1
|
Premkumar E, Sreedharan R, Ghosh P, Pal T, Maiti D, Gandhi T. Synthesis of lactones and lactams via C(sp 3)-H bond functionalization. Chem Soc Rev 2025. [PMID: 40423564 DOI: 10.1039/d4cs01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
The field of directing group-assisted, transition-metal-catalyzed functionalization has undergone a significant transformation, evolving from the use of auxiliary group attachment for the exploitation of native functional groups in novel organic reactions. In particular, coordination-assisted C(sp3)-H bond functionalization has revolutionized synthetic planning to build molecular complexity. Recently, the use of native directing groups in transition-metal-catalyzed reactions has allowed a step-economic process for increased access to biologically important lactones and lactams. Accordingly, lactones and lactams are unavoidable structural motifs with widespread presence in many biological and pharmaceutical arenas, encouraging researchers to access and modify their structures for improved biological properties. In this review, we showcase the diverse aspects of transition metal catalysis, biocatalysis, and photocatalytic C(sp3)-H bond functionalization to access lactones and lactams assisted by carboxylic acid and amines/amides with auxiliary or transient directing groups or unique ligands. This article also emphasizes the role of specially designed complexes, artificial metalloenzymes, and biocatalysts in assembling lactones and lactams. Besides, three-component reactions involving CO as a C1 synthon play a vital role in developing these heterocycles. Importantly, the crucial role of ligands in determining regioselectivity and enhancing enantioselectivity is discussed thoroughly. For better clarity, this review is divided into twelve sections based on the catalysts involved, with subsections categorized by the type of bond activation or formation. Overall, this review aims to inspire the growth of C(sp3)-H bond functionalization, leading to the integration of lactams and lactones in organics.
Collapse
Affiliation(s)
- Egambaram Premkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India.
| | - Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India.
| | - Premananda Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
| | - Tanay Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India.
| |
Collapse
|
2
|
Lee S, Kim M, Han H, Son J. Dioxazolones as electrophilic amide sources in copper-catalyzed and -mediated transformations. Beilstein J Org Chem 2025; 21:200-216. [PMID: 39877860 PMCID: PMC11773186 DOI: 10.3762/bjoc.21.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Over the past decade, dioxazolones have been widely used as N-acylamide sources in amidation processes of challenging substrates, typically employing precious transition metals. However, these catalytic systems often present several challenges associated with cost, toxicity, stability, and recyclability. Among the 3d transition metals, copper catalysts have been gaining increasing attention owing to their abundance, cost-effectiveness, and sustainability. Recently, these catalytic systems have been applied to the chemical transformation of dioxazolones, conferring a convenient protocol towards amidated products. This review highlights recent advancements in the synthetic transformations of dioxazolones, with particular examples of copper salts.
Collapse
Affiliation(s)
- Seungmin Lee
- Department of Chemistry, Dong-A University, Busan 49315, South Korea
| | - Minsuk Kim
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan 49315, South Korea
| | - Hyewon Han
- Department of Chemistry, Dong-A University, Busan 49315, South Korea
| | - Jongwoo Son
- Department of Chemistry, Dong-A University, Busan 49315, South Korea
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan 49315, South Korea
| |
Collapse
|
3
|
Yan X, Pang Y, Zhou Y, Chang R, Ye J. Photochemical Deracemization of Lactams with Deuteration Enabled by Dual Hydrogen Atom Transfer. J Am Chem Soc 2025; 147:1186-1196. [PMID: 39692147 DOI: 10.1021/jacs.4c14934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Photochemical deracemization has emerged as one of the most straightforward approaches to access highly enantioenriched compounds in recent years. While excited-state events such as energy transfer, single electron transfer, and ligand-to-metal charge transfer have been leveraged to promote stereoablation, approaches relying on hydrogen atom transfer, which circumvent the limitations imposed by the triplet energy and redox potential of racemic substrates, remain underexplored. Conceptually, the most attractive method for tertiary stereocenter deracemization might be hydrogen atom abstraction followed by hydrogen atom donation. However, implementing such a strategy poses significant challenges, primarily because the enantioenriched products are also reactive if the chiral catalyst is unable to differentiate between the two enantiomers. Herein we report a distinct dual hydrogen atom transfer strategy for photochemical deracemization of δ- and γ-lactams, achieving high enantioenrichment and deuterium incorporation despite the inherent reactivity of the products. Mechanistic studies reveal that benzophenone enables nonselective hydrogen atom abstraction while a tetrapeptide-derived thiol dictates the enantioselectivity of the hydrogen atom donation step. More importantly, a pyridine-based alcohol was found to play crucial roles in facilitating the hydrogen atom abstraction as well as enhancing the enantioselectivity of the hydrogen atom donation step.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yutong Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Kweon J, Lee M, Kim D, Chang S. Stereoretentive Decarboxylative Amidation of α,β-Unsaturated Carboxylic Acids to Access Enamides. Org Lett 2024; 26:11167-11172. [PMID: 39665268 DOI: 10.1021/acs.orglett.4c04234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Enamides have emerged as robust alternatives for enamines, exhibiting versatile reactivity for further synthetic modifications, including nucleophilic addition, cycloaddition, and asymmetric hydrogenation. While transition-metal-catalyzed cross-coupling of alkenyl (pseudo)halides with amides has been widely employed to construct this valuable scaffold, it suffers from some limitations, such as the need for transition-metal catalysts and the preparative synthesis of alkenyl (pseudo)halides. In this study, we report a mild and convenient stereoretentive decarboxylative amidation of α,β-unsaturated carboxylic acids with easily procurable 1,4,2-dioxazol-5-ones, providing a practical synthetic route to enamides. Density functional theory (DFT) calculations revealed a plausible reaction mechanism, which involves the nucleophilic addition of a carboxylate onto dioxazolone, followed by sequential concerted rearrangements.
Collapse
Affiliation(s)
- Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Minjeong Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
5
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
6
|
Liu Z, Wu H, Zhang H, Wang F, Liu X, Dong S, Hong X, Feng X. Iron-Catalyzed Asymmetric Imidation of Sulfides via Sterically Biased Nitrene Transfer. J Am Chem Soc 2024; 146:18050-18060. [PMID: 38878303 DOI: 10.1021/jacs.4c04855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Transition-metal-catalyzed enantioselective nitrene transfer to sulfides has emerged as one of the most powerful strategies for rapid construction of enantioenriched sulfimides. However, achieving stereocontrol over highly active earth-abundant transition-metal nitrenoid intermediates remains a formidable challenge compared with precious metals. Herein, we disclose a chiral iron(II)/N,N'-dioxide-catalyzed enantioselective imidation of dialkyl and alkyl aryl sulfides using iminoiodinanes as nitrene precursors. A series of chiral sulfimides were obtained in moderate-to-good yields with high enantioselectivities (56 examples, up to 99% yield, 98:2 e.r.). The utility of this methodology was demonstrated by late-stage modification of complex molecules and synthesis of the chiral insecticide sulfoxaflor and the intermediates of related bioactive compounds. Based on experimental studies and theoretical calculations, a water-bonded high-spin iron nitrenoid species was identified as the key intermediate. The observed stereoselectivity was original from the steric repulsion between the amide unit of the ligand in the chiral cave and the bulky substituent of sulfides. Additionally, dioxazolones proved to be suitable acylnitrene precursors in the presence of an iron(III)/N,N'-dioxide complex, resulting in the formation of enantioselectivity-reversed sulfimides (14 examples, up to 81% yield, 97:3 e.r.).
Collapse
Affiliation(s)
- Zhenzhong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongli Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Helong Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fang Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Chen W, Xu H, Liu FX, Chen K, Zhou Z, Yi W. Chiral Osmium(II)/Salox Species Enabled Enantioselective γ-C(sp 3)-H Amidation: Integrated Experimental and Computational Validation For the Ligand Design and Reaction Development. Angew Chem Int Ed Engl 2024; 63:e202401498. [PMID: 38499469 DOI: 10.1002/anie.202401498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Herein, multiple types of chiral Os(II) complexes have been designed to address the appealing yet challenging asymmetric C(sp3)-H functionalization, among which the Os(II)/Salox species is found to be the most efficient for precise stereocontrol in realizing the asymmetric C(sp3)-H amidation. As exemplified by the enantioenriched pyrrolidinone synthesis, such tailored Os(II)/Salox catalyst efficiently enables an intramolecular site-/enantioselective C(sp3)-H amidation in the γ-position of dioxazolone substrates, in which benzyl, propargyl and allyl groups bearing various substituted forms are well compatible, affording the corresponding chiral γ-lactam products with good er values (up to 99 : 1) and diverse functionality (>35 examples). The unique performance advantage of the developed chiral Os(II)/Salox system in terms of the catalytic energy profile and the chiral induction has been further clarified by integrated experimental and computational studies.
Collapse
Affiliation(s)
- Weijie Chen
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Huiying Xu
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Fu-Xiaomin Liu
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Kaifeng Chen
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zhi Zhou
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Wei Yi
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| |
Collapse
|
8
|
Fanourakis A, Phipps RJ. Catalytic, asymmetric carbon-nitrogen bond formation using metal nitrenoids: from metal-ligand complexes via metalloporphyrins to enzymes. Chem Sci 2023; 14:12447-12476. [PMID: 38020383 PMCID: PMC10646976 DOI: 10.1039/d3sc04661c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
The introduction of nitrogen atoms into small molecules is of fundamental importance and it is vital that ever more efficient and selective methods for achieving this are developed. With this aim, the potential of nitrene chemistry has long been appreciated but its application has been constrained by the extreme reactivity of these labile species. This liability however can be attenuated by complexation with a transition metal and the resulting metal nitrenoids have unique and highly versatile reactivity which includes the amination of certain types of aliphatic C-H bonds as well as reactions with alkenes to afford aziridines. At least one new chiral centre is typically formed in these processes and the development of catalysts to exert control over enantioselectivity in nitrenoid-mediated amination has become a growing area of research, particularly over the past two decades. Compared with some synthetic methods, metal nitrenoid chemistry is notable in that chemists can draw from a diverse array of metals and catalysts , ranging from metal-ligand complexes, bearing a variety of ligand types, via bio-inspired metalloporphyrins, all the way through to, very recently, engineered enzymes themselves. In the latter category in particular, rapid progress is being made, the rate of which suggests that this approach may be instrumental in addressing some of the outstanding challenges in the field. This review covers key developments and strategies that have shaped the field, in addition to the latest advances, up until September 2023.
Collapse
Affiliation(s)
- Alexander Fanourakis
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
9
|
Wang Q, Jung H, Kim D, Chang S. Iridium-Catalyzed Migratory Terminal C(sp 3)-H Amidation of Heteroatom-Substituted Internal Alkenes via Olefin Chain Walking. J Am Chem Soc 2023. [PMID: 37906814 DOI: 10.1021/jacs.3c09679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Hydroamination facilitated by metal hydride catalysis is an appealing synthetic approach to access valuable nitrogen-containing compounds from readily available unsaturated hydrocarbons. While high regioselectivity can be achieved usually for substrates bearing polar chelation groups, the reaction involving simple alkenes frequently provides nonselective outcomes. Herein, we report an iridium-catalyzed highly regioselective terminal C(sp3)-H amidation of internal alkenes utilizing dioxazolones as an amino source via olefin chain walking. Most notably, this mechanistic motif of double bond migration to the terminal position operates not only with dialkyl-substituted simple alkenes including styrenes but also with heteroatom-substituted olefins such as enol ethers, vinyl silanes, and vinyl borons, thus representing the first example of the terminal methyl amidation of the latter type of alkenes through a nondissociative chain walking process.
Collapse
Affiliation(s)
- Qing Wang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|