1
|
Fang Z, Jia X, Xing Y, Szostak JW. Nonenzymatic RNA copying with a potentially primordial genetic alphabet. Proc Natl Acad Sci U S A 2025; 122:e2505720122. [PMID: 40397670 DOI: 10.1073/pnas.2505720122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/23/2025] [Indexed: 05/23/2025] Open
Abstract
Nonenzymatic RNA copying is thought to have been responsible for the replication of genetic information during the origin of life. However, chemical copying with the canonical nucleotides (A, U, G, and C) strongly favors the incorporation of G and C and disfavors the incorporation of A and especially U because of the stronger G:C vs. A:U base pair and the weaker stacking interactions of U. Recent advances in prebiotic chemistry suggest that the 2-thiopyrimidines were precursors to the canonical pyrimidines, raising the possibility that they may have played an important early role in RNA copying chemistry. Furthermore, 2-thiouridine (s2U) and inosine (I) form by deamination of 2-thiocytidine (s2C) and A, respectively. We used thermodynamic and crystallographic analyses to compare the I:s2C and A:s2U base pairs. We find that the I:s2C base pair is isomorphic and isoenergetic with the A:s2U base pair. The I:s2C base pair is weaker than a canonical G:C base pair, while the A:s2U base pair is stronger than the canonical A:U base pair, so that a genetic alphabet consisting of s2U, s2C, I, and A generates RNA duplexes with uniform base pairing energies. Consistent with these results, kinetic analysis of nonenzymatic template-directed primer extension reactions reveals that s2C and s2U substrates bind similarly to I and A in the template, and vice versa. Our work supports the plausibility of a potentially primordial genetic alphabet consisting of s2U, s2C, I, and A and offers a potential solution to the long-standing problem of biased nucleotide incorporation during nonenzymatic template copying.
Collapse
Affiliation(s)
- Ziyuan Fang
- HHMI, Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Xiwen Jia
- HHMI, Department of Chemistry, The University of Chicago, Chicago, IL 60637
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Yanfeng Xing
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Jack W Szostak
- HHMI, Department of Chemistry, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
2
|
Stockert JC, Horobin RW. Prebiotic RNA self-assembling and the origin of life: Mechanistic and molecular modeling rationale for explaining the prebiotic origin and replication of RNA. Acta Histochem 2025; 127:152226. [PMID: 39788859 DOI: 10.1016/j.acthis.2024.152226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
In recent years, a great interest has been focused on the prebiotic origin of nucleic acids and life on Earth. An attractive idea is that life was initially based on an autocatalytic and autoreplicative RNA (the RNA-world). RNA duplexes are right-handed helical chains with antiparallel orientation, but the rationale for these features is not yet known. An antiparallel (inverted) stacking of purine nucleosides was reported in crystallographic studies. Molecular modeling also supports the inverted orientation of nucleosides. This preferential stacking can also appear when nucleosides are included in a montmorillonite clay matrix. Free-energy values and geometrical parameters show that D-ribose chirality is preferred for the formation of right-handed RNA molecules. Thus, a "zipper" model with antiparallel and auto-intercalated nucleosides linked by phosphate groups can be proposed to form single RNA chains. Unstacking with strand separation and base pairing by H-bonding, results in shortening and inclination of ribose-phosphate chains, leading to right-handed helicity and antiparallel duplexes. Incorporation of complementary precursors on the major groove template by a self-assembly mechanism provides a prebiotic (non-enzymatic) "tetris" replication model by formation of a transient RNA tetrad and tetraplex. Original hairpin motifs appear as simple building units that form typical RNA structures such as hammerheads, cloverleaves and dumbbells. They occur today in the circular viroids and virusoids, as well as in highly branched and complex rRNA molecules.
Collapse
Affiliation(s)
- Juan C Stockert
- Institute of Health and Environmental Sciences, Prosama Foundation, Paysandú 752, Buenos Aires, CABA CP1405, Argentina; Integrative Center of Biology and Applied Chemistry, University Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile.
| | | |
Collapse
|
3
|
Duzdevich D, Carr CE, Colville BWF, Aitken HRM, Szostak JW. Overcoming nucleotide bias in the nonenzymatic copying of RNA templates. Nucleic Acids Res 2024; 52:13515-13529. [PMID: 39530216 DOI: 10.1093/nar/gkae982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The RNA World hypothesis posits that RNA was the molecule of both heredity and function during the emergence of life. This hypothesis implies that RNA templates can be copied, and ultimately replicated, without the catalytic aid of evolved enzymes. A major problem with nonenzymatic template-directed polymerization has been the very poor copying of sequences containing rA and rU. Here, we overcome that problem by using a prebiotically plausible mixture of RNA mononucleotides and random-sequence oligonucleotides, all activated by methyl isocyanide chemistry, that direct the uniform copying of arbitrary-sequence templates, including those harboring rA and rU. We further show that the use of this mixture in copying reactions suppresses copying errors while also generating a more uniform distribution of mismatches than observed for simpler systems. We find that oligonucleotide competition for template binding sites, oligonucleotide ligation and the template binding properties of reactant intermediates work together to reduce product sequence bias and errors. Finally, we show that iterative cycling of templated polymerization and activation chemistry improves the yields of random-sequence products. These results for random-sequence template copying are a significant advance in the pursuit of nonenzymatic RNA replication.
Collapse
Affiliation(s)
- Daniel Duzdevich
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
- Freiburg Institute for Advanced Studies, Albertstraße 19, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Christopher E Carr
- Daniel Guggenheim School of Aerospace Engineering, School of Earth and Atmospheric Sciences, 275 Ferst Drive NW, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ben W F Colville
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
| | - Harry R M Aitken
- Department of Molecular Biology, Center for Computational and Integrative Biology, 185 Cambridge Street, Massachusetts General Hospital, Boston, MA 02114, USA
- Howard Hughes Medical Institute, 185 Cambridge Street, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jack W Szostak
- Department of Chemistry, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, 5735 South Ellis Avenue, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Mosquera J, Bismuto A. Highlights from the 57th Bürgenstock Conference on Stereochemistry 2024. Chem Sci 2024; 15:9392-9396. [PMID: 38939160 PMCID: PMC11205270 DOI: 10.1039/d4sc90102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Herein, we share an overview of the scientific highlights from speakers at the latest edition of the longstanding Bürgenstock Conference.
Collapse
Affiliation(s)
- Jesús Mosquera
- Universidade da Coruña, CICA - Centro Interdisciplinar de Química e Bioloxía Rúa as Carballeiras 15071 A Coruña Spain
| | - Alessandro Bismuto
- Institute of Inorganic Chemistry, University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
5
|
Cohen ZR, Ding D, Zhou L, DasGupta S, Haas S, Sinclair KP, Todd ZR, Black RA, Szostak JW, Catling DC. Natural soda lakes provide compatible conditions for RNA and membrane function that could have enabled the origin of life. PNAS NEXUS 2024; 3:pgae084. [PMID: 38505692 PMCID: PMC10949909 DOI: 10.1093/pnasnexus/pgae084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/31/2024] [Indexed: 03/21/2024]
Abstract
The origin of life likely occurred within environments that concentrated cellular precursors and enabled their co-assembly into cells. Soda lakes (those dominated by Na+ ions and carbonate species) can concentrate precursors of RNA and membranes, such as phosphate, cyanide, and fatty acids. Subsequent assembly of RNA and membranes into cells is a long-standing problem because RNA function requires divalent cations, e.g. Mg2+, but Mg2+ disrupts fatty acid membranes. The low solubility of Mg-containing carbonates limits soda lakes to moderate Mg2+ concentrations (∼1 mM), so we investigated whether both RNAs and membranes function within these lakes. We collected water from Last Chance Lake and Goodenough Lake in Canada. Because we sampled after seasonal evaporation, the lake water contained ∼1 M Na+ and ∼1 mM Mg2+ near pH 10. In the laboratory, nonenzymatic, RNA-templated polymerization of 2-aminoimidazole-activated ribonucleotides occurred at comparable rates in lake water and standard laboratory conditions (50 mM MgCl2, pH 8). Additionally, we found that a ligase ribozyme that uses oligonucleotide substrates activated with 2-aminoimidazole was active in lake water after adjusting pH from ∼10 to 9. We also observed that decanoic acid and decanol assembled into vesicles in a dilute solution that resembled lake water after seasonal rains, and that those vesicles retained encapsulated solutes despite salt-induced flocculation when the external solution was replaced with dry-season lake water. By identifying compatible conditions for nonenzymatic and ribozyme-catalyzed RNA assembly, and for encapsulation by membranes, our results suggest that soda lakes could have enabled cellular life to emerge on Earth, and perhaps elsewhere.
Collapse
Affiliation(s)
- Zachary R Cohen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
- Astrobiology Program, University of Washington, Seattle, WA 98195, USA
| | - Dian Ding
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lijun Zhou
- Department of Biochemistry and Biophysics and Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Saurja DasGupta
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sebastian Haas
- Astrobiology Program, University of Washington, Seattle, WA 98195, USA
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kimberly P Sinclair
- Astrobiology Program, University of Washington, Seattle, WA 98195, USA
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
| | - Zoe R Todd
- Astrobiology Program, University of Washington, Seattle, WA 98195, USA
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Chemistry and Department of Astronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Roy A Black
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
- Astrobiology Program, University of Washington, Seattle, WA 98195, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - David C Catling
- Astrobiology Program, University of Washington, Seattle, WA 98195, USA
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Calaça Serrão A, Dänekamp FT, Meggyesi Z, Braun D. Replication elongates short DNA, reduces sequence bias and develops trimer structure. Nucleic Acids Res 2024; 52:1290-1297. [PMID: 38096089 PMCID: PMC10853772 DOI: 10.1093/nar/gkad1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 02/10/2024] Open
Abstract
The origin of molecular evolution required the replication of short oligonucleotides to form longer polymers. Prebiotically plausible oligonucleotide pools tend to contain more of some nucleobases than others. It has been unclear whether this initial bias persists and how it affects replication. To investigate this, we examined the evolution of 12-mer biased short DNA pools using an enzymatic model system. This allowed us to study the long timescales involved in evolution, since it is not yet possible with currently investigated prebiotic replication chemistries. Our analysis using next-generation sequencing from different time points revealed that the initial nucleotide bias of the pool disappeared in the elongated pool after isothermal replication. In contrast, the nucleotide composition at each position in the elongated sequences remained biased and varied with both position and initial bias. Furthermore, we observed the emergence of highly periodic dimer and trimer motifs in the rapidly elongated sequences. This shift in nucleotide composition and the emergence of structure through templated replication could help explain how biased prebiotic pools could undergo molecular evolution and lead to complex functional nucleic acids.
Collapse
Affiliation(s)
- Adriana Calaça Serrão
- Systems Biophysics, Physics Department, Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
| | - Felix T Dänekamp
- Systems Biophysics, Physics Department, Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
| | - Zsófia Meggyesi
- Systems Biophysics, Physics Department, Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
| | - Dieter Braun
- Systems Biophysics, Physics Department, Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstraße 54, 80799 Munich, Germany
| |
Collapse
|
7
|
Schroeder SJ. Insights into nucleic acid helix formation from infrared spectroscopy. Biophys J 2024; 123:115-117. [PMID: 38130057 PMCID: PMC10808036 DOI: 10.1016/j.bpj.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Susan J Schroeder
- Department of Chemistry and Biochemistry, School of Biological Sciences, University of Oklahoma, Norman, Oklahoma.
| |
Collapse
|
8
|
Ding D, Zhang SJ, Szostak JW. Enhanced nonenzymatic RNA copying with in-situ activation of short oligonucleotides. Nucleic Acids Res 2023:7184164. [PMID: 37247941 PMCID: PMC10359593 DOI: 10.1093/nar/gkad439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
The nonenzymatic copying of RNA is thought to have been necessary for the transition between prebiotic chemistry and ribozyme-catalyzed RNA replication in the RNA World. We have previously shown that a potentially prebiotic nucleotide activation pathway based on phospho-Passerini chemistry can lead to the efficient synthesis of 2-aminoimidazole activated mononucleotides when carried out under freeze-thaw cycling conditions. Such activated nucleotides react with each other to form 5'-5' 2-aminoimidazolium bridged dinucleotides, enabling template-directed primer extension to occur within the same reaction mixture. However, mononucleotides linked to oligonucleotides by a 5'-5' 2-aminoimidazolium bridge are superior substrates for nonenzymatic primer extension; their higher intrinsic reactivity and their higher template affinity enable faster template copying at lower substrate concentrations. Here we show that eutectic phase phospho-Passerini chemistry efficiently activates short oligonucleotides and promotes the formation of monomer-bridged-oligonucleotide species during freeze-thaw cycles. We then demonstrate that in-situ generated monomer-bridged-oligonucleotides lead to efficient nonenzymatic template copying in the same reaction mixture. Our demonstration that multiple steps in the pathway from activation chemistry to RNA copying can occur together in a single complex environment simplifies this aspect of the origin of life.
Collapse
Affiliation(s)
- Dian Ding
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA02114, USA
| | - Stephanie J Zhang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA02114, USA
| | - Jack W Szostak
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA02114, USA
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA02115, USA
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL60637, USA
| |
Collapse
|