1
|
He CT, Yu LH, Liu H, Wang Q, Ye ZM, Zhang J, Wang LD, He MQ, Zhang XF, Du HG, Lu ZW, Yang J, Huang HH, Chen XM. Post-oxidation of all-organic electrocatalysts to promote O-O coupling in water oxidation. Nat Commun 2025; 16:4389. [PMID: 40355445 PMCID: PMC12069523 DOI: 10.1038/s41467-025-59771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
Covalently bonded metal-free electrocatalysts exhibit significant potential for sustainable energy technologies, yet their performances remain unsatisfactory compared with metal-based catalysts. Herein, we propose an all-organic electrocatalyst, MEC-2, that conforms to the infrequent oxide path mechanism in alkaline oxygen evolution reaction through post-oxidation modification. MEC-2 achieves an intrinsic overpotential of 257.7 ± 0.6 mV at 10 mA·cm-2 and possesses durability with negligible degradation over 100,000 CV cycles or 250 h of operation at 1.0 A·cm-2, being comparable to the advanced metal-based OER electrocatalysts. The 18O-labeled operando characterization and theoretical calculations unveil that post-oxidation modification enhances the electron affinity to OH intermediates, and adjusts the adsorption configuration and proximity distance of O intermediates, thereby promoting direct O-O radical coupling. In this work, we show a fresh perspective for understanding the role of non-metallic elements/functional groups in electrocatalysis, and to a certain extent, narrows the gap between all-organic electrocatalysts and metal-based electrocatalysts.
Collapse
Affiliation(s)
- Chun-Ting He
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| | - Li-Hong Yu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
| | - Haiming Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qing Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zi-Ming Ye
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, FuZhou, 350007, China
| | - Jia Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| | - Li-Dong Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
| | - Mei-Qian He
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
| | - Xue-Feng Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
| | - Hong-Gang Du
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
| | - Zi-Wei Lu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
| | - Jian Yang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
| | - Hai-Hua Huang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
2
|
Chen J, Yan S, Wang F, Lin F, Lin J, Borse RA, Wang Y. Redox-Mediated TEMPO-Based Donor-Acceptor Covalent Organic Framework for Efficient Photo-Induced Hydrogen Peroxide Generation. Angew Chem Int Ed Engl 2025; 64:e202500924. [PMID: 39976393 DOI: 10.1002/anie.202500924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
Molecular engineering of covalent organic frameworks (COFs) offers an alternative approach to conventional anthraquinone oxidation via photo-induced H2O2 production from O2 reduction. Despite their potential, reported photocatalysts suffer limited proton mobility, low selectivity, and insufficient charge separation and utilization. Herein, we report a nitroxyl radical (TEMPO) decorated two-dimensional (2D) donor-acceptor (D-A)-COF photocatalyst via a one-pot strategy. Under visible light irradiation, highly crystalline TAPP-TPDA-TEMPO-COF (TT-T-COF) exhibits a remarkable photocatalytic H2O2 yield of 10066 μmol g-1 h-1 in two-phase water-benzyl alcohol (10 % BA) system through direct two-electron (2e-) pathway. The mechanistic study by DFT calculations and in situ DRIFT spectra suggests Yeager-type adsorption of *O2⋅- intermediate on the nitroxyl radical site (N-O⋅). The efficient photocatalytic performance and stability of TT-T-COF are attributed to the involvement of the nitroxyl radical, which enhances selective O2 adsorption, establishes a distinct electron density distribution, and facilitates photogenerated charge separation compared to TT-HT-COF and TT-COF counterparts. This study uncovers a new perspective for constructing metal-free, redox-mediated radical-based COFs for sustainable energy conversion, storage, and biomedical applications.
Collapse
Affiliation(s)
- Junlan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shichen Yan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
| | - Futong Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
| | - Fuwen Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
| | - Jing Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, P. R. China
| | - Rahul Anil Borse
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, P. R. China
| |
Collapse
|
3
|
Wang C, Geng L, Bi Y. Highly Active Oxygen Evolution Integrating with Highly Selective CO 2-to-CO Reduction. NANO-MICRO LETTERS 2025; 17:184. [PMID: 40074988 PMCID: PMC11904044 DOI: 10.1007/s40820-025-01688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
Artificial carbon fixation is a promising pathway for achieving the carbon cycle and environment remediation. However, the sluggish kinetics of oxygen evolution reaction (OER) and poor selectivity of CO2 reduction seriously limited the overall conversion efficiencies of solar energy to chemical fuels. Herein, we demonstrated a facile and feasible strategy to rationally regulate the coordination environment and electronic structure of surface-active sites on both photoanode and cathode. More specifically, the defect engineering has been employed to reduce the coordination number of ultrathin FeNi catalysts decorated on BiVO4 photoanodes, resulting in one of the highest OER activities of 6.51 mA cm-2 (1.23 VRHE, AM 1.5G). Additionally, single-atom cobalt (II) phthalocyanine anchoring on the N-rich carbon substrates to increase Co-N coordination number remarkably promotes CO2 adsorption and activation for high selective CO production. Their integration achieved a record activity of 109.4 μmol cm-2 h-1 for CO production with a faradaic efficiency of > 90%, and an outstanding solar conversion efficiency of 5.41% has been achieved by further integrating a photovoltaic utilizing the sunlight (> 500 nm).
Collapse
Affiliation(s)
- Chaowei Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Laihong Geng
- Gansu Research Institute of Chemical Industry Co., Ltd, Lanzhou, 730000, People's Republic of China
| | - Yingpu Bi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
4
|
Wu X, Wang H, Huang N. Three-Dimensional Covalent Organic Frameworks with lil Topology. J Am Chem Soc 2025; 147:6016-6022. [PMID: 39921914 DOI: 10.1021/jacs.4c16422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
The diversity of covalent organic frameworks (COFs) is continuously expanding, providing various materials with tailor-made structures and properties. However, the development of crystalline three-dimensional (3D) COFs with new topologies is an essential but arduous challenge. In this study, we first developed one kind of 3D COFs with the lil topological structure, which were assembled by D4h- and C2h-symmetric building blocks. The 3D COFs were determined in a space group of Imma, in which each D4h-symmetric unit is connected with four C2h-symmetric units, forming a noninterpenetrated network. The densely packed copper phthalocyanine and stable polyimide linkage render these COFs as a polymeric material with high dielectric constant and low dielectric loss at high frequencies (>1 kHz). Significantly, the dielectric constant was determined as high as 63, which constitutes a new record value among phthalocyanine-based and polyimide polymers. Therefore, this study not only provides important guidance for the design of 3D lil-net COFs but also supplies promising materials for application in high-energy-density and pulsed capacitors.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hanwen Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Lin W, Chen J, Zhang X, Lin J, Lin F, Huang S, Wang Y. Photo-Driven Ammonia Synthesis via a Proton-Mediated Photoelectrochemical Device. Angew Chem Int Ed Engl 2025; 64:e202422869. [PMID: 39777857 DOI: 10.1002/anie.202422869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
N2 reduction reaction (NRR) by light is an energy-saving and sustainable ammonia (NH3) synthesis technology. However, it faces significant challenges, including high energy barriers of N2 activation and unclear catalytic active sites. Herein, we propose a strategy of photo-driven ammonia synthesis via a proton-mediated photoelectrochemical device. We used redox-catalysis covalent organic framework (COF), with a redox site (-C=O) for H+ reversible storage and a catalytic site (porphyrin Au) for NRR. In the proton-mediated photoelectrochemical device, the COF can successfully store e- and H+ generated by hydrogen oxidation reaction, forming COF-H. Then, these stored e- and H+ can be used for photo-driven NRR (108.97 umol g-1) under low proton concentration promoted by the H-bond network formed between -OH in COF-H and N2 on Au, which enabled N2 hydrogenation and NH3 production, establishing basis for advancing artificial photosynthesis and enhancing ammonia synthesis technology.
Collapse
Affiliation(s)
- Wan Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Jiajie Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, P. R. China
| | - Xiang Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, P. R. China
| | - Jing Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, P. R. China
| | - Fuwen Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - ShenXia Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
6
|
Chen H, Wang Z, Zhao Y, Song ZL, Fan GC, Luo X. Enhanced Anti-Interference Photoelectrochemical DNA Bioassay: Grafting a Peptide-Conjugated Hairpin DNA Probe on a COF-Based Photocathode. ACS Sens 2025; 10:507-516. [PMID: 39761446 DOI: 10.1021/acssensors.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Precise and sensitive analysis of specific DNA in actual human bodily fluids is crucial for the early diagnosis of major diseases and for a deeper understanding of DNA functions. Herein, by grafting a peptide-conjugated hairpin DNA probe to a covalent organic framework (COF)-based photocathode, a robust anti-interference photoelectrochemical (PEC) DNA bioassay was explored, which could specifically resist potential interference from nonspecific proteins and reducing species. Human immunodeficiency virus (HIV) DNA was used as the target DNA (tDNA) for the PEC DNA bioassay. The vinyl-functionalized COF (COF-V) was modified with meso-tetra(4-carboxyphenyl)-porphine (TCPP) and polydopamine (PDA) to fabricate a PDA/TCPP/COF-V photocathode, which served as the photocurrent signal transducer. Toward the unconventional recognition element, a hairpin DNA probe (hDNA) was efficiently linked with a linear zwitterionic peptide (LZP) to form the LZP-hDNA bioconjugate, which was then grafted onto the COF-based photocathode. The grafting of the LZP generated a sturdy anti-interference interface on the signal transducer. For tDNA probing, AgInS2 (AIS) quantum dots acted as signal quenchers, marked on signaling DNA (sDNA) to obtain AIS-sDNA labeling, and a striking drop in the photocurrent signal was achieved through λ-exonuclease (λ-Exo)-aided target recycling. This novel peptide-conjugated hairpin DNA probe endowed the PEC DNA bioassay with an impressive anti-interference property without requiring tedious steps. By combining the excellent photoelectric properties of the COF-based photocathode with an effective signaling strategy, accurate and sensitive results for tDNA probing were achieved.
Collapse
Affiliation(s)
- Huimin Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhen Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ying Zhao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhi-Ling Song
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Gao-Chao Fan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
7
|
Zhang C, Wang Y, Sun W, Hua Z, Zhang Z, Gong S, Wang D, Tian Y. Tailoring Non-Covalent Interaction Via Single Atom to Boost Interfacial Charge Transfer Toward Photoelectrochemical Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410632. [PMID: 39629535 DOI: 10.1002/adma.202410632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/19/2024] [Indexed: 01/30/2025]
Abstract
Photoelectrochemical (PEC) water splitting for hydrogen generation holds immense potential for addressing environmental and energy crises. Tailoring non-covalent interaction via a single atom is anticipated to realize prominent hole extracting facilitating PEC performance, but it has never been reported. In this study, single atom Co-N4 is coordinated with 5-fluoroanthranilic acid (FAA) molecules, then used as a non-covalent hole-extracting layer on a BiVO4 substrate. Experiments including X-ray absorption fine spectra, Kelvin probe force microscopy, transient absorption, and theoretical calculation demonstrate the FAA coordination alters the local configuration of the central Co atom, adjusting the interfacial non-covalent interaction, thereby reducing the barrier of charge transfer between BiVO4 and the hole-extracting layer. Consequently, photogenerated carriers are more effectively separated, and the PEC water oxidation performance is significantly enhanced with the photocurrent density of 5.47 mA cm-2 at 1.23 V versus RHE, much higher than those of previously reported BiVO4 photoanodes composited with porphyrin-based compounds. Experiments and theoretical simulation confirm that the boosted PEC performance originates from exceptional interfacial charge transfer rather than surface catalysis dynamic. This study provides an efficient strategy for tailoring non-covalent interaction by regulating single-atom coordination and promoting hole extract to boost PEC water oxidation activity.
Collapse
Affiliation(s)
- Chuanqi Zhang
- Department of Chemistry, Capital Normal University, Haidian, Beijing, 100048, P. R. China
| | - Yueyue Wang
- Department of Chemistry, Capital Normal University, Haidian, Beijing, 100048, P. R. China
| | - Wenming Sun
- Department of Chemistry, Capital Normal University, Haidian, Beijing, 100048, P. R. China
| | - Zhaorui Hua
- Department of Chemistry, Capital Normal University, Haidian, Beijing, 100048, P. R. China
| | - Zicong Zhang
- Department of Chemistry, Capital Normal University, Haidian, Beijing, 100048, P. R. China
| | - Shuyan Gong
- Department of Chemistry, Capital Normal University, Haidian, Beijing, 100048, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Haidian, Beijing, 100084, P. R. China
| | - Yang Tian
- Department of Chemistry, Capital Normal University, Haidian, Beijing, 100048, P. R. China
| |
Collapse
|
8
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
9
|
Dai N, Qian Y, Wang D, Huang J, Guan X, Lin Z, Yang W, Wang R, Huang J, Zang SQ, Jiang HL. Regulation of Coordinating Anions around Single Co(II) Sites in a Covalent Organic Framework for Boosting CO 2 Photoreduction. PRECISION CHEMISTRY 2024; 2:600-609. [PMID: 39611027 PMCID: PMC11600349 DOI: 10.1021/prechem.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
While photocatalytic CO2 reduction has been intensively investigated, reports on the influence of anions coordinated to catalytic metal sites on CO2 photoreduction remain limited. Herein, different coordinated anions (F-, Cl-, OAc-, and NO3 -) around single Co sites installed on bipyridine-based three-component covalent organic frameworks (COFs) were synthesized, affording TBD-COF-Co-X (X = F, Cl, OAc, and NO3), for photocatalytic CO2 reduction. Notably, the presence of these coordinated anions on the Co sites significantly influences the photocatalytic performance, where TBD-COF-Co-F exhibits superior activity to its counterparts. Combined experimental and theoretical results indicate that the enhanced activity in TBD-COF-Co-F is attributed to its efficient charge transfer, high CO2 adsorption capacity, and low energy barrier for CO2 activation. This study provides a new strategy for boosting COF photocatalysis through coordinated anion regulation around catalytic metal sites.
Collapse
Affiliation(s)
- Nan Dai
- Hefei
National Research Center for Physical Sciences at the Microscale,
Department of Chemistry, University of Science
and Technology of China, Hefei, Anhui 230026, China
- College
of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- School
of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui 230061, China
| | - Yunyang Qian
- Hefei
National Research Center for Physical Sciences at the Microscale,
Department of Chemistry, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Denan Wang
- Department of Chemistry and Schiller Institute of Integrated Science
and Society, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jiajia Huang
- Hefei
National Research Center for Physical Sciences at the Microscale,
Department of Chemistry, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Xinyu Guan
- Hefei
National Research Center for Physical Sciences at the Microscale,
Department of Chemistry, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Zhongyuan Lin
- Hefei
National Research Center for Physical Sciences at the Microscale,
Department of Chemistry, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Weijie Yang
- School
of Energy and Power Engineering, North China
Electric Power University, Baoding, Hebei 071003, China
| | - Rui Wang
- College
of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jier Huang
- Department of Chemistry and Schiller Institute of Integrated Science
and Society, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hai-Long Jiang
- Hefei
National Research Center for Physical Sciences at the Microscale,
Department of Chemistry, University of Science
and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Gong YN, Zhao SQ, Wang HJ, Ge ZM, Liao C, Tao KY, Zhong DC, Sakai K, Lu TB. A Planar-Structured Dinuclear Cobalt(II) Complex with Indirect Synergy for Photocatalytic CO 2-to-CO Conversion. Angew Chem Int Ed Engl 2024; 63:e202411639. [PMID: 38976517 DOI: 10.1002/anie.202411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Dinuclear metal synergistic catalysis (DMSC) has been proved an effective approach to enhance catalytic efficiency in photocatalytic CO2 reduction reaction, while it remains challenge to design dinuclear metal complexes that can show DMSC effect. The main reason is that the influence of the microenvironment around dinuclear metal centres on catalytic activity has not been well recognized and revealed. Herein, we report a dinuclear cobalt complex featuring a planar structure, which displays outstanding catalytic efficiency for photochemical CO2-to-CO conversion. The turnover number (TON) and turnover frequency (TOF) values reach as high as 14457 and 0.40 s-1 respectively, 8.6 times higher than those of the corresponding mononuclear cobalt complex. Control experiments and theoretical calculations revealed that the enhanced catalytic efficiency of the dinuclear cobalt complex is due to the indirect DMSC effect between two CoII ions, energetically feasible one step two-electron transfer process by Co2 I,I intermediate to afford Co2 II,II(CO2 2-) intermediate and fast mass transfer closely related with the planar structure.
Collapse
Affiliation(s)
- Yun-Nan Gong
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Si-Qi Zhao
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hong-Juan Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhao-Ming Ge
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Chen Liao
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ke-Ying Tao
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Di-Chang Zhong
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Ken Sakai
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
11
|
Dagnaw FW, Harrath K, Zheng T, Wu X, Liu Y, Li R, Xie L, Li Z, He X, Tong Q, Jian J. Molecularly Woven Cationic Covalent Organic Frameworks for Highly Selective Electrocatalytic Conversion of CO 2 to CO. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408152. [PMID: 39254191 PMCID: PMC11558085 DOI: 10.1002/advs.202408152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Coupling carbon capture with electrocatalytic carbon dioxide reduction (CO2R) to yield high-value chemicals presents an appealing avenue for combating climate change, yet achieving highly selective electrocatalysts remains a significant challenge. Herein, two molecularly woven covalent organic frameworks (COFs) are designed, namely CuCOF and CuCOF+, with copper(I)-bisphenanthroline complexes as building blocks. The metal-organic helical structure unit made the CuCOF and CuCOF+ present woven patterns, and their ordered pore structures and cationic properties enhanced their CO2 adsorption and good conductivity, which is confirmed by gas adsorption and electrochemical analysis. In the electrocatalytic CO2R measurements, CuCOF+ decorated with extra ethyl groups exhibit a main CO product with selectivity of 57.81%, outperforming the CuCOF with 42.92% CO at the same applied potential of 0.8 VRHE. After loading Pd nanoparticles, CuCOF-Pd and CuCOF+-Pd performed increased CO selectivity up to 84.97% and 95.45%, respectively. Combining the DFT theoretical calculations and experimental measurements, it is assumed that the molecularly woven cationic COF provides a catalytic microenvironment for CO2R and ensures efficient charge transfer from the electrode to the catalytic center, thereby achieving high electrocatalytic activity and selectivity. The present work significantly advances the practice of cationic COFs in real-time CO2 capture and highly selective conversion to value-added chemicals.
Collapse
Affiliation(s)
- Fentahun Wondu Dagnaw
- Department of ChemistryKey Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Provinceand Guangdong Provincial Key Laboratory of Marine Disaster Prediction and PreventionShantou UniversityGuangdong515063P. R. China
| | - Karim Harrath
- Department of ChemistrySouthern University of Science and TechnologyShenzhen518055P. R. China
- Fundamental Science Center of Rare EarthsGanjian Innovation Academy of SciencesGanzhou431000P. R. China
| | - Tao Zheng
- Department of ChemistryKey Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Provinceand Guangdong Provincial Key Laboratory of Marine Disaster Prediction and PreventionShantou UniversityGuangdong515063P. R. China
| | - Xu‐Dong Wu
- Department of ChemistryKey Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Provinceand Guangdong Provincial Key Laboratory of Marine Disaster Prediction and PreventionShantou UniversityGuangdong515063P. R. China
| | - Yu‐Ze Liu
- Department of ChemistryKey Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Provinceand Guangdong Provincial Key Laboratory of Marine Disaster Prediction and PreventionShantou UniversityGuangdong515063P. R. China
| | - Rui‐Qi Li
- Department of ChemistryKey Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Provinceand Guangdong Provincial Key Laboratory of Marine Disaster Prediction and PreventionShantou UniversityGuangdong515063P. R. China
| | - Luo‐Han Xie
- Department of ChemistryKey Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Provinceand Guangdong Provincial Key Laboratory of Marine Disaster Prediction and PreventionShantou UniversityGuangdong515063P. R. China
| | - Zhen Li
- Department of ChemistryKey Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Provinceand Guangdong Provincial Key Laboratory of Marine Disaster Prediction and PreventionShantou UniversityGuangdong515063P. R. China
| | - Xuezhong He
- Department of Chemical EngineeringGuangdong Technion – Israel Institute of TechnologyShantou515063P. R. China
| | - Qing‐Xiao Tong
- Department of ChemistryKey Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Provinceand Guangdong Provincial Key Laboratory of Marine Disaster Prediction and PreventionShantou UniversityGuangdong515063P. R. China
| | - Jing‐Xin Jian
- Department of ChemistryKey Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Provinceand Guangdong Provincial Key Laboratory of Marine Disaster Prediction and PreventionShantou UniversityGuangdong515063P. R. China
| |
Collapse
|
12
|
Wang Y, Huang J, Chen Y, Yang H, Ye KH, Huang Y. Modulating built-in electric field via Bi-VO 4-Fe interfacial bridges to enhance charge separation for efficient photoelectrochemical water splitting. J Colloid Interface Sci 2024; 672:12-20. [PMID: 38824684 DOI: 10.1016/j.jcis.2024.05.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Photoelectrochemical (PEC) water splitting on semiconductor electrodes is considered to be one of the important ways to produce clean and sustainable hydrogen fuel, which is a great help in solving energy and environmental problems. Bismuth vanadate (BiVO4) as a promising photoanode for photoelectrochemical water splitting still suffers from poor charge separation efficiency and photo-induced self-corrosion. Herein, we develop heterojunction-rich photoanodes composed of BiVO4 and iron vanadate (FeVO4), coated with nickel iron oxide (NiFeOx/FeVO4/BiVO4). The formation of the interface between BiVO4 and FeVO4 (Bi-VO4-Fe bridges) enhances the interfacial interaction, resulting in improved performance. Meanwhile, high-conductivity FeVO4 and NiFeOx oxygen evolution co-catalysts effectively enhance bulk electron/hole separation, interface water's kinetics and photostability. Concurrently, the optimized NiFeOx/FeVO4/BiVO4 possesses a remarkable photocurrent density of 5.59 mA/cm2 at 1.23 V versus reversible hydrogen electrode (vs RHE) under AM 1.5G (Air Mass 1.5 Global) simulated sunlight, accompanied by superior stability without any decreased of its photocurrent density after 14 h. This work not only reveals the crucial role of built-in electric field in BiVO4-based photoanode during PEC water splitting, but also provides a new guide to the design of efficient photoanode for PEC.
Collapse
Affiliation(s)
- Yingying Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou University; Guangdong Provincial Key Laboratory of Fuel Cell Technology, Guangzhou, 510006, China
| | - Jincheng Huang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou University; Guangdong Provincial Key Laboratory of Fuel Cell Technology, Guangzhou, 510006, China
| | - Yuxuan Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou University; Guangdong Provincial Key Laboratory of Fuel Cell Technology, Guangzhou, 510006, China
| | - Hao Yang
- School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Kai-Hang Ye
- Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, China.
| | - Yongchao Huang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou University; Guangdong Provincial Key Laboratory of Fuel Cell Technology, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Lin W, Lin F, Lin J, Xiao Z, Yuan D, Wang Y. Efficient Photocatalytic CO 2 Reduction in Ellagic Acid-Based Covalent Organic Frameworks. J Am Chem Soc 2024; 146:16229-16236. [PMID: 38815186 DOI: 10.1021/jacs.4c04185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Employing covalent organic frameworks (COFs) for the photocatalytic CO2 reduction reaction (CDRR) to generate high-value chemical fuels and mitigate greenhouse gas emissions represents a sustainable catalytic conversion approach. However, achieving superior photocatalytic CDRR performance is hindered by the challenges of low charge separation efficiency, poor stability, and high preparation costs associated with COFs. Herein, in this work, we utilized perfluorinated metallophthalocyanine (MPcF16) and the organic biomolecule compound ellagic acid (EA) as building blocks to actualize functional covalent organic frameworks (COFs) named EPM-COF (M = Co, Ni, Cu). The designed EPCo-COF, featuring cobalt metal active sites, demonstrated an impressive CO production rate and selectivity in the photocatalytic CO2 reduction reaction (CDRR). Moreover, following alkaline treatment (EPCo-COF-AT), the COF exposed carboxylic acid anion (COO-) and hydroxyl group (OH), thereby enhancing the electron-donating capability of EA. This modification achieved a heightened CO production rate of 17.7 mmol g-1 h-1 with an outstanding CO selectivity of 97.8% in efficient photocatalytic CDRR. Theoretical calculations further illustrated that EPCo-COF-AT functionalized with COO- and OH can effectively alleviate the energy barriers involved in the CDRR process, which facilitates the proton-coupled electron transfer processes and enhances the photocatalytic performance on the cobalt active sites within EPCo-COF-AT.
Collapse
Affiliation(s)
- Wan Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fuwen Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jing Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China
| | - Zhiwei Xiao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Daqiang Yuan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China
| |
Collapse
|
14
|
Luo W, Yu Y, Wu Y, Wang W, Jiang Y, Shen W, He R, Su W, Li M. Strong Interface Coupling Enables Stability of Amorphous Meta-Stable State in CoS/Ni 3S 2 for Efficient Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310387. [PMID: 38312084 DOI: 10.1002/smll.202310387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Indexed: 02/06/2024]
Abstract
Rational design of heterostructure catalysts through phase engineering strategy plays a critical role in heightening the electrocatalytic performance of catalysts. Herein, a novel amorphous/crystalline (a/c) heterostructure (a-CoS/Ni3S2) is manufactured by a facile hydrothermal sulfurization method. Strikingly, the interface coupling between amorphous phase (a-CoS) and crystalline phase (Ni3S2) in a-CoS/Ni3S2 is much stronger than that between crystalline phase (c-CoS) and crystalline phase (Ni3S2) in crystalline/crystalline (c/c) heterostructure (c-CoS/Ni3S2) as control sample, which makes the meta-stable amorphous structure more stable. Meanwhile, a-CoS/Ni3S2 has more S vacancies (Sv) than c-CoS/Ni3S2 because of the presence of an amorphous phase. Eventually, for the oxygen evolution reaction (OER), the a-CoS/Ni3S2 exhibits a significantly lower overpotential of 192 mV at 10 mA cm-2 compared to the c-CoS/Ni3S2 (242 mV). An exceptionally low cell voltage of 1.51 V is required to achieve a current density of 50 mA cm-2 for overall water splitting in the assembled cell (a-CoS/Ni3S2 || Pt/C). Theoretical calculations reveal that more charges transfer from a-CoS to Ni3S2 in a-CoS/Ni3S2 than in c-CoS/Ni3S2, which promotes the enhancement of OER activity. This work will bring into play a fabrication strategy of a/c catalysts and the understanding of the catalytic mechanism of a/c heterostructures.
Collapse
Affiliation(s)
- Wei Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Guangxi Teachers Education University, Nanning, 530001, China
| | - Yanli Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yucheng Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wenbin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Guangxi Teachers Education University, Nanning, 530001, China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
15
|
Wang J, Lei Y, Li S, Ma X, Li L. Three Birds with One Sulfur: Construction of Sulfur-Bridged Porous Organic Polymers for Efficient Gold Adsorption. ACS Macro Lett 2024; 13:632-637. [PMID: 38709177 DOI: 10.1021/acsmacrolett.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Sulfur is a massive byproduct of the petrochemicals industry and hardly employed as a building block for porous organic polymers (POPs). Here, a new family of sulfur-bridged POPs has been prepared via a C-H insertion reaction between sulfur and polycyclic aromatic hydrocarbons. Sulfur works as a solvent, external cross-linker, and porogen simultaneously during the polymerization process. The products demonstrate high porosity and maximum surface area of 1050 m2 g-1 with abundant accessible active sites, contributing to the nanometerization of sulfur and significantly enhancing the inherent affinity between heteroatoms toward soft metal ions. Therefore, they exhibit a high absorption capacity for Au(III) of 3287 mg g-1 and excellent absorption selectivity and removal efficiency via a performance evaluation even in real electronic wastewater. This synthetic strategy to prepare high added-value functional POPs with sulfur not only sheds light on designing high-performance gold adsorption materials and emerging POPs, but also promotes a sustainable development protocol.
Collapse
Affiliation(s)
- Jieyao Wang
- College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Yujie Lei
- College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Shijun Li
- College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Xingyu Ma
- College of Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Lei Li
- College of Materials, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
16
|
Borse RA, Tan YX, Lin J, Zhou E, Hui Y, Yuan D, Wang Y. Coupling Electron Transfer and Redox Site in Boranil Covalent Organic Framework Toward Boosting Photocatalytic Water Oxidation. Angew Chem Int Ed Engl 2024; 63:e202318136. [PMID: 38311595 DOI: 10.1002/anie.202318136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/06/2024]
Abstract
The efficient polymeric semiconducting photocatalyst for solar-driven sluggish kinetics with multielectron transfer oxygen evolution has spurred scientific interest. However, existing photocatalysts limited by π-conjugations, visible-light harvest, and charge transfer often compromise the O2 production rate. Herein, we introduced an alternative strategy involving a boranil functionalized-based fully π-conjugated ordered donor and acceptor (D-A) covalent organic frameworks (Ni-TAPP-COF-BF2 ) photocatalyst. The co-catalyst-free Ni-TAPP-COF-BF2 exhibits an excellent ~11-fold photocatalytic water oxidation rate, reaching 1404 μmol g-1 h-1 under visible light irradiation compared to pristine Ni-TAPP-COF (123 μmol g-1 h-1 ) alone and surpasses to reported organic frameworks counterpart. Both experimental and theoretical results demonstrate that the push/pull mechanism (metalloporphyrin/BF2 ) is responsible for the appropriate light-harvesting properties and extending π-conjugation through chelating BF2 moieties. This strategy benefits in narrowing band structure, improving photo-induced charge separation, and prolonged charge recombination. Further, the lower spin magnetic moment of M-TAPP-COF-BF2 and the closer d-band center of metal sites toward the Fermi level lead to a lower energy barrier for *O intermediate. Reveal the potential of the functionalization strategy and opens up an alternative approach for engineering future photocatalysts in energy conversion applications.
Collapse
Affiliation(s)
- Rahul Anil Borse
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, P. R. China
| | - Yan-Xi Tan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jing Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, P. R. China
| | - Enbo Zhou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yangdan Hui
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
- Institute of Molecular Engineering Plus, Fuzhou University, 350108, Fuzhou, Fujian, P. R. China
| | - Daqiang Yuan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
17
|
Yuan C, Fu S, Kang X, Cheng C, Jiang C, Liu Y, Cui Y. Mixed-Linker Chiral 2D Covalent Organic Frameworks with Controlled Layer Stacking for Electrochemical Asymmetric Catalysis. J Am Chem Soc 2024; 146:635-645. [PMID: 38148276 DOI: 10.1021/jacs.3c10478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Covalent organic frameworks (COFs) have undergone extensive research as heterogeneous catalysts for a wide range of significant reactions, but they have not yet been investigated in the realm of electrochemical asymmetric catalysis, despite their recognition as an economical and sustainable strategy for producing enantiopure compounds. Here, we report a mixed-linker strategy to design multicomponent two-dimensional (2D) chiral COFs with tunable layer stacking for highly enantioselective electrocatalysis. By crystallizing mixtures of triamines with and without the MacMillan imidazolidinone catalyst or aryl substituent (ethyl and isopropyl) and a dialdehyde derivative of thieno-[3,2-b]thiophene, we synthesized and structurally characterized a series of three-component homochiral 2D COFs featuring either AA or ABC stacking. The stacking modes that can be synthetically controlled through steric tuning using different aryl substituents affect their chemical stability and electrochemical performance. With the MacMillan catalyst periodically appended on their channels, all three COFs with conductive thiophene moieties can be highly enantioselective and recyclable electrocatalysts for the asymmetric α-arylation of aldehydes, affording alkylated anilines with up to 97% enantiomeric excess by an anodic oxidation/organocatalytic protocol. Presumably due to their higher charge transfer ability, the ABC stacking COFs exhibit improved reactivity compared to the AA stacking analogue. This work therefore advances COFs as electrocatalysts for asymmetric catalysis and may facilitate the design of more redox-active crystalline organic polymers for electrochemical enantioselective processes.
Collapse
Affiliation(s)
- Chen Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, P. R. China
- Analytical & Testing Centre, Sichuan University, Chengdu 610064, P. R. China
| | - Shiguo Fu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, P. R. China
| | - Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, P. R. China
| | - Cheng Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, P. R. China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, P. R. China
| |
Collapse
|
18
|
Fan Y, Kang DW, Labalme S, Lin W. A Spirobifluorene-Based Covalent Organic Framework for Dual Photoredox and Nickel Catalysis. J Am Chem Soc 2023; 145:25074-25079. [PMID: 37934955 DOI: 10.1021/jacs.3c09729] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as tunable, crystalline, and porous functional organic materials, but their application in photocatalysis has been limited by rapid excited-state quenching. Herein, we report the first example of dual photoredox/nickel catalysis by an sp2 carbon-conjugated spirobifluorene-based COF. Constructed from spirobifluorene and nickel-bipyridine linkers, the NiSCN COF adopted a two-dimensional structure with staggered stacking. Under light irradiation, NiSCN catalyzed amination and etherification/esterification reactions of aryl halides through the photoredox mechanism, with a catalytic efficiency more than 23-fold higher than that of its homogeneous control. NiSCN was used in five consecutive reactions without a significant loss of catalytic activity.
Collapse
Affiliation(s)
- Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Dong Won Kang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Steven Labalme
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|