1
|
Tassé D, Quezada‐Novoa V, Copeman C, Howarth AJ, Rochefort A. Identification of Adsorption Sites for CO 2 in a Series of Rare-Earth and Zr-Based Metal-Organic Frameworks. Chemphyschem 2025; 26:e202401050. [PMID: 39995385 PMCID: PMC12091853 DOI: 10.1002/cphc.202401050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/04/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
The adsorption ofCO 2 ${{\rm{CO}}_2 }$ in MOF-808, NU-1000 and a series of rare-earth CU-10 analogues has been studied with first principles DFT and classical Monte-Carlo methods. DFT calculations describe the interaction ofCO 2 ${{\rm{CO}}_2 }$ with the different metal-organic frameworks (MOFs) as physisorption, but where we can distinguish several adsorption sites in the vicinity of the metal nodes. Beyond the identification of adsorption sites, the MOFs were synthesized, activated, and characterized to evaluate their experimentalN 2 ${{\rm{N}}_2 }$ andCO 2 ${{\rm{CO}}_2 }$ adsorption capacity. Classical Grand Canonical Monte-Carlo (GCMC) simulations for the adsorption ofCO 2 ${{\rm{CO}}_2 }$ are in very good agreement with DFT results for identifying the most favored adsorption sites in the MOFs. In contrast, a rather mixed agreement between GCMC simulations and experimental results is found for the estimation of adsorption capacity of several MOFs studied towardN 2 ${{\rm{N}}_2 }$ andCO 2 ${{\rm{CO}}_2 }$ .
Collapse
Affiliation(s)
- Dylan Tassé
- Department of Engineering PhysicsPolytechnique MontréalMontréalQuébecCanada
| | | | | | | | - Alain Rochefort
- Department of Engineering PhysicsPolytechnique MontréalMontréalQuébecCanada
| |
Collapse
|
2
|
Ren FY, Hu C, Huang WB, Duan LH, Meng YZ, Li XL, Fang Z, Zhao XY, Wang W, Li XS, Zhao J, Zhang XY, Hou SL, Xu H, Shi Y, He LN, Zhao B. Modulated Multicomponent Reaction Pathway by Pore-Confinement Effect in MOFs for Highly Efficient Catalysis of Low-Concentration CO 2. Angew Chem Int Ed Engl 2025; 64:e202503898. [PMID: 39996375 DOI: 10.1002/anie.202503898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
The conversion of flue gas CO2 into high-value chemicals via multicomponent reactions (MCRs) offers the advantages of atom economy, bond-formation efficiency and product complexity. However, because of the competition between reaction sequences and pathways among substrates, the efficient synthesize the desired product is a great challenge. Herein, a porous noble-metal-free framework (Cu-TCA) was synthesized, which can highly effectively catalyze the multicomponent conversion of CO2 by modulating reaction pathways. The pores with the size of 6.5 Å×6.5 Å in Cu-TCA selectively permit the entry of propargylamine and CO2 at simulated flue gas concentrations, At the same time, the larger-sized phosphine oxide is hindered outside the pores. Control experiments and NMR spectroscopy revealed that CO2 and propargylamine in the pores preferentially reacted to form oxazolidinones, which further reacted with phosphine oxide outside the pores to produce phosphorylated 2-oxazolidinones. Therefore, the reaction pathways and sequence of the substrates were controlled by the confinement effect of the pores in Cu-TCA. Density functional theory (DFT) calculations supported the coordination of Cu-TCA with the alkyne, significantly reducing the reaction barrier and promoting catalytic reaction. This study developed a new strategy for regulating the reaction pathways to promote MCRs via the confinement effect of MOF.
Collapse
Affiliation(s)
- Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Chaopeng Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wen-Bin Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ling-Hao Duan
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Yun-Zhu Meng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xiu-Lan Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Zhi Fang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Wen Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xiang-Yu Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Hang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Ying Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Liu M, Zhang Y, Cheng R, Tan T, Guo L, Liu F, Wan Y. Determination of five alternaria toxins in peppermint by dispersive solid-phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry based on MOF-808-TFA. Food Chem 2025; 471:142822. [PMID: 39799690 DOI: 10.1016/j.foodchem.2025.142822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
An efficient and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MSMS) method was developed for simultaneous determination of 5 alternaria toxins (ATs) in edible and medicinal plant - peppermint using MOF-808-trifluoroacetic acid (MOF-808-TFA) as the adsorbent. Characterization methods such as scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption demonstrated that the synthesized MOF-808-TFA had a regular ortho-octahedral configuration and high specific surface area. Under the optimal conditions, the 5 ATs showed good linearity (R2 ≥ 0.9993) in their respective concentration ranges. The limits of quantifications (LOQs) of the method ranged from 0.21 to 0.48 μg/L, and the recoveries were 77.8-118.2 %, with the relative standard deviations (RSDs) less than 8.9 %.
Collapse
Affiliation(s)
- Minhai Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yan Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Rui Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ting Tan
- Center of Analysis and Testing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Lan Guo
- Center of Analysis and Testing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Fan Liu
- Center of Analysis and Testing, Nanchang University, Nanchang 330031, People's Republic of China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yiqun Wan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, People's Republic of China.
| |
Collapse
|
4
|
Bose S, Sengupta D, Wang X, Smoljan CS, Mahle JJ, Tokarz JA, Rayder TM, Ma K, Kirlikovali KO, Islamoglu T, Peterson GW, Farha OK. Development of a Multiparticulate Metal-Organic Framework/Textile Fiber Swatch. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17813-17822. [PMID: 39163097 DOI: 10.1021/acsami.4c09745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The versatility of metal-organic frameworks (MOFs) has led to groundbreaking applications in a wide variety of fields, especially in the areas of energy, environment, and sustainability. For example, MOFs can be designed for high uptake of toxic gases and pollutants, such as CO2, NH3, and SO2, but designing a single MOF that shows tangible uptake for all of these gases is challenging due to the differences in the chemical and physical properties of these molecules. To this end, integrating multiple MOFs onto textile fibers and crafting various structures have emerged as pivotal developments, enhancing framework durability and usability. MOF composites prepared on readily available textile fibers offer the flexibility essential for critical applications, including heterogeneous catalysis, chemical sensing, toxic gas adsorption, and drug delivery, while preserving the unique characteristics of MOFs. This study introduces a scalable and adaptable method for seamlessly embedding multiple high-performing MOFs onto a single textile fiber using a dip-coating method. We explored the uptake capacity of these multi-MOF composites for CO2, NH3, and SO2 and observed a performance similar to that of traditional powdered materials. Along with harmful gas adsorption, we also have evaluated the permeation and reactivity of these MOF/textile composites toward chemical warfare agents (CWAs) like GD (soman), HD (mustard gas), and VX. In combination, these results demonstrate a fundamental advancement toward establishing a consistent strategy for the hydrolysis of nerve agents in real-world scenarios. This approach can substantially increase the protection toward CWAs and enhance the effectiveness of protective equipment such as fabrics for protective garments. This dip-coating method for the integration of multiple MOFs on a single textile fiber unlocks a wealth of possibilities and paves the way for future innovations in the deployment of MOF-based composites.
Collapse
Affiliation(s)
- Saptasree Bose
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Debabrata Sengupta
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiaoliang Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Courtney S Smoljan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John J Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - John A Tokarz
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Thomas M Rayder
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Gregory W Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Das R, Li H, Evans HA, Deng Z, Zhao D, Cheetham AK. Hydrophobic Metal-Formate Composites for Efficient CO 2 Capture. J Am Chem Soc 2025. [PMID: 40007133 DOI: 10.1021/jacs.4c16131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Carbon capture, utilization, and sequestration (CCUS) have emerged as pivotal mitigation strategies in addressing climate change induced by greenhouse gas emissions. In this pursuit, our objective is to enhance the efficacy of adsorptive CO2 capture by harnessing state-of-the-art framework sorbents engineered for exceptional CO2 selectivity, high intrinsic stability in the presence of moisture, and facile regeneration. To this end, a series of ultramicroporous mixed aluminum and iron formate framework materials, Fe-ALFs, were synthesized. Furthermore, their moisture stability has been significantly enhanced by passivation with polyvinylidene fluoride (Fe-ALF-PVDF). Gas sorption and breakthrough measurements demonstrate that Fe-ALF-PVDF exhibits outstanding CO2 adsorption capacities (4.6 mmol/g at 298 K) and remarkable CO2/N2 selectivity (387). In addition, it can be economically produced from readily available chemicals and is easy to regenerate. Fe-ALF-PVDF presents an innovative adsorbent material for efficiently capturing CO2 from humid postcombustion flue gases and other moisture-rich gas streams.
Collapse
Affiliation(s)
- Rajesh Das
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Hayden A Evans
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Zeyu Deng
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Anthony K Cheetham
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Formalik F, Mazur B, Joodaki F, Kuchta B, Snurr RQ. Small Rotations, Big Effects: Lessons from Water Adsorption in NU-1000. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:3752-3761. [PMID: 40008205 PMCID: PMC11848914 DOI: 10.1021/acs.jpcc.4c06889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
In this study, the adsorption mechanism of water in the metal-organic framework NU-1000 was investigated using molecular simulations. The simulations predict a significant impact of small changes in terminal aquo ligand orientation on the shape and pressure of the condensation step in the water adsorption isotherm. The analysis revealed that the rotational mobility of aquo ligands, often neglected in computational studies, can shift the condensation step by up to 20% in the relative humidity scale. By examining adsorption modes and interaction sites, it was demonstrated that configurational changes in the Zr6O8 node affect water adsorption significantly and can change the nature of the interactions from hydrophobic to hydrophilic. We propose a robust approach to account for these changes in simulations, achieving good agreement with experimental results. This work underscores the necessity of considering local, molecular flexibility in water adsorption simulations to avoid mischaracterization of MOFs' water adsorption properties.
Collapse
Affiliation(s)
- Filip Formalik
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Micro, Nano and Biomedical Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Bartosz Mazur
- Department
of Micro, Nano and Biomedical Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Faramarz Joodaki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Bogdan Kuchta
- Department
of Micro, Nano and Biomedical Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Randall Q. Snurr
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Vornholt SM, Chen Z, Hofmann J, Chapman KW. Node Distortions in UiO-66 Inform Negative Thermal Expansion Mechanisms: Kinetic Effects, Frustration, and Lattice Hysteresis. J Am Chem Soc 2024; 146:16977-16981. [PMID: 38874381 DOI: 10.1021/jacs.4c05313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
In metal-organic frameworks (MOFs) the interplay between the dynamics of individual components and how these are constrained by the extended lattice can yield unusual emergent phenomena. For the archetypal Zr-MOF, UiO-66, we explore the cooperative dynamics of a Zr-node transformation that gives rise to negative thermal expansion (NTE). Using in situ synchrotron X-ray scattering, with powder diffraction and pair distribution function (PDF) analyses, we identify lattice hysteresis and a thermal ramp-rate-dependence of the thermal expansion. Specifically, kinetic trapping of distorted node states formed at high temperature, leads to broad variability in the apparent thermal expansion which ranges from large positive to large negative thermal expansion with coefficients of thermal expansion (CTE) from +45 to -80 × 10-6K-1. Time-resolved relaxation studies at selected temperatures suggest that when equilibrated UiO-66 is intrinsically NTE, with a CTE of -35 × 10-6K-1. Kinetic trapping of the node-distorted state following high temperature activation has broad implications for characterization and applications of these Zr-MOFs; the nonequilibrium node state depends on the thermal history of the sample with quench vs slow cooling likely to impact gas binding, pore volume, and accessible catalytic sites.
Collapse
Affiliation(s)
- Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jan Hofmann
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
8
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
9
|
Wang X, Xie H, Sengupta D, Sha F, Otake KI, Chen Y, Idrees KB, Kirlikovali KO, Son FA, Wang M, Ren J, Notestein JM, Kitagawa S, Farha OK. Precise Modulation of CO 2 Sorption in Ti 8Ce 2-Oxo Clusters: Elucidating Lewis Acidity of the Ce Metal Sites and Structural Flexibility. J Am Chem Soc 2024; 146:15130-15142. [PMID: 38795041 DOI: 10.1021/jacs.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Investigating the structure-property correlation in porous materials is a fundamental and consistent focus in various scientific domains, especially within sorption research. Metal oxide clusters with capping ligands, characterized by intrinsic cavities formed through specific solid-state packing, demonstrate significant potential as versatile platforms for sorption investigations due to their precisely tunable atomic structures and inherent long-range order. This study presents a series of Ti8Ce2-oxo clusters with subtle variations in coordinated linkers and explores their sorption behavior. Notably, Ti8Ce2-BA (BA denotes benzoic acid) manifests a distinctive two-step profile during the CO2 adsorption, accompanied by a hysteresis loop. This observation marks a new instance within the metal oxide cluster field. Of intrigue, the presence of unsaturated Ce(IV) sites was found to be correlated with the stepped sorption property. Moreover, the introduction of an electrophilic fluorine atom, positioned ortho or para to the benzoic acid, facilitated precise control over gate pressure and stepped sorption quantities. Advanced in situ techniques systematically unraveled the underlying mechanism behind this unique sorption behavior. The findings elucidate that robust Lewis base-acid interactions are established between the CO2 molecules and Ce ions, consequently altering the conformation of coordinated linkers. Conversely, the F atoms primarily contribute to gate pressure variation by influencing the Lewis acidity of the Ce sites. This research advances the understanding in fabricating metal-oxo clusters with structural flexibility and provides profound insights into their host-guest interaction motifs. These insights hold substantial promise across diverse fields and offer valuable guidance for future adsorbent designs grounded in fundamental theories of structure-property relationships.
Collapse
Affiliation(s)
- Xingjie Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haomiao Xie
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Debabrata Sengupta
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yongwei Chen
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Florencia A Son
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Meng Wang
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Omar K Farha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Frank HO, Paesani F. Molecular driving forces for water adsorption in MOF-808: A comparative analysis with UiO-66. J Chem Phys 2024; 160:094703. [PMID: 38426523 DOI: 10.1063/5.0189569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Metal-organic frameworks (MOFs), with their unique porous structures and versatile functionality, have emerged as promising materials for the adsorption, separation, and storage of diverse molecular species. In this study, we investigate water adsorption in MOF-808, a prototypical MOF that shares the same secondary building unit (SBU) as UiO-66, and elucidate how differences in topology and connectivity between the two MOFs influence the adsorption mechanism. To this end, molecular dynamics simulations were performed to calculate several thermodynamic and dynamical properties of water in MOF-808 as a function of relative humidity (RH), from the initial adsorption step to full pore filling. At low RH, the μ3-OH groups of the SBUs form hydrogen bonds with the initial water molecules entering the pores, which triggers the filling of these pores before the μ3-OH groups in other pores become engaged in hydrogen bonding with water molecules. Our analyses indicate that the pores of MOF-808 become filled by water sequentially as the RH increases. A similar mechanism has been reported for water adsorption in UiO-66. Despite this similarity, our study highlights distinct thermodynamic properties and framework characteristics that influence the adsorption process differently in MOF-808 and UiO-66.
Collapse
Affiliation(s)
- Hilliary O Frank
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
- Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, USA
- Halicioğlu Data Science Institute, University of California, San Diego, La Jolla, California 92093, USA
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
11
|
Khan MN, van Ingen Y, Boruah T, McLauchlan A, Wirth T, Melen RL. Advances in CO 2 activation by frustrated Lewis pairs: from stoichiometric to catalytic reactions. Chem Sci 2023; 14:13661-13695. [PMID: 38075657 PMCID: PMC10699552 DOI: 10.1039/d3sc03907b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2025] Open
Abstract
The rise of CO2 concentrations in the environment due to anthropogenic activities results in global warming and threatens the future of humanity and biodiversity. To address excessive CO2 emissions and its effects on climate change, efforts towards CO2 capture and conversion into value adduct products such as methane, methanol, acetic acid, and carbonates have grown. Frustrated Lewis pairs (FLPs) can activate small molecules, including CO2 and convert it into value added products. This review covers recent progress and mechanistic insights into intra- and inter-molecular FLPs comprised of varying Lewis acids and bases (from groups 13, 14, 15 of the periodic table as well as transition metals) that activate CO2 in stoichiometric and catalytic fashion towards reduced products.
Collapse
Affiliation(s)
- Md Nasim Khan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales UK
| | - Yara van Ingen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| | - Tribani Boruah
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| | - Adam McLauchlan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| | - Thomas Wirth
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales UK
| | - Rebecca L Melen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| |
Collapse
|
12
|
Gong W, Xie Y, Yamano A, Ito S, Tang X, Reinheimer EW, Malliakas CD, Dong J, Cui Y, Farha OK. Modulator-Dependent Dynamics Synergistically Enabled Record SO 2 Uptake in Zr(IV) Metal-Organic Frameworks Based on Pyrene-Cored Molecular Quadripod Ligand. J Am Chem Soc 2023. [PMID: 38037882 DOI: 10.1021/jacs.3c09648] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Developing innovative porous solid sorbents for the capture and storage of toxic SO2 is crucial for energy-efficient transportation and subsequent processing. Nonetheless, the quest for high-performance SO2 sorbents, characterized by exceptional uptake capacity, minimal regeneration energy requirements, and outstanding recyclability under ambient conditions, remains a significant challenge. In this study, we present the design of a unique tertiary amine-embedded, pyrene-based quadripod-shaped ligand. This ligand is then assembled into a highly porous Zr-metal-organic framework (MOF) denoted as Zr-TPA, which exhibits a newly discovered 3,4,8-c woy net structure. Remarkably, our Zr-TPA MOF achieved an unprecedented SO2 sorption capacity of 22.7 mmol g-1 at 298 K and 1 bar, surpassing those of all previously reported solid sorbents. We elucidated the distinct SO2 sorption behaviors observed in isostructural Zr-TPA variants synthesized with different capping modulators (formate, acetate, benzoate, and trifluoroacetate, abbreviated as FA, HAc, BA, and TFA, respectively) through computational analyses. These analyses revealed unexpected SO2-induced modulator-node dynamics, resulting in transient chemisorption that enhanced synergistic SO2 sorption. Additionally, we conducted a proof-of-concept experiment demonstrating that the captured SO2 in Zr-TPA-FA can be converted in situ into a valuable pharmaceutical intermediate known as aryl N-aminosulfonamide, with a high yield and excellent recyclability. This highlights the potential of robust Zr-MOFs for storing SO2 in catalytic applications. In summary, this work contributes significantly to the development of efficient SO2 solid sorbents and advances our understanding of the molecular mechanisms underlying SO2 sorption in Zr-MOF materials.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Akihito Yamano
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
| | - Sho Ito
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Eric W Reinheimer
- Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, Texas 77381, United States
| | - Christos D Malliakas
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Ho CH, Paesani F. Elucidating the Competitive Adsorption of H 2O and CO 2 in CALF-20: New Insights for Enhanced Carbon Capture Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48287-48295. [PMID: 37796189 DOI: 10.1021/acsami.3c11092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
In light of the pressing need for efficient carbon capture solutions, our study investigates the simultaneous adsorption of water (H2O) and carbon dioxide (CO2) as a function of relative humidity in CALF-20, a highly scalable and stable metal-organic framework (MOF). Advanced computer simulations reveal that due to their similar interactions with the framework, H2O and CO2 molecules compete for the same binding sites, occupying similar void regions within the CALF-20 pores. This competition results in distinct thermodynamic and dynamical behaviors of H2O and CO2 molecules, depending on whether one or both guest species are present. Notably, the presence of CO2 molecules forces the H2O molecules to form more connected hydrogen-bond networks within smaller regions, slowing water reorientation dynamics and decreasing water entropy. Conversely, the presence of water speeds up the reorientation of CO2 molecules, decreases the CO2 entropy, and increases the propensity for CO2 to be adsorbed within the framework due to stronger water-mediated interactions. Due to the competition for the same void spaces, both H2O and CO2 molecules exhibit slower diffusion when molecules of the other guest species are present. These findings offer valuable strategies and insights into enhancing the differential affinity of H2O and CO2 for MOFs specifically designed for carbon capture applications.
Collapse
Affiliation(s)
- Ching-Hwa Ho
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|