1
|
Rajendran V, Erulappan J, Thomas KRJ. Strategies for Enabling RGB Emission in Fused Carbazole Derivatives. Chem Asian J 2025:e202500254. [PMID: 40308172 DOI: 10.1002/asia.202500254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
The development of organic light-emitting diodes (OLEDs) has witnessed remarkable progress in material design and device architecture. Recent advancements, particularly in the fourth generation of OLEDs, have introduced groundbreaking innovations such as hyperfluorescence and multiresonance (MR) thermally activated delayed fluorescence (MRTADF) emitters. Carbazole has emerged as a versatile scaffold, playing a pivotal role in conventional fluorescence, TADF, roomtemperature phosphorescence (RTP), and MRTADF systems. In recent years, fused carbazole derivatives have gained significant attention as both emitting and host materials in OLEDs. The fusion of carbazole units enhances molecular rigidity and extends the πconjugation, enabling precise tuning of optoelectronic properties across a wide color gamut, including blue, green, orange, yellow, and red emissions. This review systematically explores the application of various fused carbazole systems such as indolocarbazole, thienocarbazole, furocarbazole, indenocarbazole, triazatruxene, acridinecarbazole, chromenocarbazole, pyrenocarbazole, helicene carbazole, and carbazolefused boron/carbonyl MRTADF emitters in OLEDs. The discussion is organized into three sections based on their application in blue, green, and red OLEDs, providing a comprehensive understanding of structure-property relationships. Additionally, other color-emitting OLEDs are discussed where relevant, offering a holistic perspective on the potential of fused carbazole derivatives in next-generation OLED technologies.
Collapse
Affiliation(s)
- Vignesh Rajendran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Jeyasurya Erulappan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - K R Justin Thomas
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
2
|
Walia R, Fan X, Mei L, Guo W, Wang K, Adachi C, Chen X, Zhang X. Blocking Orbital π-Conjugation to Boost Spin-Orbit Coupling in Carbonyl-Embedded Polycyclic Heteroaromatic Emitters. Angew Chem Int Ed Engl 2025; 64:e202503371. [PMID: 40032616 PMCID: PMC12051818 DOI: 10.1002/anie.202503371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
Both reducing singlet-triplet energy gaps (ΔES1T1) and enhancing spin-orbit couplings (SOCs) are key to improving reverse intersystem crossing rates (kRISC) in thermally activated delayed fluorescence (TADF) materials. While considerable efforts have focused on reducing ΔES1T1, investigations on SOCs remain limited. Here, blocking π-conjugation in carbonyl-embedded polycyclic heteroaromatic (PHA) molecules as potential approach to elevate ππ* excitation energy, allowing its hybridization with nπ* excitation, thereby increasing SOCs is proposed. Two proof-of-concept isomers, DNDK-1 and DNDK-2 are synthesized, with different orientations of carbonyl units. DNDK-1 adopts a heavily twisted structure that hinders π-conjugation, while DNDK-2 remains quasi-planar, maintaining stronger π-conjugation. Experimental measurements reveals stark differences in their photophysical properties, with DNDK-1 exhibiting faster kRISC and much higher electroluminescence efficiency. The ab-initio calculations elucidate that hindered conjugation in DNDK-1 elevates ππ* excitation energy, enabling nπ*-ππ* mixing, thus significantly boosting SOCs. In contrast, smooth π-conjugation in DNDK-2 leads to marginal nπ*-ππ* mixing. In addition, utilizing groups composed of meta-arranged carbonyl-Ar-carbonyl and meta-arranged N-Ar-N units emerges as another approach to block π-conjugation and enhance SOCs. This joint experimental and theoretical work provides promising pathways to enhance SOCs by blocking π-conjugation, offering crucial insights for designing carbonyl-embedded PHA emitters with larger SOCs.
Collapse
Affiliation(s)
- Rajat Walia
- Institute of Functional Nano and Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsuP.R. China
| | - Xiaochun Fan
- Institute of Functional Nano and Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsuP.R. China
- Center for Organic Photonics and Electronics Research (OPERA)Kyushu University15 Fukuoka819‐0395Japan
| | - Le Mei
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARP.R. China
| | - Weixiong Guo
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARP.R. China
| | - Kai Wang
- Institute of Functional Nano and Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsuP.R. China
- Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsuP.R. China
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA)Kyushu University15 Fukuoka819‐0395Japan
| | - Xian‐Kai Chen
- Institute of Functional Nano and Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsuP.R. China
- Center for Organic Photonics and Electronics Research (OPERA)Kyushu University15 Fukuoka819‐0395Japan
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsuP.R. China
| | - Xiao‐Hong Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsuP.R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsuP.R. China
| |
Collapse
|
3
|
Wang X, Hua T, Li N, Chen G, Chen Z, Miao J, Cao X, Yang C. Narrowband multi-resonance pure-red emitters via enhanced molecular orbital delocalization for high-performance organic light-emitting diodes. Chem Sci 2025; 16:7495-7502. [PMID: 40160354 PMCID: PMC11951165 DOI: 10.1039/d5sc01439e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
Multiple resonance-induced thermally activated delayed fluorescence (MR-TADF) materials with pure-red gamut are in demand for high-definition organic light-emitting diode (OLED) displays. To achieve efficient pure-red OLEDs with excellent color purity, we report three novel MR-TADF emitters: PhCzBN, PhBCzBN, and BCzBN, which integrate a dibenzo[c,g]carbazole segment into a para-boron/oxygen-embedded framework, resulting in the progressive extension of the molecular conjugation. This extension of the π-conjugated skeleton enhances frontier molecular orbital (FMO) delocalization and red-shifts the emission, yielding pure-red emission in toluene with satisfactory peak positions and narrow linewidths. The sensitized OLEDs incorporating PhCzBN, PhBCzBN, and BCzBN exhibit maximum external quantum efficiencies of 31.5%, 33.6%, and 33.8%, respectively. The current efficiencies of these devices reach as high as 42.5 cd A-1, which is higher than reported pure-red emitters with comparable CIE coordinates. Notably, the devices based on BCzBN demonstrate an emission peak at 636 nm and superior CIE coordinates of (0.700, 0.300), closely aligning with the BT.2020 requirements for the red gamut. This work presents a straightforward yet effective approach for developing high-performance pure-red MR-TADF OLEDs, marking a substantial advancement in wide-color gamut display technologies.
Collapse
Affiliation(s)
- Xiaowei Wang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Tao Hua
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
- Institute of Technology for Future Industry, School of Science and Technology, Instrument Application Engineering, Shenzhen Institute of Information Technology Shenzhen 518172 P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
4
|
Zhang R, Chen X, Zhu L, Huang Y, Zhai Z, Wang Q, Wang L, Wang T, Wang WZ, Ye KY, Li Y. Thiophene-backbone arcuate graphene nanoribbons: shotgun synthesis and length dependent properties. Chem Sci 2025; 16:7366-7373. [PMID: 40151476 PMCID: PMC11938106 DOI: 10.1039/d4sc08353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Efficient synthetic methods are urgently needed to produce graphene nanoribbons (GNRs) with diverse structures and functions. Precise control over the topological edges of GNRs is also crucial for achieving diverse molecular topologies and desirable electro-optical properties. This study demonstrates a highly efficient "shotgun" synthesis of thiophene-backbone arcuate GNRs, offering a significant advantage over tedious iterative synthesis. This method utilizes a one-pot, three component Suzuki-Miyaura coupling for the precursor, followed by a Scholl reaction for cyclization. The resulting arcuate GNRs have sulfur atoms embedded in the carbon backbone with a combined armchair, cove, and fjord edge structure. This multi-edge architecture is further modified by high-yield oxidation of the electron-rich sulfur atoms to electron-deficient sulfones, enabling precise regulation of the GNRs' electronic properties. These arcuate GNRs with diverse edge structures, heteroatom doping and precise lengths open exciting avenues for their application in optoelectronic devices.
Collapse
Affiliation(s)
- Ruiying Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Xinyu Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Lingyun Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Yanxia Huang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Zi'ang Zhai
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Qiang Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Lingding Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Taosong Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Wei-Zhen Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Yuanming Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
5
|
Tian X, Fan Z, Li Z, Zhang S, Li Z, Zhuang X, Wang Y, Dou C. Polycyclic Aromatic Hydrocarbons with a Boron-Doped Zigzag/Armchair Topology: A Boron-Edging Strategy for Organic Narrowband Emitters. Angew Chem Int Ed Engl 2025; 64:e202500110. [PMID: 39939296 DOI: 10.1002/anie.202500110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/14/2025]
Abstract
Control over molecular topologies and/or heteroatom doping of polycyclic aromatic hydrocarbons (PAHs) may alter their electronic structures and achieve desirable physical properties. Herein, this work challenges boron-doping and edge-transformation of π-extended PAHs. We successfully synthesized a series of large-size PAHs featuring a boron-doped zigzag/armchair edge topology through one-pot multifold Scholl cyclization reaction. Two of them possess the desired C3-symmetric and unexpected unsymmetrical C54B3 nanographene frameworks, respectively, thus illustrating triply boron-edging manipulations of hexa-peri-hexabenzocoronene. Detailed studies reveal that such boron-doped edge topology significantly inhibits their excited-state molecular vibrations and thereby produces narrowband emission characteristics. The full width at half maximum (FWHM) values of their fluorescence spectra are as small as 12-18 nm, which have never been observed for pristine boron-doped π-system and are among the smallest values reported for organic emitters. Their solution-processed organic light-emitting diodes (OLEDs) display extremely narrowband electroluminescence, and additionally, the obtained FWHM of only 23 nm represents the narrowest one reported for red OLEDs.
Collapse
Affiliation(s)
- Xinyu Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zengming Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zeyi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shitong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhiqiang Li
- Jihua Laboratory, Foshan, 528200, P. R. China
| | | | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
6
|
Mu X, Wu L, Li Z, Liu D, Li D, Qi H, Li J, Su SJ, Zhou Y, Wu S, Li W, Ge Z. High-Temperature-Induced Fused Polycyclic Aromatic Multiple Resonance Emitters Exhibiting Narrowband and Pronounced Red-Shifted Emission. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411961. [PMID: 40059589 DOI: 10.1002/smll.202411961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/20/2025] [Indexed: 04/25/2025]
Abstract
Synthetic methodology is a fundamental framework for preparing functional materials, significantly advancing their development. Herein, a novel 6π electrocyclization reaction is unexpectedly discovered that promotes further ring closure in materials derived from multi-resonance thermally activated delayed fluorescence (MR-TADF) compounds, known for their narrow emission. By simply raising the reaction temperature, this process significantly red-shifts the emission peak of the target material while effectively narrowing its emissive width and greatly enhancing its optoelectronic performance. Utilizing this method, the newly synthesized MR-TADF substrate material GCz-4B2 is successfully converted into the target compound GCz-4B1. Compared to GCz-4B2, the emission peak of GCz-4B1 exhibited a redshift of 26 nm while concurrently achieving a significant reduction in its full width at half-maximum (FWHM) value and corresponding shoulder intensity. Notably, the photoluminescence quantum yield (PLQY) of GCz-4B1 reached 95.1%, compared to only 85.6% for GCz-4B2. This enhancement can be attributed to the increased rigidity from the further ring closure reaction, which reduced unfavorable vibrational relaxation processes and improved PLQY values. Furthermore, OLEDs based on GCz-4B1 attained a maximum external quantum efficiency (EQEmax) of 28.0%, with a small FWHM value of 19.4 nm, significantly surpassing that of devices derived from GCz-4B2.
Collapse
Affiliation(s)
- Xilin Mu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Frontier Science Center for Smart Materials, College of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Lin Wu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Zhizhi Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, Guangdong, 510640, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, Guangdong, 510640, P. R. China
| | - Deli Li
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan, 250022, P. R. China
| | - Hengxuan Qi
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jiuyan Li
- Frontier Science Center for Smart Materials, College of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, Guangdong, 510640, P. R. China
| | - Yubo Zhou
- Ningbo Solartron Technology CO., Ltd, Ningbo, 315000, P. R. China
| | - Siyao Wu
- Ningbo Solartron Technology CO., Ltd, Ningbo, 315000, P. R. China
| | - Wei Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
7
|
Swoboda L, Klopf J, Buckel M, Engels B, Helten H. Boraporphyrins: Unlocking Global Aromaticity in Organoboron Macrocycles. J Am Chem Soc 2025; 147:10629-10639. [PMID: 40053927 DOI: 10.1021/jacs.5c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
We report the synthesis of 5-bora-21,22-dioxaporphyrin 5 and its main-group and d-block metal complexes 6 and 7, respectively. These macrocyclic boranes constitute the first examples of neutral porphyrins with boron in a meso-position that exhibit global aromaticity. This is evidenced by spectroscopic and structural features as well as calculated nucleus independent chemical shifts (NICS) and anisotropic induced current densities (ACID). The boraporphyrins absorb light strongly in the red spectral region (Q bands) and show enhanced fluorescence with higher quantum yields (5: 29%) compared to conventional porphyrins. DFT calculations reveal that the incorporation of the borane moiety has a distinct impact on the frontier orbital energies, thus leading to altered electrochemical and optical properties.
Collapse
Affiliation(s)
- Lukas Swoboda
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074 Würzburg, Germany
| | - Jonas Klopf
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074 Würzburg, Germany
| | - Manuel Buckel
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074 Würzburg, Germany
| | - Bernd Engels
- Julius-Maximilians-Universität Würzburg, Institute for Physical and Theoretical Chemistry, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Holger Helten
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
8
|
Wu L, Xin Z, Liu D, Li D, Zhang J, Zhou Y, Wu S, Wang T, Su SJ, Li W, Ge Z. Bifunctional Group Modulation Strategy Enables MR-TADF Electroluminescence Toward BT.2020 Green Light Standard. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416224. [PMID: 39846302 DOI: 10.1002/adma.202416224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Herein, a parallel "bifunctional group" modulation method is proposed to achieve controlled modulation of the emission wavelength and full-width at half-maximum (FWHM) values. As a result, three proof-of-concept emitters, namely DBNDS-TPh, DBNDS-DFPh, and DBNDS-CNPh, are designed and synthesized, with the first functional dibenzo[b,d]thiophene unit concurrently reducing the bandgap and elevate their triplet state energy. A second functional group 1,1':3',1″-triphenyl, and electron acceptors 1,3-difluorobenzene and benzonitrile, respectively, to deepen the HOMO and LUMO levels. Accordingly, the CIE coordinates of DBNDS-TPh, DBNDS-DFPh, and DBNDS-CNPh are (0.13, 0.77), (0.14, 0.77), and (0.14, 0.76) respectively, in a dilute toluene solution. This marks the first instance of achieving a CIEy value of 0.77 in dilute toluene solutions. Significantly, the non-sensitized pure-green OLEDs based on DBNDS-TPh and DBNDS-DFPh demonstrate peak EQE of 35.0% and 34.5%, with corresponding CIE coordinates of (0.18, 0.75), (0.17, 0.76) at the doping concentration of 1 wt.%, representing the first green OLED with a CIEy value reaching 0.76 in a bottom-emitting device structure as reported in the literature.
Collapse
Affiliation(s)
- Lin Wu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Ziru Xin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, Guangdong, 510640, P. R. China
| | - Deli Li
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan, 250022, P. R. China
| | - Jiasen Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Yubo Zhou
- Ningbo Solartron Technology Co., Ltd, Ningbo, 315000, P. R. China
| | - Siyao Wu
- Ningbo Solartron Technology Co., Ltd, Ningbo, 315000, P. R. China
| | - Tao Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, Guangdong, 510640, P. R. China
| | - Wei Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 10049, P. R. China
| |
Collapse
|
9
|
Diev VV, Zou Y, Kondakov D, Yap GPA. A Hybrid BN-Doped Nanographene with Narrow Emission Bandwidths for OLEDs. Chemistry 2025; 31:e202404078. [PMID: 39823239 DOI: 10.1002/chem.202404078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/19/2025]
Abstract
We describe synthesis of BN-doped nanographene containing five phenylene units, boron and nitrogen atoms with alternating ortho-disposition, as well as direct B-N connections. Resulting BN doped nanographene exhibits blue fluorescence at 441 nm with an extraordinarily narrow fluorescence peak with a full width at half maximum (FWHM)=10-11 nm. Crystallography reveals supramolecular organization of this compound in the crystal phase. Initial organic light emitting device (OLED) data suggest that the presence of a directly connected B-N isostere can lead to devices with sufficiently long lifetime as well as narrow emission electro-luminescence peaks necessary for OLED applications.
Collapse
Affiliation(s)
- Vyacheslav V Diev
- DuPont Specialty Products USA LLC, Experimental Station, Wilmington, DE, 19803, USA
| | - Yunlong Zou
- DuPont Specialty Products USA LLC, Experimental Station, Wilmington, DE, 19803, USA
| | - Denis Kondakov
- DuPont Specialty Products USA LLC, Experimental Station, Wilmington, DE, 19803, USA
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
10
|
Xiao S, Cao X, Chen G, Yin X, Chen Z, Miao J, Yang C. Synergistic π-Extension and Peripheral-Locking of B/N-Based Multi-Resonance Framework Enables High-Performance Pure-Green Organic Light-Emitting Diodes. Angew Chem Int Ed Engl 2025; 64:e202418348. [PMID: 39505699 DOI: 10.1002/anie.202418348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/08/2024]
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters offer natural advantages for creating power-efficient, wide-color-gamut OLEDs. However, current green MR-TADF emitters face challenges in simultaneously achieving high color purity and efficient reverse inter-system crossing (RISC), leading to suboptimal device performance. In this study, we propose a synergistic molecular design approach that combines π-extension and peripheral locking to address these challenges. This approach allows for the construction of quadruple borylated MR-TADF emitters that not only deliver precisely tuned pure-green emission with a narrow full width at half maximum (FWHM) of 15 nm, but also exhibit close-to-unity quantum yield, rapid RISC, and optimal horizontal dipole orientation. The resulting sensitizer-free OLED approaches the BT.2020 standard with CIE coordinates of (0.18, 0.74) and demonstrates impressive external quantum efficiency (EQE) of 36.6 % at maximum and 31.8 % at 1000 cd m-2. Additionally, the device shows good operational stability, with a lifetime (LT80) of 485 hours at an initial luminance of 1000 cd m-2. This study hence offers a promising molecular design strategy that effectively enhances the comprehensive OLED performance.
Collapse
Affiliation(s)
- Shengbing Xiao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physical and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
11
|
Dong J, Chen L, Feng Q, Yang DT. Near-Infrared-Emitting Helically Twisted Conjugated Frameworks Consisting of Alternant Donor-π-Acceptor Units and Multiple Boron Atoms. Angew Chem Int Ed Engl 2025; 64:e202417200. [PMID: 39363682 DOI: 10.1002/anie.202417200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
A novel design strategy to construct bright and narrow near-infrared (NIR) emission materials with suppressed shoulder peaks can significantly enhance their performance in various applications. Herein, we have successfully synthesized a series of helically twisted D-π-A conjugated systems bridged by boron atoms, achieving bright red to near-infrared (NIR) emissions with notably narrow full-width at half-maximum (FWHM) values of 35 nm (0.08 eV) and photoluminescence quantum yields (PLQY) up to 80 %. These compounds display red-shifted emissions up to 753 nm in higher concentrations. Cis/trans configurational isomers of multi-boron-bridged molecule BN3 exhibit similar photophysical properties. The unique combination of boron-induced coordination-enhanced charge transfer (CE-CT) and the helically twisted conjugated framework is pivotal in achieving the red-shifted, narrowband emission. X-ray crystallographic analysis of BN2 and BN3-a reveals that the extension of boron-bridged D-π-A skeletons significantly increases the distortion of the skeleton. Systematic theoretical calculations show how the boron CE-CT mechanism, in conjunction with the helical twist, leads to the narrowing of emission bands while simultaneously red-shifting them into the NIR region. This work could open new avenues for the development of advanced materials with tailored optical properties, particularly in the challenging and highly sought-after NIR spectrum.
Collapse
Affiliation(s)
- Jiaqi Dong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Lingjuan Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Qingliang Feng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
12
|
Feng T, Nie X, Liu D, Wu L, Liu CY, Mu X, Xin Z, Liu B, Qi H, Zhang J, Li W, Su SJ, Ge Z. Multiple Resonance Quasi-fluorescence from BN-Doped Aromatic Compounds Modified with "Naphthalene" Units Approaches the BT.2020 Green Light Standard. Angew Chem Int Ed Engl 2025; 64:e202415113. [PMID: 39297652 DOI: 10.1002/anie.202415113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 11/06/2024]
Abstract
Developing fluorophores that conform to the Broadcast Service Television 2020 (BT.2020) standard presents a formidable challenge. Here, we propose an innovative approach that integrates two and three-boron/nitrogen (BN2)-embedded [4]helicene subunits with naphthalene, resulting in the synthesis of two novel narrowband bright green quasi-fluorescent emitters, NT-2B and NT-3B for ultra-high-definition displays. These emitters exhibit minimal reorganization energy and Huang-Rhys factor, emitting at 510 and 511 nm in dilute toluene solution with exceptionally narrow full width at half maximum values of 15 and 14 nm, respectively. Notably, NT-2B demonstrates an impressive photoluminescence quantum yield of 92.5 %, rapid radiative decay rate, and slow non-radiative decay rate. Owing to their narrowband emission characteristics and outstanding optoelectronic properties, corresponding OLEDs based on NT-2B demonstrate a high external quantum efficiency of 30.6 %, with an FWHM value of 21.5 nm and a CIEy of 0.74, positioning it as one of the leading narrow-band green emitters.
Collapse
Affiliation(s)
- Tingting Feng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Xuewei Nie
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640, Guangdong Province, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640, Guangdong Province, P. R. China
| | - Lin Wu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - C Y Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Xilin Mu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Ziru Xin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Bohong Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Hengxuan Qi
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Jiasen Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Wei Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640, Guangdong Province, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| |
Collapse
|
13
|
Xiong X, Chen TF, Walia R, Fan XC, Cheng YC, Wang H, Wu H, Chen XK, Yu J, Wang K, Zhang XH. Stepwise One-Shot Borylation Reactions for Intersecting DABNA Substructures Exhibiting Bright Yellow-Green Electroluminescence with EQE Beyond 40 % and Mild Roll-Off. Angew Chem Int Ed Engl 2025; 64:e202414882. [PMID: 39295129 DOI: 10.1002/anie.202414882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/21/2024]
Abstract
Boron/nitrogen (B/N)-doped polycyclic aromatic hydrocarbons (PAHs) with the multiple resonance (MR) effect are promising for organic light-emitting diodes (OLEDs) because of their narrowband emission and thermally activated delayed fluorescence (TADF) characteristics. Nevertheless, exploring the variety of such emitters is challenging because of the tricky and limited synthetic protocols. Herein, we designed a novel B/N-doped PAH, L-DABNA-1, whose backbone (L-DABNA) could not be achieved via conventional routes (e.g., one-pot borylation or one-shot borylation). We successfully synthesized it through stepwise one-shot borylations with precisely introducing decorations. The unique MR backbone with intersecting DABNA substructures sharing an aniline group, avoiding any para-N-π-B motif, allows L-DABNA-1 to maintain narrowband TADF emission while significantly redshifting to the yellow-green region with a reverse intersystem crossing rate (kRISC) of 1.28×105 s-1. An L-DABNA-1-based OLED device achieved a maximum external quantum efficiency (EQE) of over 40 % and maintained a high EQE of 36.3 % at 1000 cd m-2, with a current efficiency reaching ~170 cd A-1. This work not only demonstrated the great potential of stepwise borylations in synthesizing B/N-doped PAH backbones, expanding their chemical space, but also provided a promising pathway for exploring MR-TADF emitters at longer wavelengths.
Collapse
Affiliation(s)
- Xin Xiong
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Ting-Feng Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Rajat Walia
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiao-Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Ying-Chun Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xian-Kai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
14
|
Chen D, Wang H, Sun D, Wu S, Wang K, Zhang X, Zysman‐Colman E. The Combination of a Donor-Acceptor TADF and a MR-TADF Emitting Core Results in Outstanding Electroluminescence Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412761. [PMID: 39394825 PMCID: PMC11635906 DOI: 10.1002/adma.202412761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Indexed: 10/14/2024]
Abstract
Here the utility and potential of an emitter design are demonstrated, consisting of a narrowband-emitting multiresonant thermally activated delayed fluorescent (MR-TADF) core that is decorated with a suitably higher energy donor-acceptor TADF moiety. Not only does this D-A TADF group offer additional channels for triplet exciton harvesting and confers faster reverse intersystem crossing (RISC) kinetics but it also acts as a steric shield, insulating the emissive MR-TADF core from aggregation-caused quenching. Two emitters, DtCzBN-CNBT1 and DtCzBN-CNBT2, demonstrate enhanced photophysical properties leading to outstanding performance of the organic light-emitting diodes (OLEDs). DtCzBN-CNBT2, containing a D-A TADF moiety, has a faster kRISC (1.1 × 105 s-1) and higher photoluminescence quantum yield (ΦPL: 97%) compared to DtCzBN-CNBT1 (0.2 × 105 s-1, ΦPL: 90%), which contains a D-A moiety that itself is not TADF. The sensitizer-free OLEDs with DtCzBN-CNBT2 achieve a record-high maximum external quantum efficiency (EQEmax) of 40.2% and showed milder efficiency roll-off (EQE1000 of 20.7%) compared to the DtCzBN-CNBT1-based devices (EQEmax of 37.1% and EQE1000 of 11.9%).
Collapse
Affiliation(s)
- Dongyang Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu21523P. R. China
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu21523P. R. China
| | - Dianming Sun
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Sen Wu
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu21523P. R. China
- Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Xiao‐Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM)Joint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu21523P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon TechnologiesSoochow UniversitySuzhouJiangsu21523P. R. China
| | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
15
|
Zhang TY, Fan XC, Wang K, Zhang XH. Syntheses of multi-resonance frameworks towards narrowband organic light-emitting diodes. Chem Commun (Camb) 2024; 60:14168-14179. [PMID: 39541240 DOI: 10.1039/d4cc05040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Multi-resonance (MR)-type organic emitters are highly attractive in the field of organic light-emitting diodes because of their narrowband emission and thermally activated delayed fluorescence (TADF) properties. Compared with conventional TADF emitters, MR-featured emitters have more complex chemical structures and building logics. The core structures of MR emitters are MR frameworks, i.e., polyaromatic frameworks, precisely embedded with electron-donating and electron-withdrawing atoms/groups. Generally, electron-donating units can be easily introduced through the dedicated design of the precursors/intermediates, while integrating electron-withdrawing units is the key point and bottleneck for the synthesis of the MR framework. In this review, we briefly summarize the synthetic strategies of MR frameworks, focusing on the means of introducing various electron-withdrawing atoms/groups, which will aid the further exploration of MR-TADF emitters and their applications in OLEDs.
Collapse
Affiliation(s)
- Tong-Yuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
| | - Xiao-Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
16
|
Li H, Liu Y, Zhao W, Cao H, Yan X, Zhang S, Yan X, Li H, Tao Y, Xie G, Li W, Chen R, Huang W. Constructing Organic Phosphorescent Scintillators with Enhanced Triplet Exciton Utilization Through Multi-Mode Radioluminescence for Efficient X-Ray Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409338. [PMID: 39308317 DOI: 10.1002/adma.202409338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Indexed: 11/16/2024]
Abstract
The development of organic phosphorescent scintillators with high exciton utilization efficiency has attracted significant attention but remains a difficult challenge because of the inherent spin-forbidden feature of X-ray-induced triplet excitons. Herein, a design strategy is proposed to develop organic phosphorescent scintillators through thermally activated exciton release to convert stabilized spin-forbidden triplet excitons to spin-allowed singlet excitons, which enables singlet exciton-dominated multi-mode emission simultaneously from the lowest singlet, triplet, and stabilized triplet states. The resultant scintillators demonstrate a maximum photoluminescence efficiency of 65.8% and a minimum X-ray radiation detection limit of 110 nGy s-1; this allows efficient radiography imaging with a spatial resolution of ≈10.0 lp mm-1. This study advances the fundamental understanding of exciton dynamics under X-ray excitation, significantly broadening the practical use of phosphorescent materials for safety-critical industries and medical diagnostics.
Collapse
Affiliation(s)
- Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yitong Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hengyu Cao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xin Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Shuman Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xi Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hui Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
17
|
Morinaka Y, Ito H, Fujimoto KJ, Yanai T, Ono Y, Tanaka T, Itami K. Nonplanar Nanographene: A Hydrocarbon Hole-Transporting Material That Competes with Triarylamines. Angew Chem Int Ed Engl 2024; 63:e202409619. [PMID: 39137131 DOI: 10.1002/anie.202409619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Hole-transporting materials (HTMs) are essential for optoelectronic devices, such as organic light-emitting diodes (OLEDs), dye-sensitized solar cells, and perovskite solar cells. Triarylamines have been employed as HTMs since they were introduced in 1987. However, heteroatoms or side chains embedded in the core skeleton of triarylamines can cause thermal and chemical stability problems. Herein, we report that hexabenzo[a,c,fg,j,l,op]tetracene (HBT), a small nonplanar nanographene, functions as a hydrocarbon HTM with hole transport properties that match those of triarylamine-based HTMs. X-ray structural analysis and theoretical calculations revealed effective multidirectional orbital interactions and transfer integrals for HBT. In-depth experimental and theoretical analyses revealed that the nonplanarity-inducing annulative π-extension can achieve not only a stable amorphous state in bulk films, but also a higher increase in the highest occupied molecular orbital level than conventional linear or cyclic π-extension. Furthermore, an in-house manufactured HBT-based OLED exhibited excellent performance, featuring superior curves for current density-voltage, external quantum efficiency-luminance, and lifetime compared to those of representative triarylamine-based OLEDs. A notable improvement in device lifetime was observed for the HBT-based OLED, highlighting the advantages of the hydrocarbon HTM. This study demonstrates the immense potential of small nonplanar nanographenes for optoelectronic device applications.
Collapse
Affiliation(s)
- Yuta Morinaka
- Tokyo Research Center, Organic Materials Research Laboratory, Tosoh Corporation, Hayakawa, Ayase, Kanagawa, 252-1123, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan
| | - Kazuhiro J Fujimoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8602, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8602, Japan
| | - Yohei Ono
- Tokyo Research Center, Organic Materials Research Laboratory, Tosoh Corporation, Hayakawa, Ayase, Kanagawa, 252-1123, Japan
| | - Tsuyoshi Tanaka
- Tosoh Corporation Tokyo Midtown Yaesu, Yaesu Central Tower, 28th & 29th Floors, 2-2-1, Yaesu, Chuo-ku, Tokyo, 104-8467, Japan
| | - Kenichiro Itami
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8602, Japan
- Molecule Creation Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
18
|
Full F, Artigas A, Wiegand K, Volland D, Szkodzińska K, Coquerel Y, Nowak-Król A. Controllable 1,4-Palladium Aryl to Aryl Migration in Fused Systems─Application to the Synthesis of Azaborole Multihelicenes. J Am Chem Soc 2024; 146:29245-29254. [PMID: 39392613 DOI: 10.1021/jacs.4c12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Herein, we report the first 1,4-Pd aryl to aryl migration/Miyaura borylation tandem reaction in fused systems. The Pd shift occurred in the bay region of the dibenzo[g,p]chrysene building blocks, giving rise to a thermodynamically controlled mixture of 1,8- and 1,9-borylated compounds that allowed the preparation of regioisomeric azaborole multihelicenes from the same starting material. The outcome of this synthesis can be controlled by the choice of reaction conditions, allowing the migration process to be turned off in the absence of an acetate additive and the target multiheterohelicenes to be prepared in a regioselective manner. The target compounds show bright green fluorescence in dichloromethane with emission quantum yields (Φ) of up to 0.29, |glum| values up to 2.7 × 10-3, and green or green-yellow emission in the solid state, reaching Φ of 0.22. Single crystal X-ray diffraction analyses gave insight into their molecular structures and the packing arrangement. Evaluation of aromaticity in these multihelicenes revealed a nonaromatic character of the 2H-1,2-azaborole constituent rings.
Collapse
Affiliation(s)
- Felix Full
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Albert Artigas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona (UdG), Facultat de Ciències, C/ Maria Aurèlia Capmany, 69, Girona, Catalunya 17003, Spain
| | - Kevin Wiegand
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Daniel Volland
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Klaudia Szkodzińska
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille 13397, France
| | - Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
19
|
Knöller JA, Müller F, Matulaitis T, Dos Santos JM, Gupta AK, Zysman-Colman E, Laschat S. MR-TADF liquid crystals: towards self assembling host-guest mixtures showing narrowband emission from the mesophase. Chem Sci 2024:d4sc04429k. [PMID: 39397824 PMCID: PMC11467995 DOI: 10.1039/d4sc04429k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Creating (room temperature) liquid crystalline TADF materials that retain the photophysical properties of the monomolecular TADF emitters remains a formidable challenge. The strong intramolecular interactions required for formation of a liquid crystal usually adversely affect the photophysical properties and balancing them is not yet possible. In this work, we present a novel host-guest approach enabling unperturbed, narrowband emission from an MR-TADF emissive core from strongly aggregated columnar hexagonal (Colh) liquid crystals. By modifying the DOBNA scaffold with mesogenic groups bearing alkoxy chains of different lengths, we created a library of Colh liquid crystals featuring phase ranges >100 K and room temperature mesomorphism. Expectedly, these exhibit broad excimer emission from their neat films, so we exploited their high singlet (S1 ∼2.9 eV) and triplet (T1 ∼2.5 eV) energies by doping them with the MR-TADF guest BCzBN. Upon excitation of the host, efficient Förster Resonance Energy Transfer (FRET) resulted in almost exclusive emission from BCzBN. The ability of the liquid crystallinity of the host to not be adversely affected by the presence of BCzBN is demonstrated as is the localization of the guest molecules within the aliphatic chain network of the host, resulting in extremely narrowband emission (FWHM = 14-15 nm). With this work we demonstrate a strategy for the self-assembly of materials with previously mutually incompatible properties in emissive liquid crystalline systems: strong aggregation in Colh mesophases, and narrowband emission from a MR-TADF core.
Collapse
Affiliation(s)
- Julius A Knöller
- Institute of Organic Chemistry, University of Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Franziska Müller
- Institute of Organic Chemistry, University of Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK +44 (0)1334 463808 +44 (0)1334 463826
| | - John M Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK +44 (0)1334 463808 +44 (0)1334 463826
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK +44 (0)1334 463808 +44 (0)1334 463826
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews St Andrews, Fife KY16 9ST UK +44 (0)1334 463808 +44 (0)1334 463826
| | - Sabine Laschat
- Institute of Organic Chemistry, University of Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
| |
Collapse
|
20
|
Schneider JS, Helten H. Hybrid materials comprising ferrocene and diaminoborane moieties: linear concatenation versus macrocyclization. Chem Commun (Camb) 2024; 60:11706-11709. [PMID: 39228359 DOI: 10.1039/d4cc03813d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Combination of borane and diaminoferrocene monomers by Si/B exchange condensation reactions afforded either diazabora-[3]ferrocenophanes or, via stepwise processes, larger macrocycles and a series of linear oligomers. Additional incorporation of p-phenylene moieties in the backbone yielded alternating concatenation.
Collapse
Affiliation(s)
- Johannes S Schneider
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074 Würzburg, Germany.
| | - Holger Helten
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
21
|
Bedogni M, Di Maiolo F. Singlet-Triplet Inversion in Triangular Boron Carbon Nitrides. J Chem Theory Comput 2024; 20:8634-8643. [PMID: 39264103 DOI: 10.1021/acs.jctc.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The discovery of singlet-triplet (ST) inversion in some π-conjugated triangle-shaped boron carbon nitrides is a remarkable breakthrough that defies Hund's first rule. Deeply rooted in strong electron-electron interactions, ST inversion has garnered significant interest due to its potential to revolutionize triplet harvesting in organic LEDs. Using the well-established Pariser-Parr-Pople model for correlated electrons in π-conjugated systems, we employ a combination of CISDT and restricted active space configuration interaction calculations to investigate the photophysics of several triangular boron carbon nitrides. Our findings reveal that ST inversion in these systems is primarily driven by a network of alternating electron-donor and electron-acceptor groups in the molecular rim, rather than by the triangular molecular structure itself.
Collapse
Affiliation(s)
- Matteo Bedogni
- Department of Chemistry, Life Science and Environmental Sustainability, Università di Parma, 43124 Parma, Italy
| | - Francesco Di Maiolo
- Department of Chemistry, Life Science and Environmental Sustainability, Università di Parma, 43124 Parma, Italy
| |
Collapse
|
22
|
Xu K, Li N, Ye Z, Guo Y, Wu Y, Gui C, Yin X, Miao J, Cao X, Yang C. High-performance deep-blue electroluminescence from multi-resonance TADF emitters with a spirofluorene-fused double boron framework. Chem Sci 2024:d4sc04835k. [PMID: 39416304 PMCID: PMC11474454 DOI: 10.1039/d4sc04835k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
The development of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials in the deep-blue region is highly desirable. A usual approach involves constructing an extended MR-TADF framework; however, it may also intensify aggregate-caused quenching issues and thereby reduce device efficiency. In this study, we develop a molecular design strategy that fuses the MR-TADF skeleton with 9,9'-spirobifluorene (SF) units to create advanced deep-blue emitters. The SF moiety facilitates high-yield one-shot bora-Friedel-Crafts reaction towards an extended skeleton and mitigates interchromophore interactions as a steric group. Our findings reveal that orbital interactions at the fusion site significantly influence the electronic structure, and optimizing the fusion mode allows for the development of emitters with extended conjugation length while maintaining non-bonding character. The proof-of-concept emitter exhibits narrowband emission in the deep-blue region, a near-unity photoluminescence quantum yield, and a fast k RISC of 2.4 × 105 s-1. These exceptional properties enable the corresponding sensitizer-free OLED to achieve a maximum external quantum efficiency (EQEmax) of 39.0% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.13, 0.09). Furthermore, the hyperfluorescence device realizes an EQEmax of 40.4% with very low efficiency roll-off.
Collapse
Affiliation(s)
- Ke Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Zeyuan Ye
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Yuxi Guo
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Yuxin Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Chenghao Gui
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| |
Collapse
|
23
|
Wu L, Mu X, Liu D, Li W, Li D, Zhang J, Liu C, Feng T, Wu Y, Li J, Su SJ, Ge Z. Regional Functionalization Molecular Design Strategy: A Key to Enhancing the Efficiency of Multi-Resonance OLEDs. Angew Chem Int Ed Engl 2024; 63:e202409580. [PMID: 38969620 DOI: 10.1002/anie.202409580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
Herein, we propose a regional functionalization molecular design strategy that enables independent control of distinct pivotal parameters through different molecule segments. Three novel multiple resonances thermally activated delayed fluorescence (MR-TADF) emitters A-BN, DA-BN, and A-DBN, have been successfully synthesized by integrating highly rigid and three-dimensional adamantane-containing spirofluorene units into the MR framework. These molecules form two distinctive functional parts: part 1 comprises a boron-nitrogen (BN)-MR framework with adjacent benzene and fluorene units forming a central luminescent core characterized by an exceptionally rigid planar geometry, allowing for narrow FWHM values; part 2 includes peripheral mesitylene, benzene, and adamantyl groups, creating a unique three-dimensional "umbrella-like" conformation to mitigate intermolecular interactions and suppress exciton annihilation. The resulting A-BN, DA-BN, and A-DBN exhibit remarkably narrow FWHM values ranging from 18 to 14 nm and near-unity photoluminescence quantum yields. Particularly, OLEDs based on DA-BN and A-DBN demonstrate outstanding efficiencies of 35.0 % and 34.3 %, with FWHM values as low as 22 nm and 25 nm, respectively, effectively accomplishing the integration of high color purity and high device performance.
Collapse
Affiliation(s)
- Lin Wu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049>, P. R. China
| | - Xilin Mu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049>, P. R. China
- Frontiers Science Center for Smart Materials, College of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640, Guangdong Province, P. R. China
| | - Wei Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049>, P. R. China
| | - Deli Li
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan, 250100, Shandong Province, P. R. China
| | - Jiashen Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049>, P. R. China
| | - Chunyu Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049>, P. R. China
- Frontiers Science Center for Smart Materials, College of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Tingting Feng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049>, P. R. China
| | - Yujie Wu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049>, P. R. China
| | - Jiuyan Li
- Frontiers Science Center for Smart Materials, College of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, 510640, Guangdong Province, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049>, P. R. China
| |
Collapse
|
24
|
Ban X, Cao Q, Zhang W, Bian W, Yang C, Wang J, Qian Y, Xu H, Tao C, Jiang W. Encapsulated TADF macrocycles for high-efficiency solution-processed and flexible organic light-emitting diodes. Chem Sci 2024:d4sc04487h. [PMID: 39309084 PMCID: PMC11409165 DOI: 10.1039/d4sc04487h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Macrocyclic thermally activated delayed fluorescence (TADF) emitters have been demonstrated to realize high efficiency OLEDs, but the design concept was still confined to rigid π-conjugated structures. In this work, two macrocyclic TADF emitters, Cy-BNFu and CyEn-BNFu, with a flexible alkyl chain as a linker and bulky aromatic hydrocarbon wrapping units were designed and synthesized. The detailed photophysical analysis demonstrates that the flexible linker significantly enhances the solution-processibility and flexibility of the parent TADF core without sacrificing the radiative transition and high PLQY. Moreover, benefiting from sufficient encapsulation of both horizontal and vertical space, the macrocyclic CyEn-BNFu further isolated the TADF core and inhibited the aggregation caused quenching, which benefits the utilization of triplet excitons. As a result, the non-doped solution-processed OLEDs based on CyEn-BNFu exhibit high maximum external quantum efficiencies (EQE) up to 32.3%, which were 3 times higher than those of the devices based on the parent molecule. In particular, these macrocyclic TADF emitters ensure the fabrication of flexible OLEDs with higher brightness, color purity and bending resistance. This work opens a way to construct macrocyclic TADF emitters with a flexible alkyl chain linker and highlights the benefits of such encapsulated macrocycles for optimizing the performance of flexible solution-processed devices.
Collapse
Affiliation(s)
- Xinxin Ban
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
- School of Chemistry and Chemical Engineering, Southeast University Nanjing Jiangsu China
| | - Qingpeng Cao
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Wenhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Wenzhong Bian
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Caixia Yang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Jiayi Wang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Youqiang Qian
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Hui Xu
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Chuanzhou Tao
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University Lianyungang Jiangsu China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Southeast University Nanjing Jiangsu China
| |
Collapse
|
25
|
Zarkina V, Nichol GS, Cowley MJ. Heavy Heterodendralenes: Structure and Reactivity of Phosphabora[3]dendralenes. J Am Chem Soc 2024; 146:23680-23685. [PMID: 39141774 PMCID: PMC11363017 DOI: 10.1021/jacs.4c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
The incorporation of phosphorus and boron into [3]dendralenes provides access to heavy heterodendralenes, a new class of main-group precursor to "doped" polycyclic hydrocarbons. [n]Dendralenes are a core class of unsaturated hydrocarbons built from geminally connected polyenes; the resulting arrangement of conjugated C═C bonds enables [n]dendralenes to undergo reactions that allow rapid access to complex polycyclic compounds. The increasing technological and synthetic importance of main-group-containing polycyclic hydrocarbons and their analogues makes new routes to access such systems highly attractive. Here we report the preparation of the first heavy heterodendralenes in the form of phosphorus- and boron-containing [3]dendralenes, prepared by a ring-opening reaction of a 1,2-phosphaborete. We reveal the electronic effect of P/B incorporation and demonstrate that, like their hydrocarbon analogues, phosphabora[3]dendralenes undergo diene-transmissive cycloaddition chemistry.
Collapse
Affiliation(s)
- Vesela
G. Zarkina
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Gary S. Nichol
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Michael J. Cowley
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
26
|
Yuan L, Xu JW, Yan ZP, Yang YF, Mao D, Hu JJ, Ni HX, Li CH, Zuo JL, Zheng YX. Tetraborated Intrinsically Axial Chiral Multi-resonance Thermally Activated Delayed Fluorescence Materials. Angew Chem Int Ed Engl 2024; 63:e202407277. [PMID: 38780892 DOI: 10.1002/anie.202407277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Chiral multi-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials hold promise for circularly polarized organic light-emitting diodes (CP-OLEDs) and 3D displays. Herein, we present two pairs of tetraborated intrinsically axial CP-MR-TADF materials, R/S-BDBF-BOH and R/S-BDBT-BOH, with conjugation-extended bidibenzo[b,d]furan and bidibenzo[b,d]thiophene as chiral sources, which effectively participate in the distribution of the frontier molecular orbitals. Due to the heavy-atom effect, sulfur atoms are introduced to accelerate the reverse intersystem crossing process and increase the efficiency of molecules. R/S-BDBF-BOH and R/S-BDBT-BOH manifest ultra-pure blue emission with a maximum at 458/459 nm with a full width at half maximum of 27 nm, photoluminescence quantum yields of 90 %/91 %, and dissymmetry factors (|gPL|) of 6.8×10-4/8.5×10-4, respectively. Correspondingly, the CP-OLEDs exhibit good performances with an external quantum efficiency of 30.1 % and |gEL| factors of 1.2×10-3.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Wei Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | | | - Yi-Fan Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Dan Mao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia-Jun Hu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hua-Xiu Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
27
|
Chen X, Sun L, Sukhanov AA, Doria S, Bussotti L, Zhao J, Xu H, Dick B, Voronkova VK, Di Donato M. Photophysics and photochemistry of thermally activated delayed fluorescence emitters based on the multiple resonance effect: transient optical and electron paramagnetic resonance studies. Chem Sci 2024; 15:10867-10881. [PMID: 39027280 PMCID: PMC11253189 DOI: 10.1039/d4sc02513j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
The photochemistry of two representative thermally activated delayed fluorescence (TADF) emitters based on the multiple resonance effect (MRE) (DABNA-1 and DtBuCzB) was studied. No significant TADF was observed in fluid solution, although the compounds have a long-lived triplet state (ca. 30 μs). We found that these planar boron molecules bind with Lewis bases, e.g., 4-dimethylaminopyridine (DMAP) or an N-heterocyclic carbene (NHC). A new blue-shifted absorption band centered at 368 nm was observed for DtBuCzB upon formation of the adduct; however, the fluorescence of the adduct is the same as that of the free DtBuCzB. We propose that photo-dissociation occurs for the DtBuCzB-DMAP adduct, which is confirmed by femtosecond transient absorption spectra, implying that fluorescence originates from DtBuCzB produced by photo-dissociation; the subsequent in situ re-binding was observed with nanosecdon transient absorption spectroscopy. No photo-dissociation was observed for the NHC adduct. Time-resolved electron paramagnetic resonance (TREPR) spectra show that the triplet states of DABNA-1 and DtBuCzB have similar zero field splitting (ZFS) parameters (D = 1450 MHz). Theoretical studies show that the slow ISC is due to small SOC and weak Herzberg-Teller coupling, although the S1/T1 energy gap is small (0.14 eV), which rationalizes the lack of TADF.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Lei Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453002 China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS Kazan 420029 Russia
| | - Sandra Doria
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
- ICCOM-CNR Via Madonna del Piano 10-12 50019 Sesto Fiorentino (FI) Italy
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Haijun Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453002 China
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg Regensburg 93053 Germany
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS Kazan 420029 Russia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy) Via N. Carrara 1 50019 Sesto Fiorentino (FI) Italy
- ICCOM-CNR Via Madonna del Piano 10-12 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
28
|
Mamada M, Aoyama A, Uchida R, Ochi J, Oda S, Kondo Y, Kondo M, Hatakeyama T. Efficient Deep-Blue Multiple-Resonance Emitters Based on Azepine-Decorated ν-DABNA for CIE y below 0.06. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402905. [PMID: 38695744 DOI: 10.1002/adma.202402905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Indexed: 05/23/2024]
Abstract
Ultrapure deep-blue emitters are in high demand for organic light-emitting diodes (OLEDs). Although color coordinates serve as straightforward parameters for assessing color purity, precise control over the maximum wavelength and full-width at half-maximum is necessary to optimize OLED performance, including luminance efficiency and luminous efficacy. Multiple-resonance (MR) emitters are promising candidates for achieving ideal luminescence properties; consequently, a wide variety of MR frameworks have been developed. However, most of these emitters experience a wavelength displacement from the ideal color, which limits their practical applicability. Therefore, a molecular design that is compatible with MR emitters for modulating their energy levels and color output is particularly valuable. Here, it is demonstrated that the azepine donor unit induces an appropriate blue-shift in the emission maximum while maintaining efficient MR characteristics, including high photoluminescence quantum yield, narrow emission, and a fast reverse intersystem crossing rate. OLEDs using newly developed MR emitters based on the ν-DABNA framework simultaneously exhibit a high quantum efficiency of ≈30%, luminous efficacy of ≈20 lm W-1, exceptional color purity with Commission Internationale de l'Éclairage coordinates as low as (0.14, 0.06), and notably high operational stability. These results demonstrate unprecedentedly high levels compared with those observed in previously reported deep-blue emitters.
Collapse
Affiliation(s)
- Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Akio Aoyama
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Ryota Uchida
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Susumu Oda
- Department of Applied Chemistry, Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan
| | - Yasuhiro Kondo
- SK JNC Japan Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Masakazu Kondo
- JNC Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
29
|
Zender E, Valverde D, Neubaur R, Karger S, Virovets A, Bolte M, Lerner HW, Olivier Y, Wagner M. Borylation and rearrangement reactions of azasilaanthracenes to afford B,N-doped nanographenes. Dalton Trans 2024; 53:9294-9300. [PMID: 38747255 DOI: 10.1039/d4dt01166j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
An air-stable B3,N3-containing dibenzobisanthene (8) was prepared in 29% yield by heating a 1,3,5-tri(azasilaanthryl)benzene (5) with BBr3 (180 °C). Under these conditions, the reaction does not stop after threefold SiMe2/BBr exchange but proceeds further via two rearrangement and two intramolecular C-H borylation steps. Some mechanistic details were unveiled by using smaller model systems and applying lower reaction temperatures. According to X-ray crystallography, compound 8 has a helically distorted scaffold. Due to its multiple resonance structure, it shows a narrow-band blue-green emission (λem = 493 nm; ΦPL = 84%; FWHM = 0.20 eV; THF); samples measured in PMMA gave prompt and delayed fluorescence lifetimes of 10.7 ns and 136 μs, respectively. The optical properties of 8 and of structurally related species were also investigated by quantum-chemical means: most of these compounds exhibit a small energy gap ΔEST between the lowest excited singlet (S1) and triplet (T1) states and a non-negligible spin-orbit coupling (SOC) between S1 and T1/T2, demonstrating their potential as thermally activated delayed fluorescence (TADF) emitters.
Collapse
Affiliation(s)
- Elena Zender
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany.
| | - Danillo Valverde
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium.
| | - Robert Neubaur
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany.
| | - Sebastian Karger
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany.
| | - Alexander Virovets
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany.
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany.
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany.
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium.
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany.
| |
Collapse
|
30
|
Huang X, Liu J, Xu Y, Chen G, Huang M, Yu M, Lv X, Yin X, Zou Y, Miao J, Cao X, Yang C. B‒N covalent bond-involved π-extension of multiple resonance emitters enables high-performance narrowband electroluminescence. Natl Sci Rev 2024; 11:nwae115. [PMID: 38707202 PMCID: PMC11067958 DOI: 10.1093/nsr/nwae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Multi-boron-embedded multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters show promise for achieving both high color-purity emission and high exciton utilization efficiency. However, their development is often impeded by a limited synthetic scope and excessive molecular weights, which challenge material acquisition and organic light-emitting diode (OLED) fabrication by vacuum deposition. Herein, we put forward a B‒N covalent bond-involved π-extension strategy via post-functionalization of MR frameworks, leading to the generation of high-order B/N-based motifs. The structurally and electronically extended π-system not only enhances molecular rigidity to narrow emission linewidth but also promotes reverse intersystem crossing to mitigate efficiency roll-off. As illustrated examples, ultra-narrowband sky-blue emitters (full-width at half-maximum as small as 8 nm in n-hexane) have been developed with multi-dimensional improvement in photophysical properties compared to their precursor emitters, which enables narrowband OLEDs with external quantum efficiencies (EQEmax) of up to 42.6%, in company with alleviated efficiency decline at high brightness, representing the best efficiency reported for single-host OLEDs. The success of these emitters highlights the effectiveness of our molecular design strategy for advanced MR-TADF emitters and confirms their extensive potential in high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Xingyu Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiahui Liu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yulin Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingxin Yu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
31
|
Tang X, Tsagaantsooj T, Rajakaruna TPB, Wang K, Chen XK, Zhang XH, Hatakeyama T, Adachi C. Stable pure-green organic light-emitting diodes toward Rec.2020 standard. Nat Commun 2024; 15:4394. [PMID: 38782957 PMCID: PMC11116534 DOI: 10.1038/s41467-024-48659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Manipulating dynamic behaviours of charge carriers and excitons in organic light-emitting diodes (OLEDs) is essential to simultaneously achieve high colour purity and superior operational lifetime. In this work, a comprehensive transient electroluminescence investigation reveals that incorporating a thermally activated delayed fluorescence assistant molecule with a deep lowest unoccupied molecular orbital into a bipolar host matrix effectively traps the injected electrons. Meanwhile, the behaviours of hole injection and transport are still dominantly governed by host molecules. Thus, the recombination zone notably shifts toward the interface between the emissive layer (EML) and the electron-transporting layer (ETL). To mitigate the interfacial carrier accumulation and exciton quenching, this bipolar host matrix could serve as a non-barrier functional spacer between EML/ETL, enabling the distribution of recombination zone away from this interface. Consequently, the optimized OLED exhibits a low driving voltage, promising device stability (95% of the initial luminance of 1000 cd m-2, LT95 > 430 h), and a high Commission Internationale de L'Éclairage y coordinate of 0.69. This indicates that managing the excitons through rational energy level alignment holds the potential for simultaneously satisfying Rec.2020 standard and achieving commercial-level stability.
Collapse
Affiliation(s)
- Xun Tang
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Tuul Tsagaantsooj
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tharindu P B Rajakaruna
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Xian-Kai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
32
|
Wu L, Huang Z, Miao J, Wang S, Li X, Li N, Cao X, Yang C. Orienting Group Directed Cascade Borylation for Efficient One-Shot Synthesis of 1,4-BN-Doped Polycyclic Aromatic Hydrocarbons as Narrowband Organic Emitters. Angew Chem Int Ed Engl 2024; 63:e202402020. [PMID: 38385590 DOI: 10.1002/anie.202402020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
1,4-BN-doped polycyclic aromatic hydrocarbons (PAHs) have emerged as very promising emitters in organic light-emitting diodes (OLEDs) due to their narrowband emission spectra that may find application in high-definition displays. While considerable research has focused on investigating the properties of these materials, less attention has been placed on their synthetic methodology. Here we developed an efficient synthetic method for 1,4-BN-doped PAHs, which enables sustainable production of narrowband organic emitting materials. By strategically introducing substituents, such as methyl, tert-butyl, phenyl, and chloride, at the C5 position of the 1,3-benzenediamine substrates, we achieved remarkable regioselective borylation in the para-position of the substituted moiety. This approach facilitated the synthesis of a diverse range of 1,4-BN-doped PAHs emitters with good yields and exceptional regioselectivity. The synthetic method demonstrated excellent scalability for large-scale production and enabled late-stage transformation of the borylated products. Mechanistic investigations provided valuable insights into the pivotal roles of electron effect and steric hindrance effect in achieving highly efficient regioselective borylation. Moreover, the outstanding device performance of the synthesized compounds 10 b and 6 z, underscores the practicality and significance of the developed method.
Collapse
Affiliation(s)
- Lin Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physical and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shuni Wang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xinyao Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. of China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
33
|
Situ Z, Li X, Gao H, Zhang J, Li Y, Zhao F, Kong J, Zhao H, Zhou M, Wang Y, Kuang Z, Xia A. Accelerating Intersystem Crossing in Multiresonance Thermally Activated Delayed Fluorescence Emitters via Long-Range Charge Transfer. J Phys Chem Lett 2024; 15:4197-4205. [PMID: 38598694 DOI: 10.1021/acs.jpclett.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Multiresonance thermally activated delayed fluorescence (MR-TADF) emitters are excellent candidates for high-performance organic light-emitting diodes (OLEDs) due to their narrowband emission properties. However, the inherent mechanism of regulating the rate of intersystem crossing (ISC) is ambiguous in certain MR-TADF skeletons. Herein, we propose a mechanism of accelerating ISC in B/S-based MR-TADF emitters by peripheral modifications of electron-donating groups (EDGs) without affecting the narrowband emission property. The long-range charge transfer (LRCT) stems from the introduced EDG leading to high-lying singlet and triplet excited states. The ISC process is accelerated by the enhanced spin-orbital coupling (SOC) between the singlet short-range charge transfer (SRCT) and triplet LRCT manifolds. Meanwhile, the narrowband emission derived from the MR-type SRCT state is well retained as expected in the peripherally modified MR-TADF emitters. This work reveals the regulation mechanism of photophysical properties by high-lying LRCT excited states and provides a significant theoretical basis for modulating the rate of ISC in the further design of MR-TADF materials.
Collapse
Affiliation(s)
- Zicong Situ
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Xingqing Li
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Honglei Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Zhang
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Yang Li
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Fangming Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongmei Zhao
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ying Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoran Kuang
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Andong Xia
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| |
Collapse
|
34
|
Ochi J, Yamasaki Y, Tanaka K, Kondo Y, Isayama K, Oda S, Kondo M, Hatakeyama T. Highly efficient multi-resonance thermally activated delayed fluorescence material toward a BT.2020 deep-blue emitter. Nat Commun 2024; 15:2361. [PMID: 38565868 PMCID: PMC10987657 DOI: 10.1038/s41467-024-46619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
An ultrapure deep-blue multi-resonance-induced thermally activated delayed fluorescence material (DOB2-DABNA-A) is designed and synthesized. Benefiting from a fully resonating extended helical π-conjugated system, this compound has a small ΔEST value of 3.6 meV and sufficient spin-orbit coupling to exhibit a high-rate constant for reverse intersystem crossing (kRISC = 1.1 × 106 s-1). Furthermore, an organic light-emitting diode employing DOB2-DABNA-A as an emitter is fabricated; it exhibits ultrapure deep-blue emission at 452 nm with a small full width at half maximum of 24 nm, corresponding to Commission Internationale de l'Éclairage (CIE) coordinates of (0.145, 0.049). The high kRISC value reduces the efficiency roll-off, resulting in a high external quantum efficiency (EQE) of 21.6% at 1000 cd m-2.
Collapse
Affiliation(s)
- Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuki Yamasaki
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Kojiro Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasuhiro Kondo
- SK JNC Japan Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Kohei Isayama
- SK JNC Japan Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Susumu Oda
- Department of Applied Chemistry, Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan
| | - Masakazu Kondo
- JNC Co., Ltd., 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
35
|
Mamada M, Hayakawa M, Ochi J, Hatakeyama T. Organoboron-based multiple-resonance emitters: synthesis, structure-property correlations, and prospects. Chem Soc Rev 2024; 53:1624-1692. [PMID: 38168795 DOI: 10.1039/d3cs00837a] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Boron-based multiple-resonance (MR) emitters exhibit the advantages of narrowband emission, high absolute photoluminescence quantum yield, thermally activated delayed fluorescence (TADF), and sufficient stability during the operation of organic light-emitting diodes (OLEDs). Thus, such MR emitters have been widely applied as blue emitters in triplet-triplet-annihilation-driven fluorescent devices used in smartphones and televisions. Moreover, they hold great promise as TADF or terminal emitters in TADF-assisted fluorescence or phosphor-sensitised fluorescent OLEDs. Herein we comprehensively review organoboron-based MR emitters based on their synthetic strategies, clarify structure-photophysical property correlations, and provide design guidelines and future development prospects.
Collapse
Affiliation(s)
- Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
36
|
Zender E, Karger S, Neubaur R, Virovets A, Lerner HW, Wagner M. Green-Emitting Extended B 3,N 2-Doped Polycyclic Aromatic Hydrocarbon with Multiple Resonance Structure. Org Lett 2024; 26:939-944. [PMID: 38266241 DOI: 10.1021/acs.orglett.3c04283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
An air-stable B3,N2-PAH (B3N2; nine annulated six-membered rings) was synthesized from 1-X-2,6-di(azasilaanthryl)benzenes (X = Cl, I) via lithiation/borylation, electrophilic aromatic borylation, and Si/B exchange. The heteroatom distribution in B3N2 meets the requirements for multiple resonance thermally activated delayed fluorescence (MR-TADF). Indeed, B3N2 emits green light (λem = 523 nm; ΦPL = 85%; CHCl3) with a small fwhm of 0.15 eV. Lifetimes for prompt (7.8 ns) and delayed (60 μs) fluorescence were measured in PMMA.
Collapse
Affiliation(s)
- Elena Zender
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany
| | - Sebastian Karger
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany
| | - Robert Neubaur
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany
| | - Alexander Virovets
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany
| |
Collapse
|
37
|
Luo XF, Xiao X, Zheng YX. Recent progress in multi-resonance thermally activated delayed fluorescence emitters with an efficient reverse intersystem crossing process. Chem Commun (Camb) 2024; 60:1089-1099. [PMID: 38175168 DOI: 10.1039/d3cc05460h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters have become an active research topic at the forefront of organic light-emitting diodes (OLEDs) owing to their excellent photophysical properties such as high efficiency and narrow emission characteristics. However, MR-TADF materials always exhibit slow reverse intersystem crossing rates (kRISC) due to the large energy gap and small spin-orbit coupling values between singlet and triplet excited states. In order to optimize the RISC process, strategies such as heavy-atom-integration, metal perturbation, π-conjugation extension and peripheral decoration of donor/acceptor units have been proposed to construct efficient MR-TADF materials for high-performance OLEDs. This article provides an overview of the recent progress in MR-TADF emitters with an efficient RISC process, focusing on the structure-activity relationship between the molecular structure, optoelectronic feature, and OLED performance. Finally, the potential challenges and future prospects of MR-TADF materials are discussed to gain a more comprehensive understanding of the opportunities for efficient narrowband OLEDs.
Collapse
Affiliation(s)
- Xu-Feng Luo
- College of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, P. R. China.
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.
| | - Xunwen Xiao
- College of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, P. R. China.
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.
| |
Collapse
|
38
|
Bedogni M, Giavazzi D, Di Maiolo F, Painelli A. Shining Light on Inverted Singlet-Triplet Emitters. J Chem Theory Comput 2024; 20:902-913. [PMID: 37992126 PMCID: PMC10809715 DOI: 10.1021/acs.jctc.3c01112] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
The inversion of the lowest singlet and triplet excited states, observed in several triangle-shaped organic molecules containing conjugated carbon and nitrogen atoms, is an astonishing result that implies the breakdown of Hund's rule. The phenomenon attracted interest for its potential toward triplet harvesting in organic LEDs. On a more fundamental vein, the singlet-triplet (ST) inversion sheds new light on the role of electron correlations in the excited-state landscape of π-conjugated molecules. Relying on the celebrated Pariser-Parr-Pople model, the simplest model for correlated electrons in π-conjugated systems, we demonstrate that the ST inversion does not require triangle-shaped molecules nor any specific molecular symmetry. Indeed, the ST inversion does not require strictly non-overlapping HOMO and LUMO orbitals but rather a small gap and a small exchange integral between the frontier orbitals.
Collapse
Affiliation(s)
- Matteo Bedogni
- Department of Chemistry, Life Science
and Environmental Sustainability, Università
di Parma, 43124 Parma, Italy
| | - Davide Giavazzi
- Department of Chemistry, Life Science
and Environmental Sustainability, Università
di Parma, 43124 Parma, Italy
| | - Francesco Di Maiolo
- Department of Chemistry, Life Science
and Environmental Sustainability, Università
di Parma, 43124 Parma, Italy
| | - Anna Painelli
- Department of Chemistry, Life Science
and Environmental Sustainability, Università
di Parma, 43124 Parma, Italy
| |
Collapse
|
39
|
Ye Z, Wu H, Xu Y, Hua T, Chen G, Chen Z, Yin X, Huang M, Xu K, Song X, Huang Z, Lv X, Miao J, Cao X, Yang C. Deep-Blue Narrowband Hetero[6]helicenes Showing Circularly Polarized Thermally Activated Delayed Fluorescence Toward High-Performance OLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308314. [PMID: 37963185 DOI: 10.1002/adma.202308314] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Indexed: 11/16/2023]
Abstract
Helicenes exhibit substantial potential as circularly polarized luminescence (CPL) active molecules. However, their application in circularly polarized organic light-emitting diodes (CP-OLEDs) is typically hindered by the challenge of integrating both high color purity and efficient triplet-harvesting capability, particularly in the blue spectral region. Herein, a series of hetero[6]helicene-based emitters that is strategically engineered through the helical extension of a deep-blue double-boron-based multiple resonance thermally activated delayed fluorescence (MR-TADF) motif, is introduced. Importantly, the helical extension does not cause apparent structural deformation or perturb frontier molecular orbitals; thus, preserving the deep-blue emission and MR-TADF characteristics of the parent molecule. This approach also leads to reduced reorganization energy, resulting in emitters with narrower linewidth and higher photoluminescence quantum yield. Further, the helical motif enhances the racemization barrier and leads to improved CPL performance with luminescence dissymmetry factor values up to 1.5 × 10-3 . Exploiting these merits, devices incorporating the chiral dopants demonstrate deep-blue emission within the Broadcast Service Television 2020 color-gamut range, record external quantum efficiencies (EQEs) up to 29.3%, and have distinctive circularly polarized electroluminescence (CPEL) signals. Overall, the authors' findings underscore the helical extension as a promising strategy for designing narrowband chiroptical materials and advancing high-definition displays.
Collapse
Affiliation(s)
- Zeyuan Ye
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Han Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yulin Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tao Hua
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ke Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiufang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
40
|
Jing YY, Yang Y, Li N, Ye Z, Wang X, Cao X, Yang C. Indolo[3,2-b]indole-based multi-resonance emitters for efficient narrowband pure-green organic light-emitting diodes. LUMINESCENCE 2024; 39:e4624. [PMID: 37950413 DOI: 10.1002/bio.4624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Organic light-emitting diodes (OLEDs) utilizing multi-resonance (MR) emitters show great potential in ultrahigh-definition display benefitting from superior merits of MR emitters such as high color purity and photoluminescence quantum yields. However, the scarcity of narrowband pure-green MR emitters with novel backbones and facile synthesis has limited their further development. Herein, two novel pure-green MR emitters (IDIDBN and tBuIDIDBN) are demonstrated via replacing the carbazole subunits in the bluish-green BCzBN skeleton with new polycyclic aromatic hydrocarbon (PAH) units, 5-phenyl-5,10-dihydroindolo[3,2-b]indole (IDID) and 5-(4-(tert-butyl)phenyl)-5,10-dihydroindolo[3,2-b]indole (tBuIDID), to simultaneously enlarge the π-conjugation and enhance the electron-donating strength. Consequently, a successful red shift from aquamarine to pure-green is realized for IDIDBN and tBuIDIDBN with photoluminescence maxima peaking at 529 and 532 nm, along with Commission Internationale de l'Eclairage (CIE) coordinates of (0.25, 0.71) and (0.28, 0.70). Furthermore, both emitters revealed narrowband emission with small full width at half-maximum (FWHM) below 28 nm. Notably, the narrowband pure-green emission was effectively preserved in corresponding devices, which afford elevated maximum external quantum efficiencies of 16.3% and 18.3% for IDIDBN and tBuIDIDBN.
Collapse
Affiliation(s)
- Yan-Yun Jing
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, China
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Yiyu Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Zeyuan Ye
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Xinzhong Wang
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
41
|
Fan T, Zhu S, Cao X, Liang X, Du M, Zhang Y, Liu R, Zhang D, Duan L. Tailored Design of π-Extended Multi-Resonance Organoboron using Indolo[3,2-b]Indole as a Multi-Nitrogen Bridge. Angew Chem Int Ed Engl 2023; 62:e202313254. [PMID: 37806966 DOI: 10.1002/anie.202313254] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Extending the π-skeletons of multi-resonance (MR) organoboron emitters can feasibly modulate their optoelectronic properties. Here, we first adopt the indolo[3,2-b]indole (32bID) segment as a multi-nitrogen bridge and develop a high-efficiency π-extended narrowband green emitter. This moiety establishes not only a high-yield one-shot multiple Bora-Friedel-Crafts reaction towards a π-extended MR skeleton, but a compact N-ethylene-N motif for a red-shifted narrowband emission. An emission peak at 524 nm, a small full width at half maximum of 25 nm and a high photoluminescence quantum yield of 96 % are concurrently obtained in dilute toluene. The extended molecular plane also results in a large horizontal emitting dipole orientation ratio of 87 %. A maximum external quantum efficiency (EQE) of 36.6 % and a maximum power efficiency of 135.2 lm/W are thereafter recorded for the corresponding device, also allowing a low efficiency roll-off with EQEs of 34.5 % and 28.1 % at luminance of 1,000 cd/m2 and 10,000 cd/m2 , respectively.
Collapse
Affiliation(s)
- Tianjiao Fan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Senqiang Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816, Nanjing, China
| | - Xudong Cao
- Jiangsu Sunera Technology Co., Ltd, 214112, Wuxi, China
| | - Xiao Liang
- Jiangsu Sunera Technology Co., Ltd, 214112, Wuxi, China
| | - Mingxu Du
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Rui Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816, Nanjing, China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
42
|
Meng G, Zhou J, Huang T, Dai H, Li X, Jia X, Wang L, Zhang D, Duan L. B-N/B-O Contained Heterocycles as Fusion Locker in Multi-Resonance Frameworks towards Highly-efficient and Stable Ultra-Narrowband Emission. Angew Chem Int Ed Engl 2023; 62:e202309923. [PMID: 37584379 DOI: 10.1002/anie.202309923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
Fusing condensed aromatics into multi-resonance (MR) frameworks has been an exquisite strategy to modulate the optoelectronic properties, which, however, always sacrifices the small full width at half maxima (FWHM). Herein, we strategically embed B-N/B-O contained heterocycles as fusion locker into classical MR prototypes, which could enlarge the π-extension and alleviate the steric repulsion for an enhanced planar skeleton to suppress the high-frequency stretching/ scissoring vibrations for ultra-narrowband emissions. Sky-blue emitters with extremely small FWHMs of 17-18 nm are thereafter obtained for the targeted emitters, decreased by (1.4-1.9)-fold compared with the prototypes. Benefiting from their high photoluminescence quantum yields of >90 % and fast radiative decay rates of >108 s-1 , one of those emitters shows a high maximum external quantum efficiency of 31.9 % in sensitized devices, which remains 25.8 % at a practical luminance of 1,000 cd m-2 with a small FWHM of merely 19 nm. Notably a long operation half-lifetime of 1,278 h is also recorded for the same device, representing one of the longest lifetimes among sky-blue devices based on MR emitters.
Collapse
Affiliation(s)
- Guoyun Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianping Zhou
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianyu Huang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hengyi Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiao Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoqin Jia
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lu Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|