1
|
Wu J, Cao K. Advances in the selective functionalization of B(3,6)-H of o-carboranes. Org Biomol Chem 2025; 23:3701-3711. [PMID: 40130546 DOI: 10.1039/d4ob01778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This review summarizes the methodologies for the selective functionalization of the B(3,6) vertices of o-carboranes, including the deboration-capitation reaction, the coupling reaction of B-X (X = I, Br) bonds, reactions of 1,3-dehydro-o-carborane and [3-N2-o-C2B10H11][BF4] as well as transition-metal-catalyzed B-H activation. These works offer a versatile toolbox for synthesizing B(3,6)-substituted o-carborane derivatives and will promote their applications in material science, pharmaceutical chemistry, and related disciplines.
Collapse
Affiliation(s)
- Ji Wu
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
- Department of Oncology, Sichuan Science City Hospital, Mianyang, Sichuan, 621000, P. R. China
| |
Collapse
|
2
|
Chang JR, Cao HJ, Ma YN, Chen X. Palladium-Catalyzed Cross-Coupling Reactions of Carboranes with Alkenes via Selective B-H Bond Activation. Org Lett 2025; 27:1858-1863. [PMID: 39960023 DOI: 10.1021/acs.orglett.5c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A palladium-catalyzed Heck-type cross-coupling reaction of carboranes with alkenes in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) was realized. This reaction shows good B(9) selectivity for m-carboranes and is also suitable for o- and p-carborane. Meanwhile, a series of mono-, di-, and trisubstituted alkenes were compatible substrates to afford the alkenylated products in 16-89% yields. The 1,2-bis(carboranyl)ethylene was first synthesized by the reaction of vinyltrimethylsilane and m-carborane. Further transformations of the C═C bond in the product were examined by hydroboration oxidation, oxidation, hydroboration, and bromination reaction to generate corresponding B(9)-functionalized m-carboranes.
Collapse
Affiliation(s)
- Jia-Rui Chang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hou-Ji Cao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan-Na Ma
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
3
|
Li N, Zhang J, Xie X, Wang K, Qi D, Liu J, Lan YQ, Jiang J. 3D N-heterocyclic covalent organic frameworks for urea photosynthesis from NH 3 and CO 2. Nat Commun 2025; 16:1106. [PMID: 39875391 PMCID: PMC11775333 DOI: 10.1038/s41467-025-56307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Artificial photosynthesis of urea from NH3 and CO2 seems to remain still essentially unexplored. Herein, three isomorphic three-dimensional covalent organic frameworks with twofold interpenetrated ffc topology are functionalized by benzene, pyrazine, and tetrazine active moieties, respectively. A series of experiment results disclose the gradually enhanced conductivity, light-harvesting capacity, photogenerated carrier separation efficiency, and co-adsorption capacity towards NH3 and CO2 in the order of benzene-, pyrazine-, and tetrazine-containing framework. This in turn endows tetrazine-containing framework with superior photocatalytic activity towards urea production from NH3 and CO2 with the yield of 523 μmol g-1 h-1, 40 and 4 times higher than that for benzene- and pyrazine-containing framework, respectively, indicating the heterocyclic N microenvironment-dependent catalytic performance for these three photocatalysts. This is further confirmed by in-situ spectroscopic characterization and density functional theory calculations. This work lays a way towards sustainable photosynthesis of urea.
Collapse
Affiliation(s)
- Ning Li
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jiale Zhang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiangdong Xie
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, China
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Jiang Liu
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
4
|
Wang B, Zhu Z, Liang MJ, Ren YK, Xue JB, Zhang JY, Qi F, Xiao XQ. A 12-Vertex Metallacarborane of Silver(I). Inorg Chem 2024; 63:5481-5486. [PMID: 38446017 DOI: 10.1021/acs.inorgchem.3c04329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The discovery of ferrocene in 1951 was a significant landmark in the field of organometallic chemistry, and since then, numerous sandwich- or half-sandwich metallic complexes have been reported. However, silver stands as an intriguing exception in this regard, and knowledge of its bonding situation has remained undisclosed. Herein, unprecedented 12-vertex metallacarboranes of Ag(I) (2a and 2b) were synthesized through the reaction of sodium hexamethyldisilazide (NaHMDS) with the mixture of nido-C2B9 carborane anion-supported N-heterocyclic carbene precursors (1a and 1b) and [Ag(PPh3)Cl]4. The X-ray structural analysis of the resulting metallacarboranes revealed a unique "slipped" half-sandwich structure, which is a rarity among cyclopentadienyl analogues. DFT calculations provided insights into the asymmetric π-interactions between the pentagonal C2B3 face and the silver ion.
Collapse
Affiliation(s)
- Beining Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318 Yuhangtang Rd., Hangzhou, Zhejiang 311121, China
| | - Zhouli Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318 Yuhangtang Rd., Hangzhou, Zhejiang 311121, China
| | - Mei-Juan Liang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318 Yuhangtang Rd., Hangzhou, Zhejiang 311121, China
| | - Yun-Kang Ren
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318 Yuhangtang Rd., Hangzhou, Zhejiang 311121, China
| | - Jin-Bian Xue
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318 Yuhangtang Rd., Hangzhou, Zhejiang 311121, China
| | - Jia-Ying Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318 Yuhangtang Rd., Hangzhou, Zhejiang 311121, China
| | - Fan Qi
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318 Yuhangtang Rd., Hangzhou, Zhejiang 311121, China
| | - Xu-Qiong Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318 Yuhangtang Rd., Hangzhou, Zhejiang 311121, China
| |
Collapse
|
5
|
Chen F, Guo W, Ma YN, Chen X. 9,9'-Bis- o-carboranes: synthesis and exploration of properties. Chem Commun (Camb) 2024; 60:614-617. [PMID: 38100063 DOI: 10.1039/d3cc05041f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A highly efficient Pd-catalyzed B(9)-H/B(9)-H oxidative dehydrogenation coupling of carboranes to synthesize 9,9'-bis-o-carboranes has been developed. The properties and derivatization of 9,9'-bis-o-carborane were also examined, which provided diverse bis-o-carborane derivatives and bis-nido-carborane.
Collapse
Affiliation(s)
- Feijing Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wenjing Guo
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yan-Na Ma
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xuenian Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Semyonov DK, Stogniy MY, Anufriev SA, Timofeev SV, Suponitsky KY, Sivaev IB. Nickel(II) and Palladium(II) Complexes with η 5:κ 1( N)-Coordinated Dicarbollide Ligands Containing Pendant Pyridine Group. Int J Mol Sci 2023; 24:15069. [PMID: 37894752 PMCID: PMC10606403 DOI: 10.3390/ijms242015069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
A series of C- and B-substituted nido-carborane derivatives with a pendant pyridyl group was prepared. The synthesized compounds were used as ligands in the complexation reactions with bis(triphenylphosphine)nickel(II) and palladium(II) chlorides to give six new metallacomplexes with unusual η5:κ1(N)-coordination of the metal center. The single crystal structures of 1-(NC5H4-2'-S)-1,2-C2B10H11, 1-(NC5H4-2'-CH2S)-1,2-C2B10H11, Cs [7-(NC5H4-2'-CH2S)-7,8-C2B9H11] closo- and nido-carboranes and 3-Ph3P-3-(4(7)-NC5H4-2'-S)-closo-3,1,2-NiC2B9H10 and 3-Ph3P-3-(4(7)-NC5H4-2'-CH2S)-closo-3,1,2-NiC2B9H10 metallacarboranes were determined using single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Dmitriy K. Semyonov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (D.K.S.); (S.A.A.); (S.V.T.); (K.Y.S.); (I.B.S.)
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Russian Technological University, 86 Vernadsky Av., 119571 Moscow, Russia
| | - Marina Yu. Stogniy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (D.K.S.); (S.A.A.); (S.V.T.); (K.Y.S.); (I.B.S.)
| | - Sergey A. Anufriev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (D.K.S.); (S.A.A.); (S.V.T.); (K.Y.S.); (I.B.S.)
| | - Sergey V. Timofeev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (D.K.S.); (S.A.A.); (S.V.T.); (K.Y.S.); (I.B.S.)
| | - Kyrill Yu. Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (D.K.S.); (S.A.A.); (S.V.T.); (K.Y.S.); (I.B.S.)
- Basic Department of Chemistry of Innovative Materials and Technologies, G.V. Plekhanov Russian University of Economics, 36 Stremyannyi Line, 117997 Moscow, Russia
| | - Igor B. Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (D.K.S.); (S.A.A.); (S.V.T.); (K.Y.S.); (I.B.S.)
| |
Collapse
|