1
|
Siddiqi Z, Sarlah D. Reimagining Dearomatization: Arenophile-Mediated Single-Atom Insertions and π-Extensions. Acc Chem Res 2025; 58:1134-1150. [PMID: 40069000 PMCID: PMC12040405 DOI: 10.1021/acs.accounts.5c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
ConspectusDearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to construct complex polycyclic architectures. However, traditionally harsh conditions, such as high-energy UV light irradiation, have greatly limited the scope of this transformation. Nevertheless, recent progress has led to the development of visible-light-promoted dearomative photocycloadditions with expanded scope capable of preparing complex bicyclic structures.A fundamentally distinct approach to dearomative photocycloadditions involves the visible-light activation of arenophiles, which undergo para-photocycloaddition with various aromatic compounds to produce arene-arenophile cycloadducts. While only transiently stable and subject to retro-cycloaddition, further functionalization of the photocycloadducts has allowed for the development of a wide collection of dearomatization methodologies that access products orthogonal to existing chemical and biological processes. Central to this strategy was the observation that arene-arenophile photocycloaddition reveals a π-system that can be functionalized through traditional olefin chemistry. Coupled with subsequent [4 + 2]-cycloreversion of the arenophile, this process acts to effectively isolate a single π-system from an aromatic ring. We have developed several transformations that bias this methodology to perform dearomative single-atom insertion and π-extension reactions to prepare unique products that cannot be prepared easily through traditional means.Through the application of a dearomative epoxidation, we were able to develop a method for the epoxidation of arenes and pyridines to arene-oxides and pyridine-oxides, respectively. Notably, when this arenophile chemistry is applied to polycyclic arenes, photocycloaddition reveals a π-system transposed from the site of native olefinic reactivity, enabling unique site-selectivity for dearomative functionalization. As a result, we were able to perform a single-atom insertion of oxygen into polycyclic (aza)arenes to prepare 3-benzoxepines. When applying this strategy in the context of cyclopropanations, we were able to accomplish a dearomative cyclopropanation of polycyclic (aza)arenes which yield benzocycloheptatrienes upon cycloreversion. Notably, while the Buchner ring expansion is a powerful method for the direct single-atom insertion of carbon into arenes, the corresponding cyclopropanation of polycyclic arenes does not yield ring-expanded products. Furthermore, this strategy could be utilized for the synthesis of novel nanographenes through the development of an M-region annulative π-extension (M-APEX) reaction. Traditionally, methods for π-extension rely on the native reactivity of polycyclic aromatics at the K- and bay-region. However, photocycloaddition of polycyclic aromatics with arenophiles acts as a strategy to activate the M-region for further reactivity. As a result, arenophile-mediated dearomative diarylation, followed by cycloreversion, could deliver π-extended nanographenes with exclusive M-region site selectivity.
Collapse
Affiliation(s)
- Zohaib Siddiqi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - David Sarlah
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Kuroda Y, Chiba T, Kawajiri M, Takasu K. Pd-Catalyzed Allylic Substitution of Azo-Ene Adducts Enables Net Allylic C-H Alkylation of Allylic Alcohols. Org Lett 2025. [PMID: 39895460 DOI: 10.1021/acs.orglett.5c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
We present a protocol for a regioselective allylic C-H alkylation of allylic alcohols, consisting of a sequential azo-ene reaction and attendant Pd-catalyzed allylic substitution with Grignard reagents. Notable features of this work include: (1) regioselective C(sp3)-C(sp3) bond formation is achieved under Pd-catalysis, and (2) the allylic substitution proceeds with retention of configuration at the electrophilic allylic carbon as well as the olefin geometry.
Collapse
Affiliation(s)
- Yusuke Kuroda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Research Foundation ITSUU Laboratory, C1232 Kanagawa Science Park R&D Building 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Takumi Chiba
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Moe Kawajiri
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Beduru S, Huple DB, Kutateladze AG. Complexity-Building Exhaustive Dearomatization of Benzenoid Aromatics within an ESIPT-Initiated Three-Step Photochemical Cascade. Angew Chem Int Ed Engl 2025; 64:e202415176. [PMID: 39265085 DOI: 10.1002/anie.202415176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Dearomative cycloadditions offer rapid access to complex 3D molecular architectures, commonly via a sp2-to-sp3 rehybridization of two atoms of an aromatic ring. Here we report that the 6e π-system of a benzenoid aromatic pendant could be exhaustively depleted within a single photochemical cascade. An implementation of this approach involves the initial dearomative [4+2] cycloaddition of the Excited State Intramolecular Proton Transfer (ESIPT)-generated azaxylylene, followed by two consecutive [2+2] cycloadditions of auxiliary π moieties strategically positioned in the photoprecursor. Such photochemical cascade fully dearomatizes the benzenoid aromatic ring, saturating all six sp2 atoms to yield a complex sp3-rich scaffold with high control of its 3D molecular shape, rendering it a robust platform for rapid systematic mapping of underexplored chemical space. Significant growth of molecular complexity-starting with a modular synthesis of photoprecursors from readily available building blocks-is quantified by Böttcher score calculations.
Collapse
Affiliation(s)
- Srinivas Beduru
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| | - Deepak B Huple
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80208
| |
Collapse
|
4
|
Liu T, Luo Y, Liu Y. Construction of fused heterocycles by visible-light induced dearomatization of nonactivated arenes. Org Biomol Chem 2024. [PMID: 39469871 DOI: 10.1039/d4ob01530d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
A diverse array of fused [6-6-5] tricyclic heterocycles has been synthesized via the dimerization and dearomative cyclization of benzene derivatives under visible light irradiation. The initiation of the cascade process is likely from aryloxy radicals, engendered through proton-coupled electron transfer by the photoexcited vinylidene ortho-quinone methide (VQM) and a Brønsted base.
Collapse
Affiliation(s)
- Tianyu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yong Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
5
|
Das A, Kumaran S, Ravi Sankar HS, Premkumar JR, Sundararaju B. A Dual Cobalt-Photoredox Catalytic Approach for Asymmetric Dearomatization of Indoles with Aryl Amides via C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202406195. [PMID: 38896502 DOI: 10.1002/anie.202406195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
In this study, we unveil a novel method for the asymmetric dearomatization of indoles under cobalt/photoredox catalysis. By strategically activating C-H bonds of amides and subsequent migratory insertion of π-bonds present in indole as reactive partner, we achieve syn-selective tetrahydro-5H-indolo[2,3-c]isoquinolin-5-one derivatives with excellent yields and enantiomeric excesses of up to >99 %. The developed method operates without a metal oxidant, relying solely on oxygen as the oxidant and employing an organic dye as a photocatalyst under irradiation. Control experiments and stoichiometric studies elucidate the reversible nature of the enantiodetermining C-H activation step, albeit not being rate-determining. This study not only expands the horizon of cobalt-catalyzed asymmetric C-H bond functionalization, but also showcases the potential synergy between cobalt and photoredox catalysis in enabling asymmetric synthesis of complex molecules.
Collapse
Affiliation(s)
- Abir Das
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| | - Subramani Kumaran
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| | | | - J Richard Premkumar
- PG & Research Department of Chemistry, Bishop Heber College, Tiruchirappalli, 620017, Tamil Nadu, India
| | - Basker Sundararaju
- Department of chemistry, Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh, India-, 208 016
| |
Collapse
|
6
|
Liu S, Xu T, Liu Y, Wang Y. Dearomative Intramolecular meta-Thermocycloadditions of Benzene Rings via Wheland Intermediates. Angew Chem Int Ed Engl 2024; 63:e202407841. [PMID: 38837571 DOI: 10.1002/anie.202407841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Dearomative cycloadditions are powerful synthetic transformations utilizing aromatic compounds for cycloaddition reactions. They have been extensively applied to the synthesis of biologically relevant compounds not only because of the complexity generated from simplicity but also the atom- and step-economy. For the most studied yet challenging benzene ring systems, ortho- and para-cycloadditions have been realized both photochemically and thermally, while the meta-cycloadditions are still limited to the photochemical processes tracing back to the 1960s. Herein, we for the first time realized the thermal cycloadditions of benzene rings with alkenes in a meta fashion via Wheland intermediates. A broad spectrum of readily available C(sp2)-rich aniline-tethered enynes were transformed into C(sp3)-rich 3D complex polycyclic architectures simply by stirring in TFA. Moreover, the reaction could be performed in gram-scales and the products could be diversely elaborated.
Collapse
Affiliation(s)
- Shupeng Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Tianyi Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Yuting Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Youliang Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| |
Collapse
|
7
|
Davis CW, Zhang Y, Li Y, Martinelli M, Zhang J, Ungarean C, Galer P, Liu P, Sarlah D. Copper-Catalyzed Dearomative 1,2-Hydroamination. Angew Chem Int Ed Engl 2024; 63:e202407281. [PMID: 38779787 DOI: 10.1002/anie.202407281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Catalytic olefin hydroamination reactions are some of the most atom-economical transformations that bridge readily available starting materials-olefins and high-value-added amines. Despite significant advances in this field over the last two decades, the formal hydroamination of nonactivated aromatic compounds remains an unsolved challenge. Herein, we report the extension of olefin hydroamination to aromatic π-systems by using arenophile-mediated dearomatization and Cu-catalysis to perform 1,2-hydroamination on nonactivated arenes. This strategy was applied to a variety of substituted arenes and heteroarenes to provide general access to structurally complex amines. We conducted DFT calculations to inform mechanistic understanding and rationalize unexpected selectivity trends. Furthermore, we developed a practical, scalable desymmetrization to deliver enantioenriched dearomatized products and enable downstream synthetic applications. We ultimately used this dearomative strategy to efficiently synthesize a collection of densely functionalized small molecules.
Collapse
Affiliation(s)
| | - Yu Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yanrong Li
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | | | - Jingyang Zhang
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Chad Ungarean
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Petra Galer
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David Sarlah
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
- Department of Chemistry, University of Pavia, Pavia, LOM 27100, IT
| |
Collapse
|
8
|
Davis CW, Li Y, Zhang Y, Siddiqi Z, Liu P, Sarlah D. Copper-Catalyzed Dearomative trans-1,2-Carboamination. ACS Catal 2024; 14:10132-10137. [PMID: 39981161 PMCID: PMC11839202 DOI: 10.1021/acscatal.4c02656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
We have achieved the arenophile-mediated, copper-catalyzed dearomative trans-1,2-carboamination of nonactivated arenes with alkyl organometallic nucleophiles. This simple and practical procedure was used to prepare diverse, stereochemically rich alkylated cyclohexadienes from readily available arenes. Synthetic utility was demonstrated through the rapid preparation of complex small molecules difficult to access by conventional routes. Finally, we conducted DFT studies to explore the catalytic process, including a study of the reaction pathway and an examination of the divergent regioselectivity observed with substituted arenes.
Collapse
Affiliation(s)
- Christopher W Davis
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yanrong Li
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yu Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zohaib Siddiqi
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, , United States
| | - David Sarlah
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Ji P, Duan K, Li M, Wang Z, Meng X, Zhang Y, Wang W. Photochemical dearomative skeletal modifications of heteroaromatics. Chem Soc Rev 2024; 53:6600-6624. [PMID: 38817197 PMCID: PMC11181993 DOI: 10.1039/d4cs00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 06/01/2024]
Abstract
Dearomatization has emerged as a powerful tool for rapid construction of 3D molecular architectures from simple, abundant, and planar (hetero)arenes. The field has evolved beyond simple dearomatization driven by new synthetic technology development. With the renaissance of photocatalysis and expansion of the activation mode, the last few years have witnessed impressive developments in innovative photochemical dearomatization methodologies, enabling skeletal modifications of dearomatized structures. They offer truly efficient and useful tools for facile construction of highly complex structures, which are viable for natural product synthesis and drug discovery. In this review, we aim to provide a mechanistically insightful overview on these innovations based on the degree of skeletal alteration, categorized into dearomative functionalization and skeletal editing, and to highlight their synthetic utilities.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Kuaikuai Duan
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Menglong Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Yueteng Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| |
Collapse
|
10
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
11
|
Zhu M, Gao YJ, Huang XL, Li M, Zheng C, You SL. Photo-induced intramolecular dearomative [5 + 4] cycloaddition of arenes for the construction of highly strained medium-sized-rings. Nat Commun 2024; 15:2462. [PMID: 38503749 PMCID: PMC10951311 DOI: 10.1038/s41467-024-46647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Medium-sized-ring compounds have been recognized as challenging synthetic targets in organic chemistry. Especially, the difficulty of synthesis will be augmented if an E-olefin moiety is embedded. Recently, photo-induced dearomative cycloaddition reactions that proceed via energy transfer mechanism have witnessed significant developments and provided powerful methods for the organic transformations that are not easily realized under thermal conditions. Herein, we report an intramolecular dearomative [5 + 4] cycloaddition of naphthalene-derived vinylcyclopropanes under visible-light irradiation and a proper triplet photosensitizer. The reaction affords dearomatized polycyclic molecules possessing a nine-membered-ring with an E-olefin moiety in good yields (up to 86%) and stereoselectivity (up to 8.8/1 E/Z). Detailed computational studies reveal the origin behind the favorable formation of the thermodynamically less stable isomers. Diverse derivations of the dearomatized products have also been demonstrated.
Collapse
Affiliation(s)
- Min Zhu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Yuan-Jun Gao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
| | - Xu-Lun Huang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Muzi Li
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
| | - Chao Zheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China.
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China.
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China.
| |
Collapse
|
12
|
Kuroda Y, Krell M, Kurokawa K, Takasu K. Synthesis of mesoionic triazolones via a formal [3+2] cycloaddition between 4-phenyl-1,2,4-triazoline-3,5-dione and alkynes. Chem Commun (Camb) 2024; 60:1719-1722. [PMID: 38240015 DOI: 10.1039/d3cc05088b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
1,2,4-Triazoline-3,5-diones (TADs) are versatile reagents and have found widespread adoption in chemical science. Despite their remarkable reactivity toward a wide array of unsaturated hydrocarbons, the chemical reaction between TADs and alkynes has remained largely unexplored. Herein, we demonstrate that 1,1,1,3,3,3-hexafluoro-2-propanol facilitates the unusual [3+2] cycloaddition between 4-phenyl-1,2,4-triazoline-3,5-dione and alkynes, resulting in the formation of unprecedented mesoionic triazolones. Moreover, the structural properties of the resulting triazolone have been investigated by employing X-ray diffraction analysis and Density Functional Theory (DFT) calculations.
Collapse
Affiliation(s)
- Yusuke Kuroda
- Graduate School of Pharmaceutical Sciences, Kyoto University Yoshida, Kyoto 606-8501, Japan.
- Research Foundation ITSUU Laboratory, Kawasaki, Kanagawa 213-0012, Japan
| | - Maya Krell
- Graduate School of Pharmaceutical Sciences, Kyoto University Yoshida, Kyoto 606-8501, Japan.
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Kazuma Kurokawa
- Graduate School of Pharmaceutical Sciences, Kyoto University Yoshida, Kyoto 606-8501, Japan.
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University Yoshida, Kyoto 606-8501, Japan.
| |
Collapse
|
13
|
Siddiqi Z, Bingham TW, Shimakawa T, Hesp KD, Shavnya A, Sarlah D. Oxidative Dearomatization of Pyridines. J Am Chem Soc 2024; 146:2358-2363. [PMID: 38230893 PMCID: PMC11006438 DOI: 10.1021/jacs.3c13603] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Dearomatization of pyridines is a well-established synthetic approach to access piperidines. Although remarkably powerful, existing dearomatization processes have been limited to the hydrogenation or addition of carbon-based nucleophiles to activated pyridiniums. Here, we show that arenophile-mediated dearomatizations can be applied to pyridines to directly introduce heteroatom functionalities without prior substrate activation. The arenophile platform in combination with olefin oxidation chemistry provides access to dihydropyridine cis-diols and epoxides. These previously elusive compounds are now readily accessible and can be used for the downstream preparation of diversely functionalized piperidines.
Collapse
Affiliation(s)
- Zohaib Siddiqi
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States; and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Tanner W. Bingham
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States; and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Tsukasa Shimakawa
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States; and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Kevin D. Hesp
- Treeline Biosciences, 500 Arsenal St, second Floor, Watertown, Massachusetts 02472, United States
| | - Andre Shavnya
- Pfizer Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - David Sarlah
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States; and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Liu TX, Wang X, Xia S, Chen M, Li M, Yang P, Ma N, Hu Z, Yang S, Zhang G, Wang GW. Dearomative Ring-Fused Azafulleroids and Carbazole-Derived Metallofullerenes: Reactivity Dictated by Encapsulation in a Fullerene Cage. Angew Chem Int Ed Engl 2023; 62:e202313074. [PMID: 37789646 DOI: 10.1002/anie.202313074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023]
Abstract
Herein, we report divergent additions of 2,2'-diazidobiphenyls to C60 and Sc3 N@Ih -C80 . In stark contrast to that of the previously reported bis-azide additions, the unexpected cascade reaction leads to the dearomative formation of azafulleroids 2 fused with a 7-6-5-membered ring system in the case of C60 . In contrast, the corresponding reaction with Sc3 N@Ih -C80 switches to the C-H insertion pathway, thereby resulting in multiple isomers, including a carbazole-derived [6,6]-azametallofulleroid 3 and a [5,6]-azametallofulleroid 4 and an unusual 1,2,3,6-tetrahydropyrrolo[3,2-c]carbazole-derived metallofullerene 5, whose molecular structures have been unambiguously determined by single-crystal X-ray diffraction analyses. Among them, the addition type of 5 is observed for the first time in all reported additions of azides to fullerenes. Furthermore, unexpected isomerizations from 3 to 5 and from 4 to 5 have been discovered, providing the first examples of the isomerization of an azafulleroid to a carbazole-derived fullerene rather than an aziridinofullerene. In particular, the isomerism of the [5,6]-isomer 4 to the [5,6]-isomer 5 is unprecedented in fullerene chemistry, contradicting the present understanding that isomerization generally occurs between [5,6]- and [6,6]-isomers. Control experiments have been carried out to rationalize the reaction mechanism. Furthermore, representative azafulleroids have been applied in organic solar cells, thereby resulting in improved power conversion efficiencies.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Shilu Xia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Muqing Chen
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong Province, 523808, P. R. China
| | - Mingjie Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Panting Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Ziqi Hu
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
15
|
Palai A, Rai P, Maji B. Rejuvenation of dearomative cycloaddition reactions via visible light energy transfer catalysis. Chem Sci 2023; 14:12004-12025. [PMID: 37969572 PMCID: PMC10631258 DOI: 10.1039/d3sc04421a] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
Dearomative cycloaddition is a powerful technique to access sp3-rich three-dimensional structural motifs from simple flat, aromatic feedstock. The building-up of unprecedentedly diverse polycyclic scaffolds with increased saturation and stereochemical information having various applications ranging from pharmaceutical to material sciences, is an essential goal in organic chemistry. However, the requirement of large energy inputs to disrupt the aromaticity of an arene moiety necessitates harsh reaction conditions for ground state dearomative cycloaddition. The photochemical requirement encompasses use of ultraviolet (UV) light to enable the reaction on an excited potential energy surface. The microscopic reversibility under thermal conditions and the use of high energy harmful UV irradiation in photochemical manoeuvres, however, constrain their widespread use from a synthetic point of view. In this context, the recent renaissance of visible light energy transfer (EnT) catalysis has become a powerful tool to initiate dearomative cycloaddition as a greener and more sustainable approach. The excited triplet state population is achieved by triplet energy transfer from the appropriate photosensitizer to the substrate. While employing mild visible light energy as fuel, the process leverages an enormous potential of excited state reactivity. The discovery of an impressive portfolio of organic and inorganic photosensitizers with a range of triplet energies facilitates visible light photosensitized dearomative cycloaddition of various substrates to form sp3-rich fused polycyclic architectures with diverse applications. The tutorial review comprehensively surveys the reawakening of dearomative cycloadditions via visible light-mediated energy transfer catalysis in the past five years. The progress ranges from intra- and intermolecular [2π + 2π] to [4π + 2π], and ends at intermolecular [2π + 2σ] cycloadditions. Furthermore, the review provides potential possibilities for future growth in the growing field of visible light energy transfer catalysis.
Collapse
Affiliation(s)
- Angshuman Palai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Pramod Rai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| |
Collapse
|