1
|
Fors SA, Yap YJ, Malapit CA. Effect of Alternating Polarity in Electrochemical Olefin Hydrocarboxylation. Angew Chem Int Ed Engl 2025:e202424865. [PMID: 40192267 DOI: 10.1002/anie.202424865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
The electrochemical generation of radical anions from feedstock olefins offers a selective and efficient route for synthesizing commodity chemicals and pharmaceutical precursors via hydrofunctionalization. Traditional methods for electrochemical olefin hydrofunctionalization, for example, hydrocarboxylation, rely on anion intermediates and follow an electrochemical-chemical-electrochemical-chemical (ECEC) mechanism involving olefin reduction, carboxylation, further reduction, and protonation. Enhancing terminal carboxylate selectivity often requires a proton source, reducing functional group tolerance and favoring proton reduction over olefin reduction. Alternating polarity, a nascent technique in organic electrochemistry, can improve product selectivity by influencing electron transfer rates and electrode surface species. Herein, we report the use of alternating polarity to selectively generate radical anions from styrene derivatives, using electrochemical hydrocarboxylation as a model. This approach shifts the mechanism to an electrochemical-chemical-chemical (ECC) pathway, where the final step involves hydrogen atom transfer. We showcase how alternating polarity modulates product selectivity, yield, and material decomposition, offering new insights into how alternating polarity can advance olefin functionalization by enabling more controlled and selective reaction pathways.
Collapse
Affiliation(s)
- Stella A Fors
- Department of Chemistry, Northwestern University, 2145 N Sheridan Rd, Evanston, IL, 60208, USA
| | - Yong Jia Yap
- Department of Chemistry, Northwestern University, 2145 N Sheridan Rd, Evanston, IL, 60208, USA
| | - Christian A Malapit
- Department of Chemistry, Northwestern University, 2145 N Sheridan Rd, Evanston, IL, 60208, USA
| |
Collapse
|
2
|
Yang XY, Zhang XG, Zhou QL. Enantioselective Reduction of 1-Naphthamides by Electrochemical Reduction and Catalytic Asymmetric Hydrogenation in Tandem. J Am Chem Soc 2025; 147:10052-10058. [PMID: 40083118 DOI: 10.1021/jacs.4c18009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Chiral 1-tetrahydronaphthamides are the core structures of many bioactive molecules, yet their efficient asymmetric synthesis from a simple feedstock remains a challenge. Herein, we present a one-pot synthesis strategy that combines electrochemical reduction and ruthenium-catalyzed asymmetric hydrogenation to achieve the enantioselective reduction of 1-naphthalenamides to chiral 1-tetrahydronaphthamides. The protocol provides a practical platform for selectively constructing high-value chiral tetrahydronaphthenes from readily available naphthalene feedstock, thereby expanding the scope of asymmetric hydrogenation. The synthetic utility of this protocol is further demonstrated through the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Xin-Yi Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xuan-Ge Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Zhu SJ, Lin YC, Yuan GC, He X, Yu C, Ye KY. Electrochemical Denitrative Cyclization Driven by Alternating Polarity. Org Lett 2025; 27:1186-1191. [PMID: 39880842 DOI: 10.1021/acs.orglett.4c04725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Alternating current electrolysis has emerged as a promising technique for addressing challenging redox reactions that are otherwise difficult or impossible for direct current electrolysis. Under mild and transition-metal-free reaction conditions, a general electrochemical denitrative cyclization of nitroarenes was developed to access various cyclic sulfone-containing derivatives of biological significance. The key to success lies in the facile manipulation of multiple redox events upon rapid alternating polarity switching to enhance the selectivity and efficiency.
Collapse
Affiliation(s)
- Shuang-Jun Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi-Chao Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Guo-Cai Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xinglei He
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunlong Yu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Alvarez EM, Li J, Malapit CA. A General Hydrotrifluoromethylation of Unactivated Olefins Enabled by Voltage-Gated Electrosynthesis. Angew Chem Int Ed Engl 2025; 64:e202415218. [PMID: 39363774 PMCID: PMC11753607 DOI: 10.1002/anie.202415218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Here we present the first successful hydrotrifluoromethylation of unactivated olefins under electrochemical conditions. Commercially available trifluoromethyl thianthrenium salt (TT+-CF3BF4 -, Ep/2=-0.85 V vs Fc/Fc+) undergoes electrochemical reduction to generate CF3 radicals which add to olefins with exclusive chemoselectivity. The resulting carbon centered radical undergoes a second cathodic reduction, instead of a classical HAT process, to generate a carbanion that can be terminated by protonation from solvent. The use of MgBr2 (+0.20 V onset oxidation potential) plays a key role as an enabling sacrificial reductant for the reaction to operate in an undivided cell. Guided by cyclic voltammetry (CV) studies, fine-tuning the solvent system, trifluoromethylating reagent's counteranion and careful selection of redox processes, this work led to the development of a voltage-gated electrosynthesis by pairing two redox processes with a narrow potential difference (ΔE≈1.00 V) allowing the reaction to proceed with two important advances: (a) high reactivity and selectivity towards hydrotrifluoromethylation over undesired dibromination, and (b) an unprecedented functional group tolerance, including aniline, phenols, unprotected alcohol, epoxide, trialkyl amine, and several redox sensitive heterocycles.
Collapse
Affiliation(s)
- Eva M. Alvarez
- Department of ChemistryNorthwestern University2145N Sheridan RoadEvanstonIL60208USA
| | - Jinxiao Li
- Department of ChemistryNorthwestern University2145N Sheridan RoadEvanstonIL60208USA
| | - Christian A. Malapit
- Department of ChemistryNorthwestern University2145N Sheridan RoadEvanstonIL60208USA
| |
Collapse
|
5
|
Poh YR, Kawamata Y, Yuen-Zhou J. Physicochemical Principles of AC Electrosynthesis: Reversible Reactions. J Am Chem Soc 2024; 146:24978-24988. [PMID: 39214628 DOI: 10.1021/jacs.4c06664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Electrolysis integrates renewable energy into chemical manufacturing and is key to sustainable chemistry. Controlling the waveform beyond direct current (DC) addresses the long-standing obstacle of chemoselectivity, yet it also expands the parameter set to optimize, creating a demand for theoretical predictions. Here, we report the first analytical theory for predicting chemoselectivity in an alternating current (AC) electrosynthesis. The mechanism is a selective reversal of the unwanted redox reaction during periods of opposite polarity, reflected in the final reaction outcome as a time-averaged effect. In the ideal scenario of all redox reactions being reversible, square AC waveform biases the outcome toward more overoxidation/over-reduction, whereas sine AC waveform exhibits the opposite effect. However, in a more realistic scenario of some redox reactions being quasi-reversible, sine AC may behave mostly like square AC. These predictions are in numerical agreement with model experiments employing acetophenone and align qualitatively with the literature precedent. Collectively, this study provides theoretical proof for a growing trend that promotes changing waveforms to overcome limitations challenging to address by varying canonical electrochemical parameters.
Collapse
Affiliation(s)
- Yong Rui Poh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Boudjelel M, Zhong J, Ballerini L, Vanswearingen I, Al-Dhufari R, Malapit CA. Electrochemical Generation of Aryl Radicals from Organoboron Reagents Enabled by Pulsed Electrosynthesis. Angew Chem Int Ed Engl 2024; 63:e202406203. [PMID: 38753725 PMCID: PMC11323302 DOI: 10.1002/anie.202406203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Aryl radicals play a pivotal role as reactive intermediates in chemical synthesis, commonly arising from aryl halides and aryl diazo compounds. Expanding the repertoire of sources for aryl radical generation to include abundant and stable organoboron reagents would significantly advance radical chemistry and broaden their reactivity profile. While traditional approaches utilize stoichiometric oxidants or photocatalysis to generate aryl radicals from these reagents, electrochemical conditions have been largely underexplored. Through rigorous mechanistic investigations, we identified fundamental challenges hindering aryl radical generation. In addition to the high oxidation potentials of aromatic organoboron compounds, electrode passivation through radical grafting, homocoupling of aryl radicals, and decomposition issues were identified. We demonstrate that pulsed electrosynthesis enables selective and efficient aryl radical generation by mitigating the fundamental challenges. Our discoveries facilitated the development of the first electrochemical conversion of aryl potassium trifluoroborate salts into aryl C-P bonds. This sustainable and straightforward oxidative electrochemical approach exhibited a broad substrate scope, accommodating various heterocycles and aryl chlorides, typical substrates in transition-metal catalyzed cross-coupling reactions. Furthermore, we extended this methodology to form aryl C-Se, C-Te, and C-S bonds, showcasing its versatility and potential in bond formation processes.
Collapse
Affiliation(s)
- Maxime Boudjelel
- Department of Chemistry, Northwestern University, 2145 N Sheridan Road, Evanston, IL 60208 USA
| | - Jessica Zhong
- Department of Chemistry, Northwestern University, 2145 N Sheridan Road, Evanston, IL 60208 USA
| | - Lorenzo Ballerini
- Department of Chemistry, Northwestern University, 2145 N Sheridan Road, Evanston, IL 60208 USA
| | - Ian Vanswearingen
- Department of Chemistry, Northwestern University, 2145 N Sheridan Road, Evanston, IL 60208 USA
| | - Rossul Al-Dhufari
- Department of Chemistry, Northwestern University, 2145 N Sheridan Road, Evanston, IL 60208 USA
| | - Christian A. Malapit
- Department of Chemistry, Northwestern University, 2145 N Sheridan Road, Evanston, IL 60208 USA
| |
Collapse
|
7
|
Behera N, Rodrigo S, Hazra A, Maity R, Luo L. Revisiting Alternating Current Electrolysis for Organic Synthesis. CURRENT OPINION IN ELECTROCHEMISTRY 2024; 43:101439. [PMID: 38450312 PMCID: PMC10914348 DOI: 10.1016/j.coelec.2023.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
This review summarizes the recent advancements in alternating current (AC)-driven electroorganic synthesis since 2021 and discusses the reactivities AC electrolysis provides to achieve new and unique organic transformations.
Collapse
Affiliation(s)
- Nibedita Behera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sachini Rodrigo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Atanu Hazra
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Rajendra Maity
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|