1
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
2
|
Zeng H, Fang Z, Feng Y, Su T, Miao W, Wang Z. Self-Assembled Peptide PROTAC Prodrugs Targeting FOXM1 for Cancer Therapy. Mol Pharm 2025. [PMID: 40367368 DOI: 10.1021/acs.molpharmaceut.5c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Proteolysis-targeting chimeras (PROTACs) represent a promising strategy for addressing ″undruggable″ proteins in cancer therapy. However, challenges such as poor bioavailability, limited cellular permeability, and inadequate targeting hinder their effectiveness. Herein, we present a novel PROTAC prodrug, NFTP, designed for FOXM1 degradation, which leverages self-assembled peptides functionalized with an integrin α-6 ligand to enhance tumor targeting and proteolysis in vivo. NFTP effectively penetrates tumor cells, induces FOXM1 degradation, inhibits cancer cell survival and migration, and promotes apoptosis in vitro. In a 4T1 mouse xenograft model, NFTP demonstrated efficient FOXM1-targeted degradation, significant tumor growth inhibition, and low systemic toxicity. This self-assembling FOXM1 PROTAC platform demonstrates enhanced tumor-targeting precision and superior therapeutic performance in vivo, representing a promising paradigm shift in targeted cancer therapy.
Collapse
Affiliation(s)
- Huajie Zeng
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Zhiguo Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yinghua Feng
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Tong Su
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Weibing Miao
- Department of Nuclear Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
3
|
Cornu M, Lemaitre T, Kieffer C, Voisin-Chiret AS. PROTAC 2.0: Expanding the frontiers of targeted protein degradation. Drug Discov Today 2025; 30:104376. [PMID: 40348076 DOI: 10.1016/j.drudis.2025.104376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/24/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Proteolysis targeting chimera (PROTAC) technology has revolutionized targeted protein degradation via the ubiquitin-proteasome system. Despite their efficacy in degrading previously undruggable proteins, classical PROTACs face challenges such as poor permeability, dose-dependent effects, and off-target toxicity, prompting the rise of next-generation PROTACs (PROTAC 2.0). This review explores emerging PROTAC-based strategies aimed at enhancing selectivity, bioavailability, and pharmacokinetics. We discuss innovative approaches such as photoactivable PROTACs, hypoxia-responsive degraders, dual and trivalent PROTACs, and antibody-conjugated degraders. Additionally, nanotechnology-based delivery systems are highlighted as promising tools to overcome membrane permeability issues. By analyzing these novel strategies, we highlight the evolution of PROTACs and their growing therapeutic potential. Advances in PROTAC 2.0 technologies are expected to expand their clinical applications, offering more selective and efficient degradation mechanisms.
Collapse
Affiliation(s)
- Marie Cornu
- Université de Caen Normandie, CERMN UR4258, Normandie Université, F-14000 Caen, France
| | - Thomas Lemaitre
- Université de Caen Normandie, CERMN UR4258, Normandie Université, F-14000 Caen, France
| | - Charline Kieffer
- Université de Caen Normandie, CERMN UR4258, Normandie Université, F-14000 Caen, France
| | | |
Collapse
|
4
|
Qin S, Xiao X. Key advances and application prospects of PROTAC technologies in the next 5 years. Future Med Chem 2025; 17:987-989. [PMID: 40314207 DOI: 10.1080/17568919.2025.2498875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/01/2025] [Indexed: 05/03/2025] Open
Affiliation(s)
- Shuanglin Qin
- Senior Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, P.R. China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Xiaohe Xiao
- Senior Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, P.R. China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, P.R. China
| |
Collapse
|
5
|
Ye J, Xu F, Xu Z, Yuan C, Hou P, Wu D, Han W, Pan S, Pan L, Yang D, Wang P. Sorting Extrusion-Prepared Coreless Cell Membrane Vesicles of Mixed Orientations by Functional DNA Probes. JACS AU 2025; 5:1728-1737. [PMID: 40313838 PMCID: PMC12042024 DOI: 10.1021/jacsau.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 05/03/2025]
Abstract
Cell membrane vesicles (CMVs) have been extensively used as delivery vehicles for a variety of cargos, which are generally prepared via membrane extrusion. Extruded CMVs are not necessarily to have the outer membrane facing outward due to the randomness of membrane wrapping. Nanoparticles have been used to serve as cores to direct the membrane orientation of CMVs; nevertheless, there is a lack of methods to efficiently sort coreless CMVs of desired orientations. Herein, we utilized a group of functional DNA probes to reveal the random distribution of membrane orientations of coreless CMVs after extrusion, producing either right-side-out vesicles (RSVs) or inside-out vesicles (ISVs). More importantly, DNA probes that protrude out from the outer membrane can serve as handles for efficiently sorting out RSVs from ISVs to produce vesicles with a dominant right-side-out orientation. We investigated three methods to enrich RSVs, including strand displacement reaction, photo cleavage (PC), and enzymatic cleavage. Among them, PC exhibits the highest enrichment efficiency (∼93%) and RSVs purity (∼85.4%), which therefore is recommended for future applications. This work revealed the mixed orientations of coreless CMVs and provided a technical platform to efficiently enrich CMVs of wanted membrane orientations that shall be useful toward a vast array of biomedical applications.
Collapse
Affiliation(s)
| | | | - Zhihao Xu
- Institute of Molecular Medicine,
Department of Laboratory Medicine, Department of Urology, Shanghai
Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji
Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai 200127, China
| | - Caiqing Yuan
- Institute of Molecular Medicine,
Department of Laboratory Medicine, Department of Urology, Shanghai
Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji
Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai 200127, China
| | - Pengfei Hou
- Institute of Molecular Medicine,
Department of Laboratory Medicine, Department of Urology, Shanghai
Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji
Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai 200127, China
| | - Dunkai Wu
- Institute of Molecular Medicine,
Department of Laboratory Medicine, Department of Urology, Shanghai
Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji
Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai 200127, China
| | - Weifeng Han
- Institute of Molecular Medicine,
Department of Laboratory Medicine, Department of Urology, Shanghai
Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji
Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai 200127, China
| | - Shufan Pan
- Institute of Molecular Medicine,
Department of Laboratory Medicine, Department of Urology, Shanghai
Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji
Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai 200127, China
| | - Li Pan
- Institute of Molecular Medicine,
Department of Laboratory Medicine, Department of Urology, Shanghai
Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji
Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine,
Department of Laboratory Medicine, Department of Urology, Shanghai
Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji
Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine,
Department of Laboratory Medicine, Department of Urology, Shanghai
Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji
Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai 200127, China
| |
Collapse
|
6
|
Li CX, Zou ZR, Xu S, Shi JH, Zou Y, Yan M, Zhang XJ. Pt(IV)-PROTAC Complexes with Synergistic Antitumor Activity and Enhanced Membrane Permeability. J Med Chem 2025; 68:8208-8225. [PMID: 40184539 DOI: 10.1021/acs.jmedchem.4c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
A class of Pt(IV)-PROTAC complexes was designed and synthesized with dual aims of inducing DNA strand damage and inhibiting DNA repair. These complexes showed good antiproliferative activity against a range of cancer cell lines. Enhanced intracellular uptake of platinum and PROTAC was observed. Multiple mechanisms of action were identified, including the induction of DNA damage, disruption of DNA repair, and activation of mitochondrial-dependent apoptosis. One of the Pt(IV)-PROTACs, CW-2, showed excellent antitumor activity in a xenograft mouse model. These results suggest that Pt(IV)-PROTAC represents a promising strategy for the development of novel antitumor therapeutics.
Collapse
Affiliation(s)
- Cheng-Xin Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Ru Zou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shan Xu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Hui Shi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Zou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Jing Zhang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Yin L, Niu T, Li L, Yu W, Han B, Rehman A, Zeng K. Research advancements in molecular glues derived from natural product scaffolds: Chemistry, targets, and molecular mechanisms. CHINESE HERBAL MEDICINES 2025; 17:235-245. [PMID: 40256709 PMCID: PMC12009069 DOI: 10.1016/j.chmed.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/30/2024] [Accepted: 01/03/2025] [Indexed: 04/22/2025] Open
Abstract
The mechanism of action of traditional Chinese medicine (TCM) remains unclear. Historically, research on TCM has mainly focused on exploring the mechanisms of active components acting on single targets. However, it is insufficient to explain the complex mechanisms by which these active components in TCM treat diseases. In recent years, the emergence of molecular glues (MGs) theory has provided new strategies to address this issue. MGs are small molecules that can promote interactions between proteins at their interface. The characteristic of MGs is to establish connections between diverse protein structures, thereby enabling a chemically-mediated proximity effect that triggers a wide spectrum of biological functions. Natural products are the result of billions of years of evolutionary processes in the natural environment. Thus, the extensive structural diversity of natural products renders them a rich source of MGs, including polyketides, terpenoids, steroids, lignans, organic acids, alkaloids and other classes. Currently, several well-known natural MGs, including the immunosuppressants cyclosporin A (CsA) and tacrolimus (FK506), as well as the anticancer agent taxol, have been incorporated into clinical practice. Meanwhile, the advancement of new technologies is propelling the discovery of novel MGs from natural products. Thus, we primarily summarize a growing variety of MGs from natural origins reported in recent years and categorize them based on the chemical structural types. Moreover, the main sources of TCM are natural products. The discovery of natural MGs promises to provide a new perspective for the elucidation of the molecular mechanism behind the efficiency of TCM. In summary, this review aims to provide insights from the perspective of natural products that could potentially influence TCM and modern drug development.
Collapse
Affiliation(s)
- Lina Yin
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Tingting Niu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Ling Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Yu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Bo Han
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Asma Rehman
- National Institute for Biotechnology & Genetic Engineering College Pakistan Institute of Engineering & Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Kewu Zeng
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Pan Z, Huang X, Liu M, Jiang X, He G. Research Advances in Chaperone-Mediated Autophagy (CMA) and CMA-Based Protein Degraders. J Med Chem 2025; 68:2314-2332. [PMID: 39818775 DOI: 10.1021/acs.jmedchem.4c02681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Molecular mechanisms of chaperone-mediated autophagy (CMA) constitute essential regulatory elements in cellular homeostasis, encompassing protein quality control, metabolic regulation, cellular signaling cascades, and immunological functions. Perturbations in CMA functionality have been causally associated with various pathological conditions, including neurodegenerative pathologies and neoplastic diseases. Recent advances in targeted protein degradation (TPD) methodologies have demonstrated that engineered degraders incorporating KFERQ-like motifs can facilitate lysosomal translocation and subsequent proteolysis of noncanonical substrates, offering novel therapeutic interventions for both oncological and neurodegenerative disorders. This comprehensive review elucidates the molecular mechanisms, physiological significance, and pathological implications of CMA pathways. Additionally, it provides a critical analysis of contemporary developments in CMA-based degrader technologies, with particular emphasis on their structural determinants, mechanistic principles, and therapeutic applications. The discourse extends to current technical limitations in CMA investigation and identifies key obstacles that must be addressed to advance the development of CMA-targeting therapeutic agents.
Collapse
Affiliation(s)
- Zhaoping Pan
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaowei Huang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingxia Liu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Liu S, Yuan F, Dong H, Zhang J, Mao X, Liu Y, Li H. PTGES3 proteolysis using the liposomal peptide-PROTAC approach. Biol Direct 2024; 19:144. [PMID: 39726032 DOI: 10.1186/s13062-024-00580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide, and the lack of effective biomarkers for early detection leads to poor therapeutic outcomes. Prostaglandin E Synthase 3 (PTGES3) is a putative prognostic marker in many solid tumors; however, its expression and biological functions in HCC have not been determined. The proteolysis-targeting chimera (PROTAC) is an established technology for targeted protein degradation. Compared to the small-molecule PROTAC, the peptide PROTAC (p-PROTAC) utilizes peptides bound to target proteins to mediate the ubiquitination and degradation of undruggable proteins. This study aimed to use the PROTAC technology to develop a PTGES3 degrader liposome complex containing a PTGES3-binding peptide and the E3 ubiquitin ligase ligand pomalidomide for regulating cell function and provide a novel pathway for treating HCC. RESULTS In this study, we demonstrated that PTGES3 is highly expressed in HCC at the transcriptional and protein levels; furthermore, PTGES3 was identified as a novel drug target that could potentially treat HCC. Hence, we developed PTGES3-PROTACs by adjusting the ligand ratio to optimize the efficacy of degradation agents. The results revealed that PTGES3-PROTAC effectively degraded PTGES3 protein and strongly weakened the HCC malignant phenotype in vitro and in vivo. CONCLUSIONS Our findings revealed that the highly selective PTGES3 proteolysis is a potential therapeutic strategy for HCC, and PTGES3 degraders PTGES3-PROTACs can be developed as safe and effective drugs for HCC treatment.
Collapse
Affiliation(s)
- Shiwei Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Fukang Yuan
- Department of General Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Hui Dong
- Fenyang College of Shanxi Medical University, Fenyang, Shanxi, 032200, China
| | - Jiaqi Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xinyu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yangsui Liu
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China.
- Xuzhou Central Hospital Affiliated to Medical School of Southeast University, Xuzhou, Jiangsu, 221009, China.
| | - Huansong Li
- Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China.
- Xuzhou Central Hospital Affiliated to Medical School of Southeast University, Xuzhou, Jiangsu, 221009, China.
| |
Collapse
|
10
|
Yim J, Park J, Kim G, Lee HH, Chung JS, Jo A, Koh M, Park J. Conditional PROTAC: Recent Strategies for Modulating Targeted Protein Degradation. ChemMedChem 2024; 19:e202400326. [PMID: 38993102 PMCID: PMC11581424 DOI: 10.1002/cmdc.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising technology for inducing targeted protein degradation by leveraging the intrinsic ubiquitin-proteasome system (UPS). While the potential druggability of PROTACs toward undruggable proteins has accelerated their rapid development and the wide-range of applications across diverse disease contexts, off-tissue effects and side-effects of PROTACs have recently received attentions to improve their efficacy. To address these issues, spatial or temporal target protein degradation by PROTACs has been spotlighted. In this review, we explore chemical strategies for modulating protein degradation in a cell type-specific (spatio-) and time-specific (temporal-) manner, thereby offering insights for expanding PROTAC applications to overcome the current limitations of target protein degradation strategy.
Collapse
Affiliation(s)
- Junhyeong Yim
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
| | - Junyoung Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| | - Gabin Kim
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Hyung Ho Lee
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Jin Soo Chung
- Department of UrologyUrological Cancer CenterResearch Institute and Hospital of National Cancer CenterGoyang10408Republic of Korea
| | - Ala Jo
- Center for NanomedicineInstitute for Basic ScienceSeoul03722Republic of Korea
| | - Minseob Koh
- Department of Chemistry and ChemistryInstitute for Functional MaterialsPusan National UniversityBusan46241Republic of Korea
| | - Jongmin Park
- Department of ChemistryKangwon National UniversityChuncheon24341Republic of Korea
- Multidimensional Genomics Research CenterKangwon National UniversityChuncheon24341Republic of Korea
- Institute for Molecular Science and Fusion TechnologyKangwon National UniversityChuncheon24341Republic of Korea
| |
Collapse
|
11
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
12
|
Venkatesan J, Murugan D, Lakshminarayanan K, Smith AR, Vasanthakumari Thirumalaiswamy H, Kandhasamy H, Zender B, Zheng G, Rangasamy L. Powering up targeted protein degradation through active and passive tumour-targeting strategies: Current and future scopes. Pharmacol Ther 2024; 263:108725. [PMID: 39322067 DOI: 10.1016/j.pharmthera.2024.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a prominent and vital strategy for therapeutic intervention of cancers and other diseases. One such approach involves the exploration of proteolysis targeting chimeras (PROTACs) for the selective elimination of disease-causing proteins through the innate ubiquitin-proteasome pathway. Due to the unprecedented achievements of various PROTAC molecules in clinical trials, researchers have moved towards other physiological protein degradation approaches for the targeted degradation of abnormal proteins, including lysosome-targeting chimeras (LYTACs), autophagy-targeting chimeras (AUTACs), autophagosome-tethering compounds (ATTECs), molecular glue degraders, and other derivatives for their precise mode of action. Despite numerous advantages, these molecules face challenges in solubility, permeability, bioavailability, and potential off-target or on-target off-tissue effects. Thus, an urgent need arises to direct the action of these degrader molecules specifically against cancer cells, leaving the proteins of non-cancerous cells intact. Recent advancements in TPD have led to innovative delivery methods that ensure the degraders are delivered in a cell- or tissue-specific manner to achieve cell/tissue-selective degradation of target proteins. Such receptor-specific active delivery or nano-based passive delivery of the PROTACs could be achieved by conjugating them with targeting ligands (antibodies, aptamers, peptides, or small molecule ligands) or nano-based carriers. These techniques help to achieve precise delivery of PROTAC payloads to the target sites. Notably, the successful entry of a Degrader Antibody Conjugate (DAC), ORM-5029, into a phase 1 clinical trial underscores the therapeutic potential of these conjugates, including LYTAC-antibody conjugates (LACs) and aptamer-based targeted protein degraders. Further, using bispecific antibody-based degraders (AbTACs) and delivering the PROTAC pre-fused with E3 ligases provides a solution for cell type-specific protein degradation. Here, we highlighted the current advancements and challenges associated with developing new tumour-specific protein degrader approaches and summarized their potential as single agents or combination therapeutics for cancer.
Collapse
Affiliation(s)
- Janarthanan Venkatesan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India; Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India; School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kalaiarasu Lakshminarayanan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India; Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Alexis R Smith
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Harashkumar Vasanthakumari Thirumalaiswamy
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India; Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Hariprasath Kandhasamy
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Boutheina Zender
- Department of Biomedical Engineering, Bahçeşehir University, Istanbul 34353, Turkey
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
13
|
Zhao W, Jiang Y, Li X, Wang H. Nanotechnology-Enabled Targeted Protein Degradation for Cancer Therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2020. [PMID: 39663650 DOI: 10.1002/wnan.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/11/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Targeted protein degradation (TPD) represents an innovative therapeutic strategy that has garnered considerable attention from both academic and industrial sectors due to its promising developmental prospects. Approximately 85% of human proteins are implicated in disease pathogenesis, and the FDA has approved around 400 drugs targeting these disease-related proteins, predominantly enzymes, transcription factors, and non-enzymatic proteins. However, existing therapeutic modalities fail to address certain "high-value" targets, such as c-Myc and Ras. The emergence of proteolysis-targeting chimeras (PROTAC) technology has introduced TPD into a new realm. The capability to target non-druggable sites has expanded the therapeutic horizon of protein-based drugs, although challenges related to bioavailability, safety, and adverse side effects have constrained their clinical progression. Nano-delivery systems and emerging TPD modalities, such as molecular glues, lysosome-targeted chimeras (LYTACs), autophagy system compounds (ATTEC), and antibody PROTAC (AbTACs), have mitigated some of these limitations. This paper reviews the latest advancements in TPD, highlighting their applications and benefits in cancer therapy, and concludes with a forward-looking perspective on the future development of this field.
Collapse
Affiliation(s)
- Wutong Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | | | - Xiufen Li
- The Second Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| |
Collapse
|
14
|
Wu M, Zhao Y, Zhang C, Pu K. Advancing Proteolysis Targeting Chimera (PROTAC) Nanotechnology in Protein Homeostasis Reprograming for Disease Treatment. ACS NANO 2024; 18:28502-28530. [PMID: 39377250 DOI: 10.1021/acsnano.4c09800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a transformative class of therapeutic agents that leverage the intrinsic protein degradation machinery to modulate the hemostasis of key disease-associated proteins selectively. Although several PROTACs have been approved for clinical application, suboptimal therapeutic efficacy and potential adverse side effects remain challenging. Benefiting from the enhanced targeted delivery, reduced systemic toxicity, and improved bioavailability, nanomedicines can be tailored with precision to integrate with PROTACs which hold significant potential to facilitate PROTAC nanomedicines (nano-PROTACs) for clinical translation with enhanced efficacy and reduced side effects. In this review, we provide an overview of the recent progress in the convergence of nanotechnology with PROTAC design, leveraging the inherent properties of nanomaterials, such as lipids, polymers, inorganic nanoparticles, nanohydrogels, proteins, and nucleic acids, for precise PROTAC delivery. Additionally, we discuss the various categories of PROTAC targets and provide insights into their clinical translational potential, alongside the challenges that need to be addressed.
Collapse
Affiliation(s)
- Mengyao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilan Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
15
|
Yan S, Zhang G, Luo W, Xu M, Peng R, Du Z, Liu Y, Bai Z, Xiao X, Qin S. PROTAC technology: From drug development to probe technology for target deconvolution. Eur J Med Chem 2024; 276:116725. [PMID: 39083982 DOI: 10.1016/j.ejmech.2024.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Drug development remains a critical focus within the global pharmaceutical industry. To date, more than 80 % of disease targets are considered difficult to target. The emergence of PROTAC technology has, to some extent, alleviated this challenge. Since introduction, PROTAC technology has evolved through the peptide E3 ligase ligand phase and the small molecule E3 ligase ligand phase. Currently, multiple PROTAC molecules are in the clinical research phase, showing promising potential for addressing drug resistance, disease recurrence, and intractable targets. Target deconvolution is a crucial step in the drug discovery and development process. Due to the exceptional targeting ability and specificity of PROTAC, it is widely used and promoted as an innovative technology for discovering new drug targets, leading to significant breakthroughs. The use of PROTAC probe requires only a catalytic dose and weak interaction with the target protein to achieve target degradation. Thus, it offers substantial advantages over traditional probes, particularly in identifying new targets that are low-abundance or difficult to target. This review provides a comprehensive overview of the advancements made by PROTAC technology in drug development and drug target discovery, while also systematically reviewing the workflow of PROTAC probe. With the ongoing development of PROTAC technology, PROTAC probe is poised to become a key research area in future drug target deconvolution.
Collapse
Affiliation(s)
- Si Yan
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China
| | - Guangshuai Zhang
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China
| | - Wei Luo
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Mengwei Xu
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Rui Peng
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Yan Liu
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Zhaofang Bai
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| | - Xiaohe Xiao
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| | - Shuanglin Qin
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| |
Collapse
|
16
|
Chen Y, Liu F, Pal S, Hu Q. Proteolysis-targeting drug delivery system (ProDDS): integrating targeted protein degradation concepts into formulation design. Chem Soc Rev 2024; 53:9582-9608. [PMID: 39171633 DOI: 10.1039/d4cs00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a revolutionary paradigm in drug discovery and development, offering a promising avenue to tackle challenging therapeutic targets. Unlike traditional drug discovery approaches that focus on inhibiting protein function, TPD aims to eliminate proteins of interest (POIs) using modular chimeric structures. This is achieved through the utilization of proteolysis-targeting chimeras (PROTACs), which redirect POIs to E3 ubiquitin ligases, rendering them for degradation by the cellular ubiquitin-proteasome system (UPS). Additionally, other TPD technologies such as lysosome-targeting chimeras (LYTACs) and autophagy-based protein degraders facilitate the transportation of proteins to endo-lysosomal or autophagy-lysosomal pathways for degradation, respectively. Despite significant growth in preclinical TPD research, many chimeras fail to progress beyond this stage in the drug development. Various factors contribute to the limited success of TPD agents, including a significant hurdle of inadequate delivery to the target site. Integrating TPD into delivery platforms could surmount the challenges of in vivo applications of TPD strategies by reshaping their pharmacokinetics and pharmacodynamic profiles. These proteolysis-targeting drug delivery systems (ProDDSs) exhibit superior delivery performance, enhanced targetability, and reduced off-tissue side effects. In this review, we will survey the latest progress in TPD-inspired drug delivery systems, highlight the importance of introducing delivery ideas or technologies to the development of protein degraders, outline design principles of protein degrader-inspired delivery systems, discuss the current challenges, and provide an outlook on future opportunities in this field.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
17
|
Song C, Jiao Z, Hou Z, Xing Y, Sha X, Wang Y, Chen J, Liu S, Li Z, Yin F. Versatile Split-and-Mix Liposome PROTAC Platform for Efficient Degradation of Target Protein In Vivo. JACS AU 2024; 4:2915-2924. [PMID: 39211615 PMCID: PMC11350581 DOI: 10.1021/jacsau.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024]
Abstract
PROTAC (Proteolysis TArgeting Chimeras) is a promising therapeutic approach for targeted protein degradation that recruits an E3 ubiquitin ligase to a specific protein of interest (POI), leading to its degradation by the proteasome. Recently, we developed a novel split-and-mix PROTAC system based on liposome self-assembly (LipoSM-PROTAC) which could achieve target protein degradation at comparable concentrations comparable to small molecules. In this study, we expanded protein targets based on the LipoSM-PROTAC platform and further examined its therapeutic effects in vivo. Notably, this platform could efficiently degrade the protein level of MEK1/2 in A375 cells or Alk in NCI-H2228 cells and display obvious tumor inhibition (60-70% inhibition rate) with negligible toxicity. This study further proved the LipoSM-PROTAC's application potentials.
Collapse
Affiliation(s)
- Chunli Song
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Zijun Jiao
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518118, China
- Frontiers
Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Zhanfeng Hou
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Yun Xing
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Xinrui Sha
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518118, China
| | - Yuechen Wang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Jiaxin Chen
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518118, China
| | - Susheng Liu
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518118, China
| | - Zigang Li
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518118, China
| | - Feng Yin
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Pingshan
Translational Medicine Center, Shenzhen
Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
18
|
Fan L, Tong W, Wei A, Mu X. Progress of proteolysis-targeting chimeras (PROTACs) delivery system in tumor treatment. Int J Biol Macromol 2024; 275:133680. [PMID: 38971291 DOI: 10.1016/j.ijbiomac.2024.133680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) can use the intrinsic protein degradation system in cells to degrade pathogenic target proteins, and are currently a revolutionary frontier of development strategy for tumor treatment with small molecules. However, the poor water solubility, low cellular permeability, and off-target side effects of most PROTACs have prevented them from passing the preclinical research stage of drug development. This requires the use of appropriate delivery systems to overcome these challenging hurdles and ensure precise delivery of PROTACs towards the tumor site. Therefore, the combination of PROTACs and multifunctional delivery systems will open up new research directions for targeted degradation of tumor proteins. In this review, we systematically reviewed the design principles and the most recent advances of various PROTACs delivery systems. Moreover, the constructive strategies for developing multifunctional PROTACs delivery systems were proposed comprehensively. This review aims to deepen the understanding of PROTACs drugs and promote the further development of PROTACs delivery system.
Collapse
Affiliation(s)
- Lianlian Fan
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Weifang Tong
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130021, China
| | - Anhui Wei
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
19
|
Chen Y, Zhang L, Fang L, Chen C, Zhang D, Peng T. Modular Development of Enzyme-Activatable Proteolysis Targeting Chimeras for Selective Protein Degradation and Cancer Targeting. JACS AU 2024; 4:2564-2577. [PMID: 39055140 PMCID: PMC11267540 DOI: 10.1021/jacsau.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 07/27/2024]
Abstract
As an emerging therapeutic modality, proteolysis targeting chimeras (PROTACs) indiscriminately degrade proteins in both healthy and diseased cells, posing a risk of on-target off-site toxicity in normal tissues. Herein, we present the modular development of enzyme-activatable PROTACs, which utilize enzyme-recognition moieties to block protein degradation activities and can be specifically activated by elevated enzymes in cancer cells to enable cell-selective protein degradation and cancer targeting. We identified the methylene alkoxy carbamate (MAC) unit as an optimal self-immolative linker, possessing high stability and release efficiency for conjugating enzyme-recognition moieties with PROTACs. Leveraging the MAC linker, we developed a series of enzyme-activatable PROTACs, harnessing distinct enzymes for cancer-cell-selective protein degradation. Significantly, we introduced the first dual-enzyme-activatable PROTAC that requires the presence of two cancer-associated enzymes for activation, demonstrating highly selective protein degradation in cancer cells over nonmalignant cells, potent in vivo antitumor efficacy, and no off-tumor toxicity to normal tissues. The broad applicability of enzyme-activatable PROTACs was further demonstrated by caging other PROTACs via the MAC linker to target different proteins and E3 ligases. Our work underscores the substantial potential of enzyme-activatable PROTACs in overcoming the off-site toxicity associated with conventional PROTACs and offers new opportunities for targeted cancer treatment.
Collapse
Affiliation(s)
- Yanchi Chen
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- National
Key Laboratory of Non-Food Biomass Energy Technology, National Engineering
Research Center for Non-Food Biorefinery, Institute of Grand Health, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Lina Zhang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Lincheng Fang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Chengjie Chen
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Dong Zhang
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
| | - Tao Peng
- State
Key Laboratory of Chemical Oncogenomics, School of Chemical Biology
and Biotechnology, Peking University Shenzhen
Graduate School, Shenzhen 518055, China
- Institute
of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
20
|
Zhan J, Li X, Mu Y, Yao H, Zhu JJ, Zhang J. A photoactivatable upconverting nanodevice boosts the lysosomal escape of PROTAC degraders for enhanced combination therapy. Biomater Sci 2024; 12:3686-3699. [PMID: 38873991 DOI: 10.1039/d4bm00548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
PROteolysis TArgeting Chimeras have received increasing attention due to their capability to induce potent degradation of various disease-related proteins. However, the effective and controlled cytosolic delivery of current small-molecule PROTACs remains a challenge, primarily due to their intrinsic shortcomings, including unfavorable solubility, poor cell permeability, and limited spatiotemporal precision. Here, we develop a near-infrared light-controlled PROTAC delivery device (abbreviated as USDPR) that allows the efficient photoactivation of PROTAC function to achieve enhanced protein degradation. The nanodevice is constructed by encapsulating the commercial BRD4-targeting PROTACs (dBET6) in the hollow cavity of mesoporous silica-coated upconversion nanoparticles, followed by coating a Rose Bengal (RB) photosensitizer conjugated poly-L-lysine (PLL-RB). This composition enables NIR light-activatable generation of cytotoxic reactive oxygen species due to the energy transfer from the UCNPs to PLL-RB, which boosts the endo/lysosomal escape and subsequent cytosolic release of dBET6. We demonstrate that USDPR is capable of effectively degrading BRD4 in a NIR light-controlled manner. This in combination with NIR light-triggered photodynamic therapy enables an enhanced antitumor effect both in vitro and in vivo. This work thus presents a versatile strategy for controlled release of PROTACs and codelivery with photosensitizers using an NIR-responsive nanodevice, providing important insight into the design of effective PROTAC-based combination therapy.
Collapse
Affiliation(s)
- Jiayin Zhan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yueru Mu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Huiqin Yao
- Department of Medical Chemistry, College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Wang J, Wang Y, Yang F, Luo Q, Hou Z, Xing Y, Lu F, Li Z, Yin F. A Novel Lysosome Targeting Chimera for Targeted Protein Degradation via Split-and-Mix Strategy. ACS Chem Biol 2024; 19:1161-1168. [PMID: 38662199 DOI: 10.1021/acschembio.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Targeted protein degradation is becoming more and more important in the field of drug development. Compared with proteasomal-based degraders, lysosomal-based degraders have a broader target spectrum of targets, which have been demonstrated to have great potential, especially in degrading undruggable proteins. Recently, we developed a programmable and facile screening PROTAC development platform based on peptide self-assembly termed split-and-mix PROTAC (SM-PROTAC). In this study, we applied this technology for the development of lysosome-based degraders, named a split-and-mix chaperone-mediated autophagy-based degrader (SM-CMAD). We successfully demonstrated SM-CMAD as a universal platform by degrading several targets, including ERα, AR, MEK1/2, and BCR-ABL. Different from other lysosomal-based degraders, SM-CMAD was capable of facile screening with programmable ligand ratios. We believe that our work will promote the development of other multifunctional molecules and clinical translation for lysosomal-based degraders.
Collapse
Affiliation(s)
- Jinpeng Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuechen Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | | | - Qinhong Luo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Department of Pharmacy, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun Xing
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
22
|
Zhong J, Zhao R, Wang Y, Su YX, Lan X. Nano-PROTACs: state of the art and perspectives. NANOSCALE 2024; 16:4378-4391. [PMID: 38305466 DOI: 10.1039/d3nr06059d] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
PROteolysis TArgeting Chimeras (PROTACs), as a recently identified technique in the field of new drug development, provide new concepts for disease treatment and are expected to revolutionize drug discovery. With high specificity and flexibility, PROTACs serve as an innovative research tool to target and degrade disease-relevant proteins that are not currently pharmaceutically vulnerable to eliminating their functions by hijacking the ubiquitin-proteasome system. To date, PROTACs still face the challenges of low solubility, poor permeability, off-target effects, and metabolic instability. The combination of nanotechnology and PROTACs has been explored to enhance the in vivo performance of PROTACs regarding overcoming these challenging hurdles. In this review, we summarize the latest advancements in the building-block design of PROTAC prodrug nanoparticles and provide an overview of existing/potential delivery systems and loading approaches for PROTAC drugs. Furthermore, we discuss the current status and prospects of the split-and-mix approach for PROTAC drug optimization. Additionally, the advantages and translational potentials of carrier-free nano-PROTACs and their combinational therapeutic effects are highlighted. This review aims to foster a deeper understanding of this rapidly evolving field and facilitate the progress of nano-PROTACs that will continue to push the boundaries of achieving selectivity and controlled release of PROTAC drugs.
Collapse
Affiliation(s)
- Jie Zhong
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China.
| | - Ruiqi Zhao
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China.
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Yu-Xiong Su
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China.
| | - Xinmiao Lan
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
23
|
Ma B, Liu D, Zheng M, Wang Z, Zhang D, Jian Y, Ma J, Fan Y, Chen Y, Gao Y, Liu J, Li X, Li L. Development of a Double-Stapled Peptide Stabilizing Both α-Helix and β-Sheet Structures for Degrading Transcription Factor AR-V7. JACS AU 2024; 4:816-827. [PMID: 38425893 PMCID: PMC10900202 DOI: 10.1021/jacsau.3c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
Peptide drugs offer distinct advantages in therapeutics; however, their limited stability and membrane penetration abilities hinder their widespread application. One strategy to overcome these challenges is the hydrocarbon peptide stapling technique, which addresses issues such as poor conformational stability, weak proteolytic resistance, and limited membrane permeability. Nonetheless, while peptide stapling has successfully stabilized α-helical peptides, it has shown limited applicability for most β-sheet peptide motifs. In this study, we present the design of a novel double-stapled peptide capable of simultaneously stabilizing both α-helix and β-sheet structures. Our designed double-stapled peptide, named DSARTC, specifically targets the androgen receptor (AR) DNA binding domain and MDM2 as E3 ligase. Serving as a peptide-based PROTAC (proteolysis-targeting chimera), DSARTC exhibits the ability to degrade both the full-length AR and AR-V7. Molecular dynamics simulations and circular dichroism analysis validate the successful constraint of both secondary structures, demonstrating that DSARTC is a "first-in-class" heterogeneous-conformational double-stapled peptide drug candidate. Compared to its linear counterpart, DSARTC displays enhanced stability and an improved cell penetration ability. In an enzalutamide-resistant prostate cancer animal model, DSARTC effectively inhibits tumor growth and reduces the levels of both AR and AR-V7 proteins. These results highlight the potential of DSARTC as a more potent and specific peptide PROTAC for AR-V7. Furthermore, our findings provide a promising strategy for expanding the design of staple peptide-based PROTAC drugs, targeting a wide range of "undruggable" transcription factors.
Collapse
Affiliation(s)
- Bohan Ma
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Donghua Liu
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Mengjun Zheng
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhe Wang
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Dize Zhang
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yanlin Jian
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jian Ma
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yizeng Fan
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yule Chen
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yang Gao
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jing Liu
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiang Li
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Lei Li
- Department
of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|