1
|
Shi YX, Zhu L, Doan HS, Deng Y, Mo X, Wang Y, Tse ECM, Au-Yeung HY. A Copper(I) Catenane Decorated Metal-Organic Layer as a Heterogenous Catalyst for Dehydrogenative Cross-Coupling. Chemistry 2025:e202500866. [PMID: 40241498 DOI: 10.1002/chem.202500866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
While earth-abundant metals are green and sustainable alternatives to precious metals for catalytic chemical conversions, the fast ligand exchange involving most of the base metals renders their development into robust, reusable catalysts very challenging. Described in this work is a new type of heterogeneous catalyst derived from a 2D metal-organic layer (MOL) grafted with catenane-coordinated Cu(I) complexes. In addition to the good substrate accessibility, easy functionalization, and other favorable features due to the MOL support, the mechanical bond in the anchored catenane ligands also represents a new mechanism to dynamically confine the coordination environment and kinetically stabilize the coordinated Cu(I) to give a well-defined, active yet stable heterogeneous catalyst. Pilot catalytic studies using a model dehydrogenative C─O cross-coupling reaction showed that the Cu(I) catenane-grafted MOL led to exclusive formation of the C─O coupled product, whereas control catalysis using a similar Cu(I) catalyst supported by non-interlocked macrocyclic ligands was found to also give a C─C coupled by-product, whose formation was found to be mediated by the uncontrolled oxidation of the Cu(I) to Cu(II), highlighting the distinctive roles and untapped potential of the catenane coordination in developing base metal-derived catalysts for challenging catalytic conditions.
Collapse
Affiliation(s)
- Yi-Xiang Shi
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Lihui Zhu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Hoai Son Doan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Xiaoyong Mo
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Edmund C M Tse
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
2
|
Chen H, Guo G, Li Q, Liu Z. Designing a microbial factory suited for plant chloroplast-derived enzymes to efficiently and green synthesize natural products: Capsanthin and capsorubin as examples. Metab Eng 2025; 88:215-227. [PMID: 39826674 DOI: 10.1016/j.ymben.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Specific cellular microenvironment, multi-enzyme complex and expensive essential cofactor make the biological manufacturing of plant chloroplast natural products (PCNPs) extremely challenging. The above difficulties have hampered the biosynthesis of capsanthin and capsorubin in the past 30 years. Here, we take capsanthin and capsorubin as examples to design an innovative microbial factory to promote the heterologous synthesis of PCPNs. Our main strategy is mimicking the microenvironment of chloroplasts in microbial factory. First, accumulation of violaxanthin, which is the key precursor, was increased by 587.9%, through introducing oxidative microenvironment and thioredoxin. The initial capsanthin-producing strain with 0.28 mg g-1 DCW were obtained by introducing capsanthin/capsorubin synthase (CCS). Subsequently, chloroplast-derived chaperones Cpn60α, Cpn60β and Cpn20 created a folding-promoting microenvironment for CCS. At the same time, by imitating the quasi-natural CCS, an artificial homotrimer was constructed and obtained 5.15 mg g-1 DCW capsanthin, and 1.62 mg g-1 DCW capsorubin. Finally, sufficient FADH2 was provided for CCS by feeding 20 mM formate. This process was realized by the continuous catalysis of formate dehydrogenase and flavin reductase. The engineered strain accumulated 6.77 mg g-1 DCW of capsanthin and 2.18 mg g-1 DCW of capsorubin. Compared with the initial strain, the yield of capsanthin was increased by 24.18 times, and 13.54 times of the highest yield reported so far. Artificially designed microbial cell factory and low-cost cofactor supply methods are in line with the current sustainable and green wave of biochemicals. This work not only provides a platform strain for low-cost and sustainable biosynthesis, but also provides a paradigm for heterologous expression of chloroplast-derived enzymes.
Collapse
Affiliation(s)
- Huibin Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Guiping Guo
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Qiaoyue Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China
| | - Zhen Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China.
| |
Collapse
|
3
|
Chen J, Wang G, Dong Y, Ji J, Li L, Xue M, Zhang X, Cheng HM. Controlling the Polarity of Metal-Organic Frameworks to Promote Electrochemical CO 2 Reduction. Angew Chem Int Ed Engl 2025; 64:e202416367. [PMID: 39392381 DOI: 10.1002/anie.202416367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
The addition of polar functional groups to porous structures is an effective strategy for increasing the ability of metal-organic frameworks (MOFs) to capture CO2 by enhancing interactions between the dipoles of the polar functional groups and the quadrupoles of CO2. However, the potential of MOFs with polar functional groups to activate CO2 has not been investigated in the context of CO2 electrolysis. In this study, we report a mixed-ligand strategy to incorporate various functional groups in the MOFs. We found that substituents with strong polarity led to increased catalytic performance of electrochemical CO2 reduction for these polarized MOFs. Both experimental and theoretical evidence indicates that the presence of polar functional groups induces a charge redistribution in the micropores of MOFs. We have shown that higher electron densities of sp2-carbon atoms in benzimidazolate ligands reduces the energy barrier to generate *COOH, which is simultaneously controlled by the mass transfer of CO2. Our research offers an effective method of disrupting local electron neutrality in the pores of electrocatalysts/supports to activate CO2 under electrochemical conditions.
Collapse
Affiliation(s)
- Junnan Chen
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
| | - Guangming Wang
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
| | - Yingjun Dong
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
| | - Jiapeng Ji
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
| | - Linbo Li
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
| | - Ming Xue
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| | - Xiaolong Zhang
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
| | - Hui-Ming Cheng
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, P. R. China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| |
Collapse
|
4
|
Zhang G, Li Y, Du G, Lu J, Wang Q, Wu K, Zhang S, Chen HY, Zhang Y, Xue HG, Shakouri M, Liu Z, Pang H. Spiral-Concave Prussian Blue Crystals with Rich Steps: Growth Mechanism and Coordination Regulation. Angew Chem Int Ed Engl 2025; 64:e202414650. [PMID: 39206502 DOI: 10.1002/anie.202414650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Investigating the formation and transformation mechanisms of spiral-concave crystals holds significant potential for advancing innovative material design and comprehension. We examined the kinetics-controlled nucleation and growth mechanisms of Prussian Blue crystals with spiral concave structures, and constructed a detailed crystal growth phase diagram. The spiral-concave hexacyanoferrate (SC-HCF) crystals, characterized by high-density surface steps and a low stress-strain architecture, exhibit enhanced activity due to their facile interaction with reactants. Notably, the coordination environment of SC-HCF can be precisely modulated by the introduction of diverse metals. Utilizing X-ray absorption fine structure spectroscopy and in situ ultraviolet-visible spectroscopy, we elucidated the formation mechanism of SC-HCF to Co-HCF facilitated by oriented adsorption-ion exchange (OA-IE) process. Both experimental data, and density functional theory confirm that Co-HCF possesses an optimized energy band structure, capable of adjusting the local electronic environment and enhancing the performance of the oxygen evolution reaction. This work not only elucidates the formation mechanism and coordination regulation for rich steps HCF, but also offers a novel perspective for constructing nanocrystals with intricate spiral-concave structures.
Collapse
Affiliation(s)
- Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou, Jiangsu, 225002, P. R. China
| | - Yong Li
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou, Jiangsu, 225002, P. R. China
| | - Guangyu Du
- Department of Applied Physics, The Hong Kong Polytechnic University Hung Hom, Kowloon, 999077, Hong Kong
| | - Jingqi Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Qiujing Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou, Jiangsu, 225002, P. R. China
| | - Ke Wu
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou, Jiangsu, 225002, P. R. China
| | - Songtao Zhang
- Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Huai-Guo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou, Jiangsu, 225002, P. R. China
| | - Mohsen Shakouri
- Canadian Light Source, University of Saskatchewan Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Zheng Liu
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou, Jiangsu, 225002, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
5
|
Wu W, Xu L, Lu Q, Sun J, Xu Z, Song C, Yu JC, Wang Y. Addressing the Carbonate Issue: Electrocatalysts for Acidic CO 2 Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312894. [PMID: 38722084 PMCID: PMC11733726 DOI: 10.1002/adma.202312894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) powered by renewable energy provides a promising route to CO2 conversion and utilization. However, the widely used neutral/alkaline electrolyte consumes a large amount of CO2 to produce (bi)carbonate byproducts, leading to significant challenges at the device level, thereby impeding the further deployment of this reaction. Conducting CO2RR in acidic electrolytes offers a promising solution to address the "carbonate issue"; however, it presents inherent difficulties due to the competitive hydrogen evolution reaction, necessitating concerted efforts toward advanced catalyst and electrode designs to achieve high selectivity and activity. This review encompasses recent developments of acidic CO2RR, from mechanism elucidation to catalyst design and device engineering. This review begins by discussing the mechanistic understanding of the reaction pathway, laying the foundation for catalyst design in acidic CO2RR. Subsequently, an in-depth analysis of recent advancements in acidic CO2RR catalysts is provided, highlighting heterogeneous catalysts, surface immobilized molecular catalysts, and catalyst surface enhancement. Furthermore, the progress made in device-level applications is summarized, aiming to develop high-performance acidic CO2RR systems. Finally, the existing challenges and future directions in the design of acidic CO2RR catalysts are outlined, emphasizing the need for improved selectivity, activity, stability, and scalability.
Collapse
Affiliation(s)
- Weixing Wu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Liangpang Xu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Qian Lu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Jiping Sun
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Zhanyou Xu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Chunshan Song
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Jimmy C. Yu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Ying Wang
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| |
Collapse
|
6
|
Zhao R, Luo H, Ouyang T, Liu ZQ. Boosting Formate Production in Electrocatalytic CO 2 Reduction on Bimetallic Catalysts Enriched with In-Zn Interfaces. ACS NANO 2024; 18:35749-35757. [PMID: 39693565 DOI: 10.1021/acsnano.4c15927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
We present an effective strategy for developing the dispersing strong-binding metal In on the surface of weak-binding metal Zn, which modulates the binding energy of the reaction intermediates and further facilitates the efficient conversion of CO2 to formate. The In-Zn interface (In-Zn2) benefits from the formation of active sites through favorable orbital interactions, leading to a Faradaic efficiency of 82.7% and a formate partial current density of 12.39 mA cm-2, along with stable performance for over 15 h at -1.0 V versus the reversible hydrogen electrode. Both in situ Fourier transform infrared spectroscopy and density functional theory calculations show that the In-Zn bimetallic catalyst can deliver superior binding energy to the *OCHO intermediate, thereby fundamentally accelerating the conversion of CO2 to formate. In addition, the exposed bimetallic interface promotes efficient capture and activation of CO2 molecules and the dynamics within the In-Zn catalyst significantly reduce the energy barrier associated with the generation of HCOO-, thus augmenting the selectivity and catalytic activity for formate generation.
Collapse
Affiliation(s)
- Rui Zhao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Huihua Luo
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
7
|
Yu J, Xiao J, Guo L, Xie Z, Wang K, Wang Y, Hao F, Ma Y, Zhou J, Lu P, Wang G, Meng X, Zhu Z, Li Q, Ling C, Sun J, Wang Y, Song S, Fan Z. In Situ Phase Transformation-Enabled Metal-Organic Frameworks for Efficient CO 2 Electroreduction to Multicarbon Products in Strong Acidic Media. ACS NANO 2024; 18:33602-33613. [PMID: 39574319 DOI: 10.1021/acsnano.4c12245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) has been acknowledged as a promising strategy to relieve carbon emissions by converting CO2 to essential chemicals. Despite significant progresses that have been made in neutral and alkaline media, the implementation of CO2RR in acidic conditions remains challenging due to the harsh conditions, especially in producing high-value multicarbon products. Here, we report that Cu-btca (btca = benzotriazole-5-carboxylic acid) metal-organic framework (MOF) nanostructures can act as a stable catalyst for the CO2RR in an acidic environment. The Cu-btca MOF undergoes phase transformation and morphology evolution during electrolysis, forming a stable porous Cu-btca MOF network. The resultant MOF network exhibits excellent selectivity toward ethylene and multicarbon products with Faradaic efficiencies of 51.2% and 81.9%, respectively, in a strong acidic electrolyte with a flow cell at 300 mA/cm2. Mechanism studies uncover that the Cu-btca MOF network can limit the proton reduction to suppress hydrogen evolution and maintain high local *CO concentration to promote CO2RR. Theoretical calculations suggest that two adjacent Cu sites in the Cu-btca MOF provide a favorable microenvironment for carbon-carbon coupling, facilitating the multicarbon production. This work reveals that rational structure control of MOFs can enable highly selective and efficient CO2 electroreduction to multicarbon products in strong acidic conditions toward practical applications.
Collapse
Affiliation(s)
- Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Juan Xiao
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Liang Guo
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Zezhong Xie
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Kun Wang
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Qiang Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Jingying Sun
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Wang
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuqin Song
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
8
|
Peramaiah K, Yi M, Dutta I, Chatterjee S, Zhang H, Lai Z, Huang KW. Catalyst Design and Engineering for CO 2-to-Formic Acid Electrosynthesis for a Low-Carbon Economy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404980. [PMID: 39394824 DOI: 10.1002/adma.202404980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/19/2024] [Indexed: 10/14/2024]
Abstract
Formic acid (FA) has emerged as a promising candidate for hydrogen energy storage due to its favorable properties such as low toxicity, low flammability, and high volumetric hydrogen storage capacity under ambient conditions. Recent analyses have suggested that FA produced by electrochemical carbon dioxide (CO2) reduction reaction (eCO2RR) using low-carbon electricity exhibits lower fugitive hydrogen (H2) emissions and global warming potential (GWP) during the H2 carrier production, storage and transportation processes compared to those of other alternatives like methanol, methylcyclohexane, and ammonia. eCO2RR to FA can enable industrially relevant current densities without the need for high pressures, high temperatures, or auxiliary hydrogen sources. However, the widespread implementation of eCO2RR to FA is hindered by the requirement for highly stable and selective catalysts. Herein, the aim is to explore and evaluate the potential of catalyst engineering in designing stable and selective nanostructured catalysts that can facilitate economically viable production of FA.
Collapse
Affiliation(s)
- Karthik Peramaiah
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Moyu Yi
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Indranil Dutta
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sudipta Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science - Pilani, K K Birla Goa Campus, NH-17B, Zuarinagar, Goa, 403726, India
| | - Huabin Zhang
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Zhiping Lai
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Institute of Sustainability for Chemicals, Energy, and Environment, Agency for Science, Technology, and Research, 1 Pesek Rd, Singapore, 627833, Singapore
| |
Collapse
|
9
|
Qin Z, Wang L, Chen L, Li Y, Shen K. Differential Activation of Alkynes between Capped and Naked Ag Nanoclusters Anchored by Highly-Open Mesoporous CeO 2 for Two Coupling Reactions with CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403517. [PMID: 39045902 DOI: 10.1002/smll.202403517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Indexed: 07/25/2024]
Abstract
The cyclization of 3-hydroxy alkynes and the carboxylation of terminal alkynes both with CO2 are two attractive strategies to simultaneously reduce CO2 emission and produce value-added chemicals. Herein, the differential activation of alkynes over atomically precise Ag nanoclusters (NCs) supported on Metal-organic framework-derived highly-open mesoporous CeO2 (HM-CeO2) by reserving or removing their surface captopril ligands is reported. The ligand-capped Ag NCs possess electron-rich Ag atoms as efficient π-activation catalytic sites in cyclization reactions, while the naked Ag NCs possess partial positive-charged Ag atoms as perfect σ-activation catalytic sites in carboxylation reactions. Impressively, via coupling with HM-CeO2 featuring abundant basic sites and quick mass transfer, the ligand-capped Ag NCs afford 97.9% yield of 4,4-dimethyl-5-methylidene-1,3-dioxolan-2-one for the cyclization of 2-methyl-3-butyn-2-ol with CO2, which is 4.5 times that of the naked Ag NCs (21.7%), while the naked Ag NCs achieve 98.5% yield of n-butyl 2-alkynoate for the carboxylation of phenylacetylene with CO2, which is 15.6 times that of ligand-capped Ag NCs (6.3%). Density functional theory calculations reveal the ligand-capped Ag NCs can effectively activate alkynyl carbonate ions for the intramolecular ring closing in cyclization reaction, while the naked Ag NCs are highly affiliative in stabilizing terminal alkynyl anions for the insertion of CO2 in carboxylation reaction.
Collapse
Affiliation(s)
- Ze Qin
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Li Wang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liyu Chen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kui Shen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
10
|
Zhang C, Lin Z, Jiao L, Jiang HL. Metal-Organic Frameworks for Electrocatalytic CO 2 Reduction: From Catalytic Site Design to Microenvironment Modulation. Angew Chem Int Ed Engl 2024:e202414506. [PMID: 39214860 DOI: 10.1002/anie.202414506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The electrochemical reduction of CO2 to high-value carbon-based chemicals provides a sustainable approach to achieving an artificial carbon cycle. In the decade, metal-organic frameworks (MOFs), a kind of porous crystalline porous materials featuring well-defined structures, large surface area, high porosity, diverse components, easy tailorability, and controllable morphology, have attracted considerable research attention, serving as electrocatalysts to drive CO2 reduction. In this review, the reaction mechanisms of electrochemical CO2 reduction and the structure/component advantages of MOFs meeting the requirements of electrocatalysts for CO2 reduction are analyzed. After that, the representative progress for the precise fabrication of MOF-based electrocatalysts for CO2 reduction, focusing on catalytic site design and microenvironment modulation, are systemically summarized. Furthermore, the emerging applications and promising research for more practical scenarios related to electrochemical CO2 conversion are specifically proposed. Finally, the remaining challenges and future outlook of MOFs for electrochemical CO2 reduction are further discussed.
Collapse
Affiliation(s)
- Chengming Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Long Jiao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
11
|
Yang K, Li M, Gao T, Xu G, Li D, Zheng Y, Li Q, Duan J. An acid-tolerant metal-organic framework for industrial CO 2 electrolysis using a proton exchange membrane. Nat Commun 2024; 15:7060. [PMID: 39152107 PMCID: PMC11329766 DOI: 10.1038/s41467-024-51475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Industrial CO2 electrolysis via electrochemical CO2 reduction has achieved progress in alkaline solutions, while the same reaction in acidic solution remains challenging because of severe hydrogen evolution side reactions, acid corrosion, and low target product selectivity. Herein, an industrial acidic CO2 electrolysis to pure HCOOH system is realized in a proton-exchange-membrane electrolyzer using an acid-tolerant Bi-based metal-organic framework guided by a Pourbaix diagram. Significantly, the Faradaic efficiency of HCOOH synthesis reaches 95.10% at a large current density of 400 mA/cm2 with a high CO2 single-pass conversion efficiency of 64.91%. Moreover, the proton-exchange-membrane device also achieves an industrial-level current density of 250 mA/cm2 under a relatively low voltage of 3.5 V for up to 100 h with a Faradaic efficiency of 93.5% for HCOOH production, which corresponds to an energy consumption of 200.65 kWh/kmol, production rate of 12.1 mmol/m2/s, and an energy conversion efficiency of 38.2%. These results will greatly aid the contemporary research moving toward commercial implementation and success of CO2 electrolysis technology.
Collapse
Affiliation(s)
- Kang Yang
- MIIT Key Lab Thermal Control Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Ming Li
- MIIT Key Lab Thermal Control Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Tianqi Gao
- MIIT Key Lab Thermal Control Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Guoliang Xu
- MIIT Key Lab Thermal Control Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Di Li
- MIIT Key Lab Thermal Control Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Qiang Li
- MIIT Key Lab Thermal Control Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China.
| | - Jingjing Duan
- MIIT Key Lab Thermal Control Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China.
| |
Collapse
|
12
|
Jiang Z, Ren S, Cao X, Fan Q, Yu R, Yang J, Mao J. pH-Universal Electrocatalytic CO 2 Reduction with Ampere-Level Current Density on Doping-Engineered Bismuth Sulfide. Angew Chem Int Ed Engl 2024; 63:e202408412. [PMID: 38801019 DOI: 10.1002/anie.202408412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/25/2024] [Accepted: 05/25/2024] [Indexed: 05/29/2024]
Abstract
The practical application of the electrocatalytic CO2 reduction reaction (CO2RR) to form formic acid fuel is hindered by the limited activation of CO2 molecules and the lack of universal feasibility across different pH levels. Herein, we report a doping-engineered bismuth sulfide pre-catalyst (BiS-1) that S is partially retained after electrochemical reconstruction into metallic Bi for CO2RR to formate/formic acid with ultrahigh performance across a wide pH range. The best BiS-1 maintains a Faraday efficiency (FE) of ~95 % at 2000 mA cm-2 in a flow cell under neutral and alkaline solutions. Furthermore, the BiS-1 catalyst shows unprecedentedly high FE (~95 %) with current densities from 100 to 1300 mA cm-2 under acidic solutions. Notably, the current density can reach 700 mA cm-2 while maintaining a FE of above 90 % in a membrane electrode assembly electrolyzer and operate stably for 150 h at 200 mA cm-2. In situ spectra and density functional theory calculations reveals that the S doping modulates the electronic structure of Bi and effectively promotes the formation of the HCOO* intermediate for formate/formic acid generation. This work develops the efficient and stable electrocatalysts for sustainable formate/formic acid production.
Collapse
Affiliation(s)
- Zinan Jiang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Shan Ren
- Center for Materials and Interfaces, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Guangdong, 518055, China
| | - Xi Cao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Qikui Fan
- Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rui Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Jian Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| |
Collapse
|
13
|
Wan CP, Guo H, Si DH, Gao SY, Cao R, Huang YB. Electrocatalytic Reduction of Carbon Dioxide in Acidic Electrolyte with Superior Performance of a Metal-Covalent Organic Framework over Metal-Organic Framework. JACS AU 2024; 4:2514-2522. [PMID: 39055143 PMCID: PMC11267553 DOI: 10.1021/jacsau.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 07/27/2024]
Abstract
CO2 electroreduction (CO2RR) to generate valuable chemicals in acidic electrolytes can improve the carbon utilization rate in comparison to that under alkaline conditions. However, the thermodynamically more favorable hydrogen evolution reaction under an acidic electrolyte makes the CO2RR a big challenge. Herein, robust metal phthalocyanine(Pc)-based (M = Ni, Co) conductive metal-covalent organic frameworks (MCOFs) connected by strong metal tetraaza[14]annulene (TAA) linkage, named NiPc-NiTAA and NiPc-CoTAA, are designed and synthesized to apply in the CO2RR in acidic electrolytes for the first time. The optimal NiPc-NiTAA exhibited an excellent Faradaic efficiency (FECO) of 95.1% and a CO partial current density of 143.0 mA cm-2 at -1.5 V versus the reversible hydrogen electrode in an acidic electrolyte, which is 3.1 times that of the corresponding metal-organic framework NiPc-NiN4. The comparison tests and theoretical calculations reveal that in-plane full π-d conjugation MCOF with a good conductivity of 3.01 × 10-4 S m-1 accelerates migration of the electrons. The NiTAA linkage can tune the electron distribution in the d orbit of metal centers, making the d-band center close to the Fermi level and then activating CO2. Thus, the active sites of NiPc and NiTAA collaborate to reduce the *COOH formation energy barrier, favoring CO production in an acid electrolyte. It is a helpful route for designing outstanding conductive MCOF materials to enhance CO2 electrocatalysis under an acidic electrolyte.
Collapse
Affiliation(s)
- Chang-Pu Wan
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences. Fujian, Fuzhou 350002, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Guo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences. Fujian, Fuzhou 350002, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Duan-Hui Si
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences. Fujian, Fuzhou 350002, P. R. China
| | - Shui-Ying Gao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences. Fujian, Fuzhou 350002, P. R. China
| | - Rong Cao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences. Fujian, Fuzhou 350002, P. R. China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China Fuzhou, Fujian 350108, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuan-Biao Huang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences. Fujian, Fuzhou 350002, P. R. China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China Fuzhou, Fujian 350108, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Zeng M, Fang W, Cen Y, Zhang X, Hu Y, Xia BY. Reaction Environment Regulation for Electrocatalytic CO 2 Reduction in Acids. Angew Chem Int Ed Engl 2024; 63:e202404574. [PMID: 38638104 DOI: 10.1002/anie.202404574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) is a sustainable route for converting CO2 into value-added fuels and feedstocks, advancing a carbon-neutral economy. The electrolyte critically influences CO2 utilization, reaction rate and product selectivity. While typically conducted in neutral/alkaline aqueous electrolytes, the CO2RR faces challenges due to (bi)carbonate formation and its crossover to the anolyte, reducing efficiency and stability. Acidic media offer promise by suppressing these processes, but the low Faradaic efficiency, especially for multicarbon (C2+) products, and poor electrocatalyst stability persist. The effective regulation of the reaction environment at the cathode is essential to favor the CO2RR over the competitive hydrogen evolution reaction (HER) and improve long-term stability. This review examines progress in the acidic CO2RR, focusing on reaction environment regulation strategies such as electrocatalyst design, electrode modification and electrolyte engineering to promote the CO2RR. Insights into the reaction mechanisms via in situ/operando techniques and theoretical calculations are discussed, along with critical challenges and future directions in acidic CO2RR technology, offering guidance for developing practical systems for the carbon-neutral community.
Collapse
Affiliation(s)
- Min Zeng
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Wensheng Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Yiren Cen
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Xinyi Zhang
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Yongming Hu
- Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| |
Collapse
|
15
|
Chen G, Hu C, Dai W, Luo Z, Zang H, Sun S, Zhen S, Zhan L, Huang C, Li Y. Coreactant-Free Zirconium Metal-Organic Framework with Dual Emission for Ratiometric Electrochemiluminescence Detection of HIV DNA. Anal Chem 2024; 96:10102-10110. [PMID: 38831537 DOI: 10.1021/acs.analchem.4c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Owing to the limitations of dual-signal luminescent materials and coreactants, constructing a ratiometric electrochemiluminescence (ECL) biosensor based on a single luminophore is a huge challenge. This work developed an excellent zirconium metal-organic framework (MOF) Zr-TBAPY as a single ECL luminophore, which simultaneously exhibited cathodic and anodic ECL without any additional coreactants. First, Zr-TBAPY was successfully prepared by a solvothermal method with 1,3,6,8-tetra(4-carboxyphenyl)pyrene (TBAPY) as the organic ligand and Zr4+ cluster as the metal node. The exploration of ECL mechanisms confirmed that the cathodic ECL of Zr-TBAPY originated from the pathway of reactive oxygen species (ROS) as the cathodic coreactant, which is generated by dissolved oxygen (O2), while the anodic ECL stemmed from the pathway of generated Zr-TBAPY radical itself as the anodic coreactant. Besides, N,N-diethylethylenediamine (DEDA) was developed as a regulator to ECL signals, which quenched the cathodic ECL and enhanced the anodic ECL, and the specific mechanisms of its dual action were also investigated. DEDA can act as the anodic coreactant while consuming the cathodic coreactant ROS. Therefore, the coreactant-free ratiometric ECL biosensor was skillfully constructed by combining the regulatory role of DEDA with the signal amplification reaction of catalytic hairpin assembly (CHA). The ECL biosensor realized the ultrasensitive ratio detection of HIV DNA. The linear range was 1 fM to 100 pM, and the limit of detection (LOD) was as low as 550 aM. The outstanding characteristic of Zr-TBAPY provided new thoughts for the development of ECL materials and developed a new way of fabricating the coreactant-free and single-luminophore ratiometric ECL platform.
Collapse
Affiliation(s)
- Gaoxu Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Congyi Hu
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Wenjie Dai
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zilan Luo
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hao Zang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shiyi Sun
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Shujun Zhen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Lei Zhan
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuanfang Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
16
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
17
|
Zhao ZH, Huang JR, Huang DS, Zhu HL, Liao PQ, Chen XM. Efficient Capture and Electroreduction of Dilute CO 2 into Highly Pure and Concentrated Formic Acid Aqueous Solution. J Am Chem Soc 2024; 146:14349-14356. [PMID: 38742424 DOI: 10.1021/jacs.4c04841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
High-purity CO2 rather than dilute CO2 (15 vol %, CO2/N2/O2 = 15:80:5, v/v/v) similar to the flue gas is currently used as the feedstock for the electroreduction of CO2, and the liquid products are usually mixed up with the cathode electrolyte, resulting in high product separation costs. In this work, we showed that a microporous conductive Bi-based metal-organic framework (Bi-HHTP, HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) can not only efficiently capture CO2 from the dilute CO2 under high humidity but also catalyze the electroreduction of the adsorbed CO2 into formic acid with a high current density of 80 mA cm-2 and a Faradaic efficiency of 90% at a very low cell voltage of 2.6 V. Importantly, the performance in a dilute CO2 atmosphere was close to that under a high-purity CO2 atmosphere. This is the first catalyst that can maintain exceptional eCO2RR performance in the presence of both O2 and N2. Moreover, by using dilute CO2 as the feedstock, a 1 cm-2 working electrode coating with Bi-HHTP can continuously produce a 200 mM formic acid aqueous solution with a relative purity of 100% for at least 30 h in a membrane electrode assembly (MEA) electrolyzer. The product does not contain electrolytes, and such a highly concentrated and pure formic acid aqueous solution can be directly used as an electrolyte for formic acid fuel cells. Comprehensive studies revealed that such a high performance might be ascribed to the CO2 capture ability of the micropores on Bi-HHTP and the lower Gibbs free energy of formation of the key intermediate *OCHO on the open Bi sites.
Collapse
Affiliation(s)
- Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Da-Shuai Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
18
|
Balamurugan M, Jang JH, Kim JE, Choi WI, Jo YI, Park S, Varathan E, Nam KT. Tuning the CO 2 Reduction Selectivity of an Immobilized Molecular Ag Complex beyond CO. Inorg Chem 2024; 63:7992-8000. [PMID: 38627375 DOI: 10.1021/acs.inorgchem.4c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
The electrochemical reduction of carbon dioxide (CO2) to produce fuels and chemicals has garnered significant attention. However, achieving control over the selectivity of the resulting products remains a challenging task, particularly within molecular systems. In this study, we employed a molecular silver complex immobilized on graphitized mesoporous carbon (GMC) as a catalyst for converting CO2 into CO, achieving an impressive selectivity of over 90% at -1.05 V vs RHE. Notably, the newly formed silver nanoparticles emerged as the active sites responsible for this high CO selectivity rather than the molecular system. Intriguingly, the introduction of copper ions into the restructured Ag-nanoparticle-decorated carbon altered the product selectivity. At -1.1 V vs RHE in 0.1 M KCl, we achieved a high C2 selectivity of 75%. Furthermore, not only the Ag-Cu bimetallic nanoparticle but also the small-sized Ag-Cu nanocluster decorated over GMC was proposed as active sites during catalytic reactions. Our straightforward approach offers valuable insights for fine-tuning the product selectivity of immobilized molecular systems, extending beyond C1 products.
Collapse
Affiliation(s)
- Mani Balamurugan
- Department of Materials Science Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Soft Foundry, Seoul National University, Seoul 08826, South Korea
| | - Jun Ho Jang
- Department of Materials Science Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jeong Eun Kim
- Department of Materials Science Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Won Il Choi
- Department of Materials Science Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young In Jo
- Department of Materials Science Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sunghak Park
- Department of Materials Science Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Elumalai Varathan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ki Tae Nam
- Department of Materials Science Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Soft Foundry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
19
|
Liu MF, Zhang C, Wang J, Han X, Hu W, Deng Y. Recent research progresses of Sn/Bi/In-based electrocatalysts for electroreduction CO 2 to formate. Chemistry 2024; 30:e202303711. [PMID: 38143240 DOI: 10.1002/chem.202303711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Carbon dioxide electroreduction reaction (CO2RR) can take full advantage of sustainable power to reduce the continuously increasing carbon emissions. Recycling CO2 to produce formic acid or formate is a technologically and economically viable route to accomplish CO2 cyclic utilization. Developing efficient and cost-effective electrocatalysts with high selectivity towards formate is prioritized for the industrialized applications of CO2RR electrolysis. From the previous explored CO2RR catalysts, Sn, Bi and In based materials have drawn increasing attentions due to the high selectivity towards formate. However, there are still confronted with several challenges for the practical applications of these materials. Therefore, a rational design of the catalysts for formate is urgently needed for the target of industrialized applications. Herein, we comprehensively summarized the recent development in the advanced electrocatalysts for the CO2RR to formate. Firstly, the reaction mechanism of CO2RR is introduced. Then the preparation and design strategies of the highly active electrocatalysts are presented. Especially the innovative design mechanism in engineering materials for promoting catalytic performance, and the efforts on mechanistic exploration using in situ (ex situ) characterization techniques are reviewed. Subsequently, some perspectives and expectations are proposed about current challenges and future potentials in CO2RR research.
Collapse
Affiliation(s)
- Ms Fei Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Chen Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiajun Wang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaopeng Han
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yida Deng
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
20
|
Li M, Wang J, Cong X, Sun Y, Liu Q, Miao Z, Li Z, Wang L. Confined Ni nanoparticles in N-doped carbon nanotubes for excellent pH-universal industrial-level electrocatalytic CO 2 reduction and Zn-CO 2 battery. J Colloid Interface Sci 2024; 657:738-747. [PMID: 38071822 DOI: 10.1016/j.jcis.2023.11.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 01/02/2024]
Abstract
Electrocatalytic reduction of CO2 (ECR) offers a promising approach to curbed carbon emissions and complete carbon cycles. However, the inevitable creation of carbonates and limited CO2 utilization efficiency in neutral or alkaline electrolytes result in low energy efficiency, carbon losses and its widespread commercial utilization. The advancement of CO2 reduction under acidic conditions offers a promising approach for their commercial utilization, but the inhibition of hydrogen evolution reaction and the corrosion of catalysts are still challenging. Herein, Ni nanoparticles (NPs) wrapped in N-doped carbon nanotubes (NixNC-a) are successfully prepared by a facile mixed-heating and freeze-drying method. Ni100NC-a achieves a high Faraday efficiency (FE) of near 100 % for CO under pH-universal conditions, coupled with a promising current density of CO (>100 mA cm-2). Especially in acidic conditions, Ni100NC-a exhibits an exceptional ECR performance with the high FECO of 97.4 % at -1.44 V and the turnover frequency (TOF) of 11 k h-1 at -1.74 V with a current density of 288.24 mA cm-2. This excellent performance is attributed to the synergistic effect of Ni NPs and N-doped carbon shells, which protects Ni NPs from etching, promotes CO2 adsorption and regulates local pH. Moreover, Ni100NC-a could drive the reversible Zn-CO2 battery with a high power-density of 4.68 mW cm-2 and a superior stability (98 h). This study presents a promising candidate for efficient pH-universal CO2 electroreduction and Zn-CO2 battery.
Collapse
Affiliation(s)
- Meiyin Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Jigang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China.
| | - Xuzi Cong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yinggang Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Qiang Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Zhichao Miao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Zhongfang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|
21
|
Xu M, Deng T, Liu LX, Han X. Enrichment Strategies for Efficient CO 2 Electroreduction in Acidic Electrolytes. Chemistry 2023; 29:e202302382. [PMID: 37707507 DOI: 10.1002/chem.202302382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) has been recognized as an appealing route to remarkably accelerate the carbon-neutral cycle and reduce carbon emissions. Notwithstanding great catalytic activity that has been acquired in neutral and alkaline conditions, the carbonates generated from the inevitable reaction of the input CO2 with the hydroxide severely lower carbon utilization and energy efficiency. By contrast, CO2 RR in an acidic condition can effectively circumvent the carbonate issues; however, the activity and selectivity of CO2 RR in acidic electrolytes will be decreased significantly due to the competing hydrogen evolution reaction (HER). Enriching the CO2 and the key intermediates around the catalyst surface can promote the reaction rate and enhance the product selectivity, providing a promising way to boost the performance of CO2 RR. In this review, the catalytic mechanism and key technique challenges of CO2 RR are first introduced. Then, the critical progress of enrichment strategies for promoting the CO2 RR in the acidic electrolyte is summarized with three aspects: catalyst design, electrolyte regulation, and electrolyzer optimization. Finally, some insights and perspectives for further development of enrichment strategies in acidic CO2 RR are expounded.
Collapse
Affiliation(s)
- Meng Xu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Taojiang Deng
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Li-Xia Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Xiguang Han
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| |
Collapse
|