. J Phys Chem B 2024; 128:11041-11053. [PMID: 39453992 DOI: 10.1021/acs.jpcb.4c02799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The interaction of low energy electrons (LEEs; 1-30 eV) with genomic material can induce multiple types of damage that may cause the loss of genetic information, mutations, genome instability, and cell death. For all damages measurable by electrophoresis, we provide the first complete set of G-values (yield of a specific product per energy deposited) induced in plasmid DNA by the direct and indirect effects of LEEs (GLEE) and 1.5 keV X-rays (GX) under identical conditions. Low energy photoelectrons are produced via X-rays incident on a tantalum (Ta) substrate covered with DNA and placed in a chamber filled with nitrogen at atmospheric pressure, under four different humidity levels, ranging from dry conditions to full hydration (Γ = 2.5 to Γ = 33, where Γ is the number of water molecules/nucleotide). Damage yields are measured as a function of X-ray fluence and humidity. GLEE values are between 2 and 27 times larger than those for X-rays. At Γ = 2.5 and 33, GLEE values for double strand breaks are 27 and 16 times larger than GX, respectively. The indirect effect contributes ∼50% to the total damage. These G-values allow quantification of potentially lethal lesions composed of strand breaks and/or base damages in the presence of varying amounts of water, i.e., closer to cellular conditions.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yanfang Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 47100, P. R. China
| | - Xuran Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Wenyue Su
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Pierre Cloutier
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
2
|
Izadi F, Luxford TFM, Sedmidubská B, Arthur-Baidoo E, Kočišek J, Ončák M, Denifl S. Dissociative Electron Attachment Dynamics of a Promising Cancer Drug Indicates Its Radiosensitizing Potential. Angew Chem Int Ed Engl 2024; 63:e202407469. [PMID: 38980970 DOI: 10.1002/anie.202407469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
2-Bromo-1-(3,3-dinitroazetidin-1-yl)ethan-1-one (RRx-001) is a hypoxic cell chemotherapeutics with already demonstrated synergism in combined chemo-radiation therapy. The interaction of the compound with secondary low-energy electrons formed in large amounts during the physico-chemical phase of the irradiation may lead to these synergistic effects. The present study focuses on the first step of RRx-001 interaction with low-energy electrons in which a transient anion is formed and fragmented. Combination of two experiments allows us to disentangle the decay of the RRx-001 anion on different timescales. Sole presence of the electron initiates rapid dissociation of NO2 and HNO2 neutrals while NO2 - and Br- anions are produced both directly and via intermediate complexes. Based on our quantum chemical calculations, we propose that bidirectional state switching between π*(NO2) and σ*(C-Br) states explains the experimental spectra. The fast dynamics monitored will impact the condensed phase chemistry of the anion as well.
Collapse
Affiliation(s)
- Farhad Izadi
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
- Center for Biomolecular Sciences Innsbruck, Universität Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
| | - Thomas F M Luxford
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223, Prague, Czech Republic
| | - Barbora Sedmidubská
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223, Prague, Czech Republic
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, 115 19, Prague, Czech Republic
| | - Eugene Arthur-Baidoo
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
- Center for Biomolecular Sciences Innsbruck, Universität Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Dolejškova 3, 18223, Prague, Czech Republic
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
- Center for Biomolecular Sciences Innsbruck, Universität Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
| |
Collapse
|
3
|
Kumar A, Sevilla MD, Sanche L. How a Single 5 eV Electron Can Induce Double-Strand Breaks in DNA: A Time-Dependent Density Functional Theory Study. J Phys Chem B 2024; 128:4053-4062. [PMID: 38652830 PMCID: PMC11075081 DOI: 10.1021/acs.jpcb.3c08367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Low-energy (<20 eV) electrons (LEEs) can resonantly interact with DNA to form transient anions (TAs) of fundamental units, inducing single-strand breaks (SSBs), and cluster damage, such as double-strand breaks (DSBs). Shape resonances, which arise from electron capture in a previously unfilled orbital, can induce only a SSB, whereas a single core-excited resonance (i.e., two electrons in excited orbitals of the field of a hole) has been shown experimentally to cause cluster lesions. Herein, we show from time-dependent density functional theory (TDDFT) that a core-excited resonance can produce a DSB, i.e., a single 5 eV electron can induce two close lesions in DNA. We considered the nucleotide with the G-C base pair (ds[5'-G-3']) as a model for electron localization in the DNA double helix and calculated the potential energy surfaces (PESs) of excited states of the ground-state TA of ds[5'-G-3'], which correspond to shape and core-excited resonances. The calculations show that shape TAs start at ca. 1 eV, while core-excited TAs occur only above 4 eV. The energy profile of each excited state and the corresponding PES are obtained by simultaneously stretching both C5'-O5' bonds of ds[5'-G-3']. From the nature of the PES, we find two dissociative (σ*) states localized on the PO4 groups at the C5' sites of ds[5'-G-3']. The first σ* state at 1 eV is due to a shape resonance, while the second σ* state is induced by a core-excited resonance at 5.4 eV. As the bond of the latter state stretches and arrives close to the dissociation limit, the added electron on C transfers to C5' phosphate, thus demonstrating the possibility of producing a DSB with only one electron of ca. 5 eV.
Collapse
Affiliation(s)
- Anil Kumar
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Michael D. Sevilla
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Leon Sanche
- Department
of Nuclear Medicine and Radiobiology and Clinical Research Center,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
4
|
Datta M, Szczyrba A, Zdrowowicz M, Wyrzykowski D, Ciupak O, Demkowicz S, Izadi F, Denifl S, Rak J. Surprising Radiolytic Stability of 8-Thiomethyladenine in an Aqueous Solution. J Phys Chem B 2024; 128:3621-3630. [PMID: 38578255 PMCID: PMC11033863 DOI: 10.1021/acs.jpcb.4c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
8-Thiomethyladenine (ASCH3), a potentially radiosensitizing modified nucleobase, has been synthesized in a reaction between 8-thioadenine and methyl iodide. Despite favorable dissociative electron attachment (DEA) characteristics, the radiolysis of an aqueous solution of ASCH3 with a dose of X-ray amounting to as much as 300 Gy leads to no effects. Nevertheless, crossed electron-molecule beam experiments in the gas phase on ASCH3 confirm the theoretical findings regarding the stability of its radical anion, namely, the most abundant reaction channel is related to the dissociation of the S-CH3 bond in the respective anion. Furthermore, electron-induced degradation of ASCH3 has been observed in aprotic acetonitrile, which is strong evidence for the involvement of proton transfer (PT) in stabilizing the radical anion in an aqueous solution. These findings demonstrate that PT in water can be the main player in deciding the radiosensitizing properties of modified nucleobases/nucleosides.
Collapse
Affiliation(s)
- Magdalena Datta
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Adrian Szczyrba
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Magdalena Zdrowowicz
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Dariusz Wyrzykowski
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Olga Ciupak
- Department
of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sebastian Demkowicz
- Department
of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Farhad Izadi
- Institut
für Ionenphysik und Angewandte Physik and Center for Biomolecular
Sciences Innsbruck, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Stephan Denifl
- Institut
für Ionenphysik und Angewandte Physik and Center for Biomolecular
Sciences Innsbruck, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Janusz Rak
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| |
Collapse
|
5
|
Sajeev Y. Prebiotic chemical origin of biomolecular complementarity. Commun Chem 2023; 6:259. [PMID: 38012323 PMCID: PMC10681984 DOI: 10.1038/s42004-023-01060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
The early Earth, devoid of the protective stratospheric ozone layer, must have sustained an ambient prebiotic physicochemical medium intensified by the co-existence of shortwave UV photons and very low energy electrons (vLEEs). Consequently, only intrinsically stable molecules against these two co-existing molecular destructors must have proliferated and thereby chemically evolved into the advanced molecules of life. Based on this view, we examined the stability inherent in nucleobases and their complementary pairs as resistance to the molecular damaging effects of shortwave UV photons and vLEEs. This leads to the conclusion that nucleobases could only proliferated as their complementary pairs under the unfavorable prebiotic conditions on early Earth. The complementary base pairing not only enhances but consolidates the intrinsic stability of nucleobases against short-range UV photons, vLEEs, and possibly many as-yet-unknown deleterious agents co-existed in the prebiotic conditions of the early Earth. In short, complementary base pairing is a manifestation of chemical evolution in the unfavorable prebiotic medium created by the absence of the stratospheric ozone layer.
Collapse
Affiliation(s)
- Y Sajeev
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
6
|
Saqib M, Arthur-Baidoo E, Izadi F, Szczyrba A, Datta M, Demkowicz S, Rak J, Denifl S. Dissociative Electron Attachment to 5-Iodo-4-thio-2'-deoxyuridine: A Potential Radiosensitizer of Hypoxic Cells. J Phys Chem Lett 2023; 14:8948-8955. [PMID: 37769041 PMCID: PMC10578351 DOI: 10.1021/acs.jpclett.3c02219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
In the search for effective radiosensitizers for tumor cells, halogenated uracils have attracted more attention due to their large cross section for dissociation upon the attachment of low-energy electrons. In this study, we investigated dissociative electron attachment (DEA) to 5-iodo-4-thio-2'-deoxyuridine, a potential radiosensitizer using a crossed electron-molecule beam experiment coupled with quadrupole mass spectrometry. The experimental results were supported by calculations on the threshold energies of formed anions and transition state calculations. We show that low-energy electrons with kinetic energies near 0 eV may effectively decompose the molecule upon DEA. The by far most abundant anion observed corresponds to the iodine anion (I-). Due to the associated bond cleavage, a radical site is formed at the C5 position, which may initiate strand break formation if the molecule is incorporated into a DNA strand. Our results reflect the conclusion from previous radiolysis studies with the title compound, suggesting its potential as a radiosensitizer.
Collapse
Affiliation(s)
- Muhammad Saqib
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
- Center
for Molecular Biosciences Innsbruck, Universität
Innsbruck, Technikerstraße
25, A-6020 Innsbruck, Austria
| | - Eugene Arthur-Baidoo
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
- Center
for Molecular Biosciences Innsbruck, Universität
Innsbruck, Technikerstraße
25, A-6020 Innsbruck, Austria
| | - Farhad Izadi
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
- Center
for Molecular Biosciences Innsbruck, Universität
Innsbruck, Technikerstraße
25, A-6020 Innsbruck, Austria
| | - Adrian Szczyrba
- Laboratory
of Biological Sensitizers, Department of Physical Chemistry, Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magdalena Datta
- Laboratory
of Biological Sensitizers, Department of Physical Chemistry, Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sebastian Demkowicz
- Department
of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Janusz Rak
- Laboratory
of Biological Sensitizers, Department of Physical Chemistry, Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Stephan Denifl
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
- Center
for Molecular Biosciences Innsbruck, Universität
Innsbruck, Technikerstraße
25, A-6020 Innsbruck, Austria
| |
Collapse
|
7
|
Izadi F, Szczyrba A, Datta M, Ciupak O, Demkowicz S, Rak J, Denifl S. Electron-Induced Decomposition of 5-Bromo-4-thiouracil and 5-Bromo-4-thio-2'-deoxyuridine: The Effect of the Deoxyribose Moiety on Dissociative Electron Attachment. Int J Mol Sci 2023; 24:8706. [PMID: 37240053 PMCID: PMC10217871 DOI: 10.3390/ijms24108706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
When modified uridine derivatives are incorporated into DNA, radical species may form that cause DNA damage. This category of molecules has been proposed as radiosensitizers and is currently being researched. Here, we study electron attachment to 5-bromo-4-thiouracil (BrSU), a uracil derivative, and 5-bromo-4-thio-2'-deoxyuridine (BrSdU), with an attached deoxyribose moiety via the N-glycosidic (N1-C) bond. Quadrupole mass spectrometry was used to detect the anionic products of dissociative electron attachment (DEA), and the experimental results were supported by quantum chemical calculations performed at the M062X/aug-cc-pVTZ level of theory. Experimentally, we found that BrSU predominantly captures low-energy electrons with kinetic energies near 0 eV, though the abundance of bromine anions was rather low compared to a similar experiment with bromouracil. We suggest that, for this reaction channel, proton-transfer reactions in the transient negative ions limit the release of bromine anions.
Collapse
Affiliation(s)
- Farhad Izadi
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Adrian Szczyrba
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magdalena Datta
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Janusz Rak
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|