1
|
Lv L, Liu Y, Cao C, Li Y, Tang Z, Liu J. Composite bioreactor for synergistic Modulation of tumor microenvironment and endogenous Regulation of ROS generation to enhance chemodynamic therapy for lung cancer. J Colloid Interface Sci 2025; 683:918-929. [PMID: 39755016 DOI: 10.1016/j.jcis.2024.12.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
The tumor microenvironment (TME) is characterized by several key features, including hypoxia, elevated levels of hydrogen peroxide (H2O2), high concentrations of glutathione (GSH), and an acidic pH. Recent research has increasingly focused on harnessing or targeting these characteristics for effective cancer therapy. In this study, we developed an innovative composite bio-reactor that integrates genetically engineered bacteria with upconversion nanoparticles (UCNPs) and nano-copper manganese materials for lung cancer treatment. The nano-copper manganese materials function as catalysts in Fenton-like reactions, facilitating the decomposition of hydrogen peroxide into harmful hydroxyl radicals and oxygen, which can effectively target tumors and reduce hypoxia. To circumvent the challenge of insufficient endogenous hydrogen peroxide during treatment, we employed UCNPs capable of converting near-infrared laser irradiation, known for its deep tissue penetration, into visible light. This conversion activates the genetically engineered bacteria to generate exogenous hydrogen peroxide directly within the tumor microenvironment, enabling prolonged therapeutic effects. Our findings suggest that this composite bio-reactor can achieve effective lung cancer therapy without the need for external hydrogen peroxide supplementation, representing a significant advancement in the design of targeted cancer treatments.
Collapse
Affiliation(s)
- Longhao Lv
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China
| | - Yong Liu
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Oncology, XuZhou Central Hospital, Xuzhou, Jiangsu 221000, China
| | - Chengsong Cao
- Department of Oncology, XuZhou Central Hospital, Xuzhou, Jiangsu 221000, China; Department of Oncology, Xuzhou Institute of Medical Sciences, Xuzhou, Jiangsu 221000, China
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China
| | - Zhengshuai Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China.
| |
Collapse
|
2
|
Liu X, Tu L, Li F, Huang D, Ågren H, Chen G. Unravelling Size-Dependent Upconversion Luminescence in Ytterbium and Erbium Codoped NaYF 4 Nanocrystals. J Am Chem Soc 2025; 147:5955-5961. [PMID: 39918403 DOI: 10.1021/jacs.4c15683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The size of the lanthanide upconversion nanocrystals significantly impacts their luminescence properties, yet the underlying mechanisms remain unclear. In this work, we undertake a systematic examination of the size effects in the commonly studied hexagonal phase sodium yttrium fluoride (β-NaYF4) nanocrystals codoped with ytterbium and erbium ions and their core-shell structure. We demonstrate the coexistence of surface quenching and finite-size-dependent energy transfer mechanisms, quantify the effects of size-dependent surface quenching and finite-size-dependent energy transfer, and determine an interaction energy transfer distance limit of ∼8.8 nm. A proposed theoretical model for the interplay between the two underlying mechanisms is shown to predict the experimental observations of size-dependent upconversion luminescence. Our findings provide a clear and fundamental understanding of the size effects on lanthanide upconversion luminescence at the nanoscale, thereby giving important implications for a variety of applications ranging from bioimaging and nanothermometry.
Collapse
Affiliation(s)
- Xingxu Liu
- School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures Ministry of Education, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Langping Tu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Feng Li
- School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures Ministry of Education, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dingxin Huang
- School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures Ministry of Education, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Hans Ågren
- School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures Ministry of Education, Harbin Institute of Technology, Harbin 150001, P. R. China
- Division of X-ray Photon Science, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala 75120, Sweden
| | - Guanying Chen
- School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures Ministry of Education, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
3
|
Meng X, Shen T, Zhang W, Luo R, Zhou J, Liao R, Zhao R, Cao C. Energy Aggregation for Illuminating Upconversion Multicolor Emission Based on Ho 3+ Ions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8191-8197. [PMID: 39835810 DOI: 10.1021/acsami.4c18871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Lanthanide-doped upconversion luminescent nanoparticles (UCNPs) have garnered extensive attention due to their notable anti-Stokes shifts and superior photostability. Notably, Ho3+-based UCNPs present a complex energy level configuration, which poses challenges in augmenting their luminescence efficiency. Herein, a rational design strategy was used to enhance the upconversion luminescence intensity of Ho3+ ions by improving the photon absorption ability and energy utilization efficiency. Efficient absorption and transfer of excitation light energy were achieved through carefully selected host materials, precisely controlled sensitizers, and the design of external energy antennas using organic dyes, enhancing upconversion luminescence. Due to the attenuation effect of hydroxyl vibration on upconversion luminescence, the nanomaterials exhibit multicolor luminescent characteristics in different solution environments. Significantly, the composites exhibit intense upconversion of red light in aqueous solution, showing great application potential in biomedicine and colorimetry.
Collapse
Affiliation(s)
- Xiaoyu Meng
- School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
| | - Tao Shen
- School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenbo Zhang
- School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ran Luo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Jiangjie Zhou
- School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruotong Liao
- School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruibo Zhao
- School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
| | - Cong Cao
- School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
| |
Collapse
|
4
|
Wang Y, Xu W, Liu H, Jing Y, Zhou D, Ji Y, Widengren J, Bai X, Song H. A multiband NIR upconversion core-shell design for enhanced light harvesting of silicon solar cells. LIGHT, SCIENCE & APPLICATIONS 2024; 13:312. [PMID: 39582022 PMCID: PMC11586394 DOI: 10.1038/s41377-024-01661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 11/26/2024]
Abstract
Exploring lanthanide light upconversion (UC) has emerged as a promising strategy to enhance the near-infrared (NIR) responsive region of silicon solar cells (SSCs). However, its practical application under normal sunlight conditions has been hindered by the narrow NIR excitation bandwidth and the low UC efficiency of conventional materials. Here, we report the design of an efficient multiband UC system based on Ln3+/Yb3+-doped core-shell upconversion nanoparticles (Ln/Yb-UCNPs, Ln3+ = Ho3+, Er3+, Tm3+). In our design, Ln3+ ions are incorporated into distinct layers of Ln/Yb-UCNPs to function as near-infrared (NIR) absorbers across different spectral ranges. This design achieves broad multiband absorption withtin the 1100 to 2200 nm range, with an aggregated bandwidth of ~500 nm. We have identified a synthetic electron pumping (SEP) effect involving Yb3+ ions, facilitated by the synergistic interplay of energy transfer and cross-relaxation between Yb3+ and other ions Ln3+ (Ho3+, Er3+, Tm3+). This SEP effect enhances the UC efficiency of the nanomaterials by effectively transferring electrons from the low-excited states of Ln3+ to the excited state of Yb3+, resulting in intense Yb3+ luminescence at ~980 nm within the optimal response region for SSCs, thus markedly improving their overall performance. The SSCs integrated with Ln/Yb-UCNPs with multiband excitation demonstrate the largest reported NIR response range up to 2200 nm, while enabling the highest improvement in absolute photovoltaic efficiency reported, with an increase of 0.87% (resulting in a total efficiency of 19.37%) under standard AM 1.5 G irradiation. Our work tackles the bottlenecks in UCNP-coupled SSCs and introduces a viable approach to extend the NIR response of SSCs.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.
| | - Haichun Liu
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Yuhan Jing
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
| | - Donglei Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China
| | - Yanan Ji
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China
| | - Jerker Widengren
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China
| | - Hongwei Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012, Changchun, China.
| |
Collapse
|
5
|
Wang Q, Hu J, Ying Y, Wang P, Lin F, Guo Y, Huang Y, Ji K, Yang X, Li S, Liu X, Zhu H. Sodium Assists Controlled Synthesis of Cubic Rare-Earth Oxyfluorides Nanocrystals for Information Encryption and Near-Infrared-IIb Bioimaging. ACS NANO 2024; 18:29978-29990. [PMID: 39415510 PMCID: PMC11688664 DOI: 10.1021/acsnano.4c10697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Rare-earth oxyfluoride (REOF) colloidal nanocrystals (NCs) suffer from a low photoluminescence efficiency due to their small size with poor crystallinity and a detrimental surface quenching effect. Herein, we introduce an innovative approach that involves doping sodium ions into REOF NCs to produce monodisperse, size-controllable, well-crystallized, and highly luminescent colloidal REOF core/shell NCs. The Na+ doping allows for successfully synthesizing the cubic REOF NCs with a tunable size from 6 to 30 nm. Further fabrication of the core/shell NCs doped with Na+ results in enhancements up to 1062 (Ho3+), 1140 (Er3+), and 2212 (Tm3+) folds in upconversion luminescence and 17.7 folds (Er3+) in downconversion luminescence compared to that of core/shell NCs without doping Na+ ions. These NCs were subsequently developed into multicolor luminescent inks, demonstrating significant potential application for information security, and used for near-infrared-IIb (NIR-IIb) (1500-1700 nm) in vivo imaging, which exhibits a high-resolution in vivo dynamic imaging capability with a signal-to-noise ratio of 5.28. These results present the way to the controlled synthesis of efficient luminescent cubic LuOF: RE3+/LuOF core/shell NCs, expanding the toolkit of rare-earth doped NCs in diverse applications such as advanced encoding encryption, varied fluorescence imaging, and biomedicine.
Collapse
Affiliation(s)
- Qinglai Wang
- College
of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, People’s
Republic of China
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, People’s
Republic of China
- Xiamen
Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen
Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
| | - Jie Hu
- College
of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, People’s
Republic of China
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, People’s
Republic of China
- Xiamen
Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen
Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
| | - Yunfei Ying
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, People’s
Republic of China
- Xiamen
Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen
Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
| | - Peiyuan Wang
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, People’s
Republic of China
- Xiamen
Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen
Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
- The
United Innovation of Mengchao Hepatobiliary Technology Key Laboratory
of Fujian Province, Mengchao Hepatobiliary
Hospital of Fujian Medical University, Fuzhou 350025, People’s Republic of China
| | - Fulin Lin
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, People’s
Republic of China
- Xiamen
Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen
Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
| | - Yongwei Guo
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, People’s
Republic of China
- Xiamen
Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen
Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
- Aveiro
Institute of Materials, Department of Physics, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | - Yingping Huang
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, People’s
Republic of China
- Xiamen
Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen
Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
- College
of
Chemistry and Materials Science, Fujian
Normal University, Fuzhou 350007, People’s
Republic of China
| | - Kaixin Ji
- College
of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, People’s
Republic of China
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, People’s
Republic of China
- Xiamen
Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen
Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
| | - Xing Yang
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, People’s
Republic of China
- Xiamen
Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen
Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
| | - Siyaqi Li
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, People’s
Republic of China
- Xiamen
Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen
Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
| | - Xiaolong Liu
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, People’s
Republic of China
- Xiamen
Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen
Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
- The
United Innovation of Mengchao Hepatobiliary Technology Key Laboratory
of Fujian Province, Mengchao Hepatobiliary
Hospital of Fujian Medical University, Fuzhou 350025, People’s Republic of China
| | - Haomiao Zhu
- College
of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, People’s
Republic of China
- CAS
Key Laboratory of Design and Assembly of Functional Nanostructures,
and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, People’s
Republic of China
- Xiamen
Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen
Research Center of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
| |
Collapse
|
6
|
Arteaga Cardona F, Madirov E, Popescu R, Wang D, Busko D, Ectors D, Kübel C, Eggeler YM, Arús BA, Chmyrov A, Bruns OT, Richards BS, Hudry D. Dramatic Impact of Materials Combinations on the Chemical Organization of Core-Shell Nanocrystals: Boosting the Tm 3+ Emission above 1600 nm. ACS NANO 2024. [PMID: 39264287 DOI: 10.1021/acsnano.4c07932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This article represents the first foray into investigating the consequences of various material combinations on the short-wave infrared (SWIR, 1000-2000 nm) performance of Tm-based core-shell nanocrystals (NCs) above 1600 nm. In total, six different material combinations involving two different types of SWIR-emitting core NCs (α-NaTmF4 and LiTmF4) combined with three different protecting shell materials (α-NaYF4, CaF2, and LiYF4) have been synthesized. All corresponding homo- and heterostructured NCs have been meticulously characterized by powder X-ray diffraction and electron microscopy techniques. The latter revealed that out of the six investigated combinations, only one led to the formation of a true core-shell structure with well-segregated core and shell domains. The direct correlation between the downshifting performance and the spatial localization of Tm3+ ions within the final homo- and heterostructured NCs is established. Interestingly, to achieve the best SWIR performance, the formation of an abrupt interface is not a prerequisite, while the existence of a pure (even thin) protective shell is vital. Remarkably, although all homo- and heterostructured NCs have been synthesized under the exact same experimental conditions, Tm3+ SWIR emission is either fully quenched or highly efficient depending on the type of material combination. The most efficient combination (LiTmF4/LiYF4) achieved a high photoluminescence quantum yield of 39% for SWIR emission above 1600 nm (excitation power density in the range 0.5-3 W/cm2) despite significant intermixing. From now on, highly efficient SWIR-emitting probes with an emission above 1600 nm are within reach to unlock the full potential of in vivo SWIR imaging.
Collapse
Affiliation(s)
- Fernando Arteaga Cardona
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Eduard Madirov
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Radian Popescu
- Karlsruhe Institute of Technology, Laboratory for Electron Microscopy, Karlsruhe 76131, Germany
| | - Di Wang
- Karlsruhe Institute of Technology, Institute of Nanotechnology and Karlsruhe Nano Micro Facility, Eggenstein-Leopoldshafen 76344, Germany
| | - Dmitry Busko
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Eggenstein-Leopoldshafen 76344, Germany
| | | | - Christian Kübel
- Karlsruhe Institute of Technology, Institute of Nanotechnology and Karlsruhe Nano Micro Facility, Eggenstein-Leopoldshafen 76344, Germany
| | - Yolita M Eggeler
- Karlsruhe Institute of Technology, Laboratory for Electron Microscopy, Karlsruhe 76131, Germany
| | - Bernardo A Arús
- Department of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden 01307, Germany
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology (TUD), Dresden 01062, Germany
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg 85764, Germany
| | - Andriy Chmyrov
- Department of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden 01307, Germany
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology (TUD), Dresden 01062, Germany
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg 85764, Germany
| | - Oliver T Bruns
- Department of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden 01307, Germany
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology (TUD), Dresden 01062, Germany
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg 85764, Germany
| | - Bryce S Richards
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Eggenstein-Leopoldshafen 76344, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Damien Hudry
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
7
|
Zhou Z, Liu Y, Guo L, Wang T, Yan X, Wei S, Qiu D, Chen D, Zhang X, Ju H. Core-Shell Interface Engineering Strategies for Modulating Energy Transfer in Rare Earth-Doped Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1326. [PMID: 39195364 DOI: 10.3390/nano14161326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Rare earth-doped nanoparticles (RENPs) are promising biomaterials with substantial potential in biomedical applications. Their multilayered core-shell structure design allows for more diverse uses, such as orthogonal excitation. However, the typical synthesis strategies-one-pot successive layer-by-layer (LBL) method and seed-assisted (SA) method-for creating multilayered RENPs show notable differences in spectral performance. To clarify this issue, a thorough comparative analysis of the elemental distribution and spectral characteristics of RENPs synthesized by these two strategies was conducted. The SA strategy, which avoids the partial mixing stage of shell and core precursors inherent in the LBL strategy, produces RENPs with a distinct interface in elemental distribution. This unique elemental distribution reduces unnecessary energy loss via energy transfer between heterogeneous elements in different shell layers. Consequently, the synthesis method choice can effectively modulate the spectral properties of RENPs. This discovery has been applied to the design of orthogonal RENP biomedical probes with appropriate dimensions, where the SA strategy introduces a refined inert interface to prevent unnecessary energy loss. Notably, this strategy has exhibited a 4.3-fold enhancement in NIR-II in vivo imaging and a 2.1-fold increase in reactive oxygen species (ROS)-related photodynamic therapy (PDT) orthogonal applications.
Collapse
Affiliation(s)
- Zhaoxi Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lichao Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tian Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinrong Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Zhao Q, Tian X, Ren L, Su Y, Su Q. Understanding of Lanthanide-Doped Core-Shell Structure at the Nanoscale Level. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1063. [PMID: 38921939 PMCID: PMC11206442 DOI: 10.3390/nano14121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
The groundbreaking development of lanthanide-doped core-shell nanostructures have successfully achieved precise optical tuning of rare-earth nanocrystals, leading to significant improvements in energy transfer efficiency and facilitating multifunctional integration. Exploring the atomic-level structural, physical, and optical properties of rare-earth core-shell nanocrystals is essential for advancing our understanding of their fundamental principles and driving the development of emerging applications. However, our knowledge of the atomic-level structural details of rare-earth nanocrystal core-shell structures remains limited. This review provides a comprehensive discussion of synthesis strategies, characterization techniques, interfacial ion-mixing phenomena, strain effects, and spectral modulation in core-shell structures of rare-earth-doped nanocrystals. Additionally, we prospectively discuss the challenges encountered in studying the fine structures of rare-earth-doped core-shell nanocrystals, particularly the increasing demand for researchers to integrate interdisciplinary knowledge and utilize high-end precision instruments.
Collapse
Affiliation(s)
- Qing Zhao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xinle Tian
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Langtao Ren
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yan Su
- Genome Institute of Singapore, Agency of Science Technology and Research, Singapore 138672, Singapore
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Li H, Zhao K, Liu X, Zhan S, Nie G, Peng L. Efficient monodisperse upconversion composite prepared using high-density local field and its dual-mode temperature sensing. Phys Chem Chem Phys 2024; 26:7398-7406. [PMID: 38351847 DOI: 10.1039/d3cp05792e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Enhanced upconversion via plasmonics has considerable potential in biosensors and solar cells; however, conventional plasmonic configurations such as core-shell assemblies or nanoarray platforms still suffer from the compromise between the enhancement factor and monodispersity, which has failed to meet the requirement of the materials for the in vivo all-solution-prepared solar cells and biosensors. We herein report a monodisperse metal-dielectric-metal (MDM) type upconverted hybrid material with high efficiency. The lanthanide-doped upconversion nanoparticles (UCNPs) were sandwiched by two gold nanodisk mirrors, and the highly localized excitation field around the UCNPs together with the efficient coupling enhanced the upconversion. The upconversion intensity can then be effectively regulated and improved by three to four orders of magnitude. As per the measurement of the temperature-dependent fluorescence intensity and spectra shift, a dual-mode nanothermometer based on our proposed hybrid materials was demonstrated. This MDM-type upconverted hybrid material demonstrated the merits of high efficiency and monodispersity, which demonstrated promise in in vivo biosensors and solar cell fabrication techniques such as spin-coating and roll-to-roll.
Collapse
Affiliation(s)
- Huilin Li
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, China
- Hunan Province Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, China
| | - Kai Zhao
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xiaoyan Liu
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shiping Zhan
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, 528000, China.
| | - Guozheng Nie
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, China
- Hunan Province Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, China
| | - Liang Peng
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, China
- Hunan Province Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, Xiangtan 411201, China
| |
Collapse
|
10
|
Lei L, Yi M, Wang Y, Hua Y, Zhang J, Prasad PN, Xu S. Dual heterogeneous interfaces enhance X-ray excited persistent luminescence for low-dose 3D imaging. Nat Commun 2024; 15:1140. [PMID: 38326310 PMCID: PMC10850100 DOI: 10.1038/s41467-024-45390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Lanthanide-doped fluoride nanoparticles (NPs) showcase adjustable X-ray-excited persistent luminescence (XEPL), holding significant promise for applications in three-dimensional (3D) imaging through the creation of flexible X-ray detectors. However, a dangerous high X-ray irradiation dose rate and complicated heating procedure are required to generate efficient XEPL for high-resolution 3D imaging, which is attributed to a lack of strategies to significantly enhance the XEPL intensity. Here we report that the XEPL intensity of a series of lanthanide activators (Dy, Pr, Er, Tm, Gd, Tb) is greatly improved by constructing dual heterogeneous interfaces in a double-shell nanostructure. Mechanistic studies indicate that the employed core@shell@shell structure could not only passivate the surface quenchers to lower the non-radiative relaxation possibility, but also reduce the interfacial Frenkel defect formation energy leading to increase the trap concentration. By employing a NPs containing flexible film as the scintillation screen, the inside 3D electrical structure of a watch was clearly achieved based on the delayed XEPL imaging and 3D reconstruction procedure. We foresee that these findings will promote the development of advanced X-ray activated persistent fluoride NPs and offer opportunities for safer and more efficient X-ray imaging techniques in a number of scientific and practical areas.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China.
| | - Minghao Yi
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Yubin Wang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Youjie Hua
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Junjie Zhang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Shiqing Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China.
| |
Collapse
|