1
|
Xie W, Zhai D, Li XX, Deng W, Yu S. Si-stereogenic remote alkenyl monohydrosilanes enabled by CuH-catalyzed enantioselective hydrosilylation of strained methylenecyclopropanes. Chem Commun (Camb) 2025; 61:5958-5961. [PMID: 40130409 DOI: 10.1039/d5cc00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Metal-catalyzed synthesis of Si-stereogenic monohydrosilanes with remote unsaturated groups remains challenging due to the potential self-overfunctionalization. Herein, we report a CuH-catalyzed enantioselective hydrosilylation of strained methylenecyclopropanes, affording various Si-stereogenic remote (E)-alkenyl-substituted monohydrosilanes with high enantioselectivity. The resulting monohydrosilanes are valuable synthons, which was demonstrated by post-transformations of olefin and silane moieties.
Collapse
Affiliation(s)
- Wanying Xie
- Institute of Frontier Chemistry, School of Chemical and Chemical Engineering, Shandong University, China.
| | - Dong Zhai
- Institute of Frontier Chemistry, School of Chemical and Chemical Engineering, Shandong University, China.
| | - Xiao-Xi Li
- Institute of Frontier Chemistry, School of Chemical and Chemical Engineering, Shandong University, China.
| | - Weiqiao Deng
- Institute of Frontier Chemistry, School of Chemical and Chemical Engineering, Shandong University, China.
| | - Songjie Yu
- Institute of Frontier Chemistry, School of Chemical and Chemical Engineering, Shandong University, China.
| |
Collapse
|
2
|
Ge Y, Ke J, He C. Catalytic Asymmetric Dehydrogenative Si-H/X-H Coupling toward Si-Stereogenic Silanes. Acc Chem Res 2025; 58:375-398. [PMID: 39841996 DOI: 10.1021/acs.accounts.4c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes. Despite the progress, these catalytic reactions usually suffer from limited substrate scope, poor functional-group tolerance, and low enantioselectivity. The growing demand for Si-stereogenic silanes with structural diversity has continued to drive the development of new practical methods for the assembly of these chiral molecules.Five years ago, our research group embarked on a project aimed at developing a general catalytic approach that can unlock access to various functionalized Si-stereogenic organosilanes with high efficiency. This Account describes our laboratory's endeavor in the exploration and development of catalytic asymmetric dehydrogenative Si-H/X-H coupling toward Si-stereogenic silanes. This approach features (1) readily accessible dihydrosilane starting materials; (2) diverse X-H (X═C, N, O, etc.) coupling partners; (3) platform transformable Si-stereogenic monohydrosilane products; and (4) high efficiency and atomic economy.At the initial stage of the research, a biaryl dihydrosilane was selected as the model substrate to conduct an enantioselective intramolecular C-H/Si-H dehydrogenative coupling reaction. Rh/Josiphos catalytic system was found to be effective at the early stage of this process, while the final enantiocontrol was elusive. Mechanistic studies indicated that a rhodium silyl dihydride complex is the resting state in the catalytic cycle, which may undergo racemization of the Si-stereogenic center. Enlightened by the mechanistic investigations, two strategies, the tandem alkene hydrosilylation strategy and bulky alkene-assisted dehydrogenative strategy, were adopted to avoid racemization, delivering the corresponding Si-stereogenic 9-silafluorenes with excellent yields and enantioselectivities. Further enantioselective intramolecular C(sp2)-H or C(sp3)-H silylation gave access to a series of five-, six- and seven-membered Si-stereogenic heterocycles with high efficiency. Next, we extended the reaction to an intermolecular version, realizing asymmetric Si-H/C-H, Si-H/O-H, and Si-H/N-H dehydrogenative coupling reactions toward a variety of acyclic Si-stereogenic monohydrosilanes, silyl ethers, siloxanes, silanols, and silazanes. We also presented our endeavors to apply the resulting Si-stereogenic compounds, including further derivatization, polymerization, and chiroptical property investigations, which successfully introduced Si-stereocenters into bioactive molecules, polymers, and chiroptical materials. Lastly, based on the understanding of silyl metal species, we developed a new type of chiral silyl ligand that can be applied to enable an atroposelective intermolecular C-H/Si-H dehydrogenative coupling reaction. We anticipate that our research, including synthetic methodology, mechanistic insights, and property studies, will not only inspire the further development of chiral organosilicon chemistry but also contribute to the creation of novel chiral molecules to be applied in synthetic chemistry, medicinal chemistry, and materials science.
Collapse
Affiliation(s)
- Yicong Ge
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Padilla M, Batuecas M, García-Orduña P, Fernández I, Fernández-Álvarez FJ. Cross-Dehydrogenative Coupling of Secondary Amines with Silanes Catalyzed by Agostic Iridium-NSi Species. Inorg Chem 2025; 64:255-267. [PMID: 39710970 PMCID: PMC11734117 DOI: 10.1021/acs.inorgchem.4c04512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
An active catalytic system for the cross-dehydrogenative coupling (CDC) of a wide range of secondary amines with silanes is reported. The iridium(III) derivatives [Ir(H)(X)(κ2-NSiDMQ)(L)] (NSiDMQ = {4,8-dimethylquinoline-2-yloxy}dimethylsilyl; L = coe, X = Cl, 2; L = coe, X = OTf, 3; L = PCy3, X = Cl, 4; L = PCy3, X = OTf, 5), which are stabilized by a weak yet noticeable Ir···H-C agostic interaction between the iridium and one of the C-H bonds of the 8-Me substituent of the NSiDMQ ligand, have been prepared and fully characterized. These species have proven to be effective catalysts for the CDC of secondary amines with hydrosilanes. The best catalytic performance (TOF1/2 = 79,300 h-1) was obtained using 5 (0.25 mol %), N-methylaniline, and HSiMe2Ph. The catalytic activity of the species [Ir(H)(OTf)(κ2-NSiQ)(PCy3)] (10, NSiQ = {quinoline-2-yloxy}dimethylsilyl) and [Ir(H)(OTf)(κ2-NSiMQ)(PCy3)] (11, NSiMQ = {4-methylquinoline-2-yloxy}dimethylsilyl), related to 5 but lacking the 8-Me substituent, is markedly lower than that found for 5. This fact highlights the crucial role of the 8-Me substituent of the NSiDMQ ligand in enhancing the catalytic performance of these iridium complexes.
Collapse
Affiliation(s)
- Marina Padilla
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Facultad
de Ciencias, Universidad de Zaragoza −
CSIC, 50009 Zaragoza, Spain
| | - María Batuecas
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Facultad
de Ciencias, Universidad de Zaragoza −
CSIC, 50009 Zaragoza, Spain
| | - Pilar García-Orduña
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Facultad
de Ciencias, Universidad de Zaragoza −
CSIC, 50009 Zaragoza, Spain
| | - Israel Fernández
- Departamento
de Química Orgánica I and Centro de Innovación
en Química Avanzada, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Francisco J. Fernández-Álvarez
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Facultad
de Ciencias, Universidad de Zaragoza −
CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Wu L, Zhang L, Guo J, Gao J, Ding Y, Ke J, He C. Catalytic Asymmetric Construction of C- and Si-Stereogenic Silacyclopentanes via Hydrosilylation of Arylmethylenecyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202413753. [PMID: 39138131 DOI: 10.1002/anie.202413753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
Silacycles have exhibited significant potential for application in the fields of medicinal chemistry, agrochemistry, and materials science. Accordingly, the development of effective methods for synthesizing these compounds has attracted increasing attention. Here, we report an efficient Cu-catalyzed enantioselective hydrosilylation of arylmethylenecyclopropanes with hydrosilanes, that allows the rapid assembly of various enantioenriched carbon- and silicon-stereogenic silacyclopentanes in good yields with excellent enantioselectivities and diastereoselectivities under mild conditions. Further stereospecific transformation of the Si-H bond on the chiral silicon center expands the diversity of these C- and Si-stereogenic silacyclopentanes.
Collapse
Affiliation(s)
- Liexin Wu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jiandong Guo
- Institute for Innovative Materials and Energy School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Jihui Gao
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yang Ding
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
5
|
Ding Y, Ke J, Zhang W, Li B, He C. Rhodium-catalyzed synthesis of Si-stereogenic alkoxysilanes and silyl enol ethers via hydrosilylation of carbonyl compounds. Chem Commun (Camb) 2024; 60:13734-13737. [PMID: 39484750 DOI: 10.1039/d4cc05360e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A highly efficient rhodium-catalyzed asymmetric hydrosilylation of aldehydes, ketones, and α,β-unsaturated ketones with dihydrosilanes is developed, that allows the rapid assembly of a variety of Si-stereogenic alkoxysilanes and silyl enol ethers in good yields and enantioselectivities under mild conditions. The applicability of this methodology was demonstrated by a series of stereospecific transformations to construct diverse Si-stereogenic derivatives.
Collapse
Affiliation(s)
- Yang Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Wenbin Zhang
- Guangdong Wamo New Material Technology CO., LTD, Jiangmen, Guangdong 529020, China
| | - Bin Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, China.
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
6
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
7
|
Shi Y, Qin Y, Li ZQ, Xu Y, Chen S, Zhang J, Li YA, Wu Y, Meng F, Zhong YW, Zhao D. Divergent Synthesis of Enantioenriched Silicon-Stereogenic Benzyl-, Vinyl- and Borylsilanes via Asymmetric Aryl to Alkyl 1,5-Palladium Migration. Angew Chem Int Ed Engl 2024; 63:e202405520. [PMID: 38896428 DOI: 10.1002/anie.202405520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Functionalization of Si-bound methyl group provides an efficient access to diverse organosilanes. However, the asymmetric construction of silicon-stereogenic architectures by functionalization of Si-bound methyl group has not yet been described despite recent significant progress in producing chiral silicon. Herein, we disclosed the enantioselective silylmethyl functionalization involving the aryl to alkyl 1,5-palladium migration to access diverse naphthalenes possessing an enantioenriched stereogenic silicon center, which are inaccessible before. It is worthy to note that the realization of asymmetric induction at the step of metal migration itself remains challenging. Our study constitutes the first enantioselective aryl to alkyl 1,5-palladium migration reaction. The key to the success is the discovery and fine-tuning of the different substituents of α,α,α,α-tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL)-based phosphoramidites, which ensure the enantioselectivity and desired reactivity.
Collapse
Affiliation(s)
- Yufeng Shi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhong-Qiu Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yize Xu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shuhan Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yu-An Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yaxin Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Fei Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
8
|
Ye ZT, Wu ZW, Zhang XX, Zhou J, Yu JS. Organocatalytic enantioselective construction of Si-stereocenters: recent advances and perspectives. Chem Soc Rev 2024; 53:8546-8562. [PMID: 39091219 DOI: 10.1039/d4cs00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Silicon-stereogenic chiral organosilanes have found increasing applications in synthetic chemistry, medicinal chemistry, and materials science. In this context, various asymmetric catalytic methods have been established for the diverse synthesis of silicon-stereogenic silanes. In particular, asymmetric organocatalysis is emerging as an important and complementary synthetic tool for the enantioselective construction of silicon-stereocenters, along with the rapid development of chiral-metal catalyzed protocols. Its advent provides a powerful platform to achieve functionalized silicon-stereogenic organosilanes with structural diversity, and should lead to great development in chiral organosilicon chemistry. In this Tutorial Review, we highlight these latest achievements from two aspects: desymmetrizations of prochiral tetraorganosilanes and dynamic kinetic asymmetric transformations of racemic organosilanes by employing five organocatalytic activation modes. The advantages, limitations and synthetic value of each protocol, as well as the synthetic opportunities still open for further exploration, are also discussed.
Collapse
Affiliation(s)
- Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Zhong-Wei Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
9
|
Hu T, Zhang Y, Wang W, Li Q, Huang L, Gao J, Kuang Y, Zhao C, Zhou S, Gao L, Su Z, Song Z. Lewis Base-Catalyzed Dynamic Kinetic Asymmetric Transformation of Racemic Chlorosilanes en Route to Si-Stereogenic Silylethers. J Am Chem Soc 2024; 146:23092-23102. [PMID: 39108025 DOI: 10.1021/jacs.4c04390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Enantiopure Si-stereogenic organosilanes are highly valued in the fields of organic synthesis, development of advanced materials, and drug discovery. However, they are not naturally occurring, and their synthesis has been largely confined to resolution of racemic silanes or desymmetrization of symmetric silanes. In contrast, the dynamic kinetic asymmetric transformation (DYKAT) of racemic organosilanes offers a mechanistically distinct approach and would broaden the accessibility of Si-stereogenic silanes in an enantioconvergent manner. In this study, we report a Lewis base-catalyzed DYKAT of racemic chlorosilanes. The chiral isothiourea catalyst, (S)-benzotetramisole, facilitates silyletherification with phenols, yielding (R)-silylethers in good yields with high enantioselectivity (27 examples, up to 86% yield, up to 98:2 er). Kinetic analysis, control experiments, and DFT calculations suggest that a two-catalyst-bound pentacoordinate silicate is responsible for the Si-configurational epimerization of the ion-paired tetracoordinated silicon intermediates.
Collapse
Affiliation(s)
- Tianbao Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Qin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liying Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiahui Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuzhong Kuang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Song Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Gou FH, Ren F, Wu Y, Wang P. Catalytic Kinetic Resolution of Monohydrosilanes via Rhodium-Catalyzed Enantioselective Intramolecular Hydrosilylation. Angew Chem Int Ed Engl 2024; 63:e202404732. [PMID: 38605561 DOI: 10.1002/anie.202404732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
The catalytic access of silicon-stereogenic organosilanes remains a big challenge, and largely depends on the desymmetrization of the symmetric precursors with two identical substitutes attached to silicon atom. Here we report the construction of silicon-stereogenic organosilanes via catalytic kinetic resolution of racemic monohydrosilanes with good to excellent selectivity factors. Both Si-stereogenic dihydrobenzosiloles and Si-stereogenic monohydrosilanes could be efficiently accessed in one single operation via Rh-catalyzed enantioselective intramolecular hydrosilylation, employing (R,R)-Et-DuPhos as the optimal ligand. This catalytic protocol features mild conditions, a low catalyst loading (0.1 mol % [Rh(cod)Cl]2), high stereoinduction (S factor up to 152), and excellent scalability. Moreover, further derivatizations led to the efficient synthesis of uncommon middle-size (7- and 8-membered) Si-stereogenic silacycles. Preliminary mechanistic study indicates this reaction might undergo a modified Chalk-Harrod mechanism.
Collapse
Affiliation(s)
- Fei-Hu Gou
- College of Chemistry and Material Science, Shanghai Normal University, Shanghai, 200234, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Fei Ren
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Peng Wang
- College of Chemistry and Material Science, Shanghai Normal University, Shanghai, 200234, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
11
|
Bannykh A, Pihko PM. Carboxylate-Catalyzed C-Silylation of Terminal Alkynes. Org Lett 2024; 26:1991-1995. [PMID: 38428925 PMCID: PMC10949233 DOI: 10.1021/acs.orglett.3c04213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
A carboxylate-catalyzed, metal-free C-silylation protocol for terminal alkynes is reported using a quaternary ammonium pivalate as the catalyst and commercially available N,O-bis(silyl)acetamides as silylating agents. The reaction proceeds under mild conditions, tolerates a range of functionalities, and enables concomitant O- or N-silylation of acidic OH or NH groups. A Hammett ρ value of +1.4 ± 0.1 obtained for para-substituted 2-arylalkynes is consistent with the proposed catalytic cycle involving a turnover-determining deprotonation step.
Collapse
Affiliation(s)
- Anton Bannykh
- Department of Chemistry and NanoScience
Center, University of Jyväskylä, P.O.B. 35, FI-40014 University of Jyväskylä, Finland
| | - Petri M. Pihko
- Department of Chemistry and NanoScience
Center, University of Jyväskylä, P.O.B. 35, FI-40014 University of Jyväskylä, Finland
| |
Collapse
|
12
|
Reuter MB, Bushey CE, Javier-Jiménez DR, Waterman R. Commercially available organolithium compounds as effective, simple precatalysts for silicon-nitrogen heterodehydrocoupling. Dalton Trans 2023; 52:13497-13506. [PMID: 37605890 DOI: 10.1039/d3dt02564k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A family of commercially available organolithium compounds were found to effectively catalyze the heterodehydrocoupling of silanes and amines under ambient conditions. Ubiquitous nBuLi (1) was utilized as the benchmark catalyst, where an array of primary, secondary, and tertiary arylsilanes were coupled to electron-donating amines, affording aminosilanes in high conversions with short reaction times. Preliminary mechanistic analysis is consistent with a nucleophilic-type system that involves the formation of a hypervalent silicon intermediate. This work underscores the accessibility of Si-N heterodehydrocoupling, with organolithium reagents emerging as some of the most straightforward and cost-effective precatalysts for this transformation.
Collapse
Affiliation(s)
- Matthew B Reuter
- University of Vermont, Department of Chemistry, Discovery Hall, Burlington, VT 05405, USA.
| | - Claire E Bushey
- University of Vermont, Department of Chemistry, Discovery Hall, Burlington, VT 05405, USA.
| | - Diego R Javier-Jiménez
- University of Vermont, Department of Chemistry, Discovery Hall, Burlington, VT 05405, USA.
| | - Rory Waterman
- University of Vermont, Department of Chemistry, Discovery Hall, Burlington, VT 05405, USA.
| |
Collapse
|
13
|
Chen H, Hu X, Wang W, Gao L, Song Z. Recent Progress in the Synthesis of Silaspiranes. Chemistry 2023:e202302371. [PMID: 37739927 DOI: 10.1002/chem.202302371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
Silaspiranes bearing a spiro-silicon center are promising ring frameworks for the synthesis of novel spirocyclic molecules possessing unique properties. Development of efficient methods towards these ring structures has therefore attracted considerable attentions of synthetic chemists. This minireview highlights the representative advances in the field, and is categorized into four parts according to the ring formation strategies: cyclization, annulation, ring expansion and cycloaddition.
Collapse
Affiliation(s)
- Hua Chen
- College of Pharmaceutical Science and, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Xuejiao Hu
- College of Pharmaceutical Science and, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
- Key Laboratory of Organosilicon Chemistry and, Material Technology of Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
| |
Collapse
|
14
|
Yang B, Gao J, Tan X, Ge Y, He C. Chiral PSiSi-Ligand Enabled Iridium-Catalyzed Atroposelective Intermolecular C-H Silylation. Angew Chem Int Ed Engl 2023; 62:e202307812. [PMID: 37462125 DOI: 10.1002/anie.202307812] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Catalytic enantioselective intermolecular C-H silylation offers an efficient approach for the rapid construction of chiral organosilicon compounds, but remains a significant challenge. Herein, a new type of chiral silyl ligand is developed, which enables the first iridium-catalyzed atroposelective intermolecular C-H silylation reaction of 2-arylisoquinolines. This protocol features mild reaction conditions, high atom economy, and remarkable yield with excellent stereoselectivity (up to 99 % yield, 99 % ee), delivering enantioenriched axially chiral silane platform molecules with facile convertibility. Key to the success of this unprecedented transformation relies on a novel chiral PSiSi-ligand, which facilitates the intermolecular C-H silylation process with perfect chem-, regio- and stereo-control via a multi-coordinated silyl iridium complex.
Collapse
Affiliation(s)
- Bo Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jihui Gao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xingfa Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yicong Ge
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|