1
|
Perras FA, Mentink-Vigier F, Pylaeva S. Perspectives on the Dynamic Nuclear Polarization Mechanisms of Monoradicals: Overhauser Effect or Thermal Mixing? J Phys Chem Lett 2025; 16:3420-3432. [PMID: 40146970 PMCID: PMC11998082 DOI: 10.1021/acs.jpclett.5c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
This mini-review summarizes the evolving debate regarding the origins of the absorptive features seen in the dynamic nuclear polarization (DNP) spectra of certain monoradicals when they are irradiated at their electron Larmor frequency. This feature has drawn attention due to its reverse scaling with respect to the magnetic field strength and potential for high-field DNP. Two competing hypotheses have been introduced to explain the DNP feature based on (1) the Overhauser effect and low-temperature molecular dynamics and (2) radical clustering and a thermal mixing mechanism. Since the original discovery, a large number of experimental observations have been made in attempts to understand and ultimately leverage the mechanism. We summarize these observations and provide critical assessments of how the competing hypotheses approach them.
Collapse
Affiliation(s)
- Frédéric A. Perras
- Chemical
and Biological Sciences Division, Ames National
Laboratory, Ames, Iowa 50011, United States
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Frédéric Mentink-Vigier
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
| | - Svetlana Pylaeva
- Department
of Chemistry, University of Paderborn, 33098 Paderborn, Germany
| |
Collapse
|
2
|
Hobo F, Tanimoto Y, Endo Y, Matsuki Y, Takahashi H. 400 MHz/263 GHz ultra-low temperature MAS-DNP using a closed-cycle helium gas cooling system and a solid-state microwave source. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2025; 373:107842. [PMID: 39946944 DOI: 10.1016/j.jmr.2025.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 03/17/2025]
Abstract
Dynamic nuclear polarization (DNP) is widely used in a wide range of applications in solid-state NMR nowadays due to recent advancements of magic-angle spinning (MAS) DNP. Conventionally, an MAS-DNP system employs a gyrotron as a microwave source and operates at ∼100 K using nitrogen gas. As an alternative, we present a 400 MHz/263 GHz MAS-DNP system utilizing a compact solid-state microwave source and an ultra-low temperature (ULT) helium MAS probe equipped with a cryogenic preamplifier. Compared to gyrotrons, solid-state microwave sources are compact, cost-effective, and frequency agile. The ULT compensates for the decreased DNP efficiency resulting from the lower microwave power of the solid-state source. Additionally, the large Boltzmann polarization at ULT and the improved signal-to-noise ratio provided by the cryogenic preamplifier enhance the sensitivity of the MAS-DNP system. The system is tested using a DNP standard sample of proline in a mixture of deuterated glycerol and partially deuterated water doped with AMUPol, achieving a DNP enhancement of 85 using a 2 mm-diameter rotor at a sample temperature of 30 K and microwave power of 160 mW. Experimental data show that the Boltzmann polarization and the cryogenic preamplifier contribute an additional sensitivity gain of 11× at 30 K compared to 100 K. Overall, the ULT-DNP related sensitivity gain of this system is estimated to be roughly twice that of a 100 K gyrotron system, although the DNP enhancement factor alone is smaller using a solid-state microwave source.
Collapse
Affiliation(s)
- Fumio Hobo
- JEOL Ltd., Akishima, Tokyo, 196-8558, Japan
| | | | - Yuki Endo
- JEOL Ltd., Akishima, Tokyo, 196-8558, Japan
| | - Yoh Matsuki
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | | |
Collapse
|
3
|
Palani RS, Mardini M, Quan Y, Ouyang Y, Mishra A, Griffin RG. Dynamic Nuclear Polarization with P1 Centers in Diamond. J Phys Chem Lett 2024; 15:11504-11509. [PMID: 39514770 DOI: 10.1021/acs.jpclett.4c02612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Substitutional nitrogen impurities within the diamond lattice, known as P1 centers, have unpaired electrons that can mediate microwave driven dynamic nuclear polarization (DNP). In this paper we explore DNP of the bulk 13C spins in micrometer-sized P1 diamond particles and demonstrate a 550-fold DNP enhancement of the bulk 13C spins at room temperature in a 9 T magnetic field or 250 GHz for g ≈ 2 electrons. We study the DNP mechanisms, exploring their dependence on sample spinning frequency and microwave irradiation frequency using both continuous wave and frequency swept microwave irradiation, and discuss the results alongside recent DNP studies in the literature. Even with a modest microwave irradiation power of 160 mW from our frequency swept solid-state microwave source, we achieve a significant 13C signal enhancement, ε = 270 at room temperature. The enhancements were found to increase with the magic angle spinning (MAS) frequency, ωr/2π, and the results provide mechanistic insights into how different electron populations contribute to the observed DNP efficiency. These findings are inherently interesting and of practical importance in view of the recently reported diamond rotors fabricated from P1 high-pressure, high-temperature (HPHT) diamond.
Collapse
Affiliation(s)
- Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifan Quan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifu Ouyang
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Mishra
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Nir-Arad O, Laster E, Daksi M, Manukovsky N, Kaminker I. On the peculiar EPR spectra of P1 centers at high (12-20 T) magnetic fields. Phys Chem Chem Phys 2024; 26:27633-27647. [PMID: 39468978 DOI: 10.1039/d4cp03055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The most common lattice defect in high-pressure high-temperature (HPHT) diamonds is the nitrogen substitution (P1) center. This is a paramagnetic defect with a single unpaired electron spin coupled to a 14N nuclear spin forming an S = 1/2, I = 1 spin system. While P1 centers have been studied by electron paramagnetic resonance (EPR) spectroscopy for decades, only recently did their behavior at ultra-high (>12 T) magnetic fields become of interest. This is because P1 centers were recently found to be very efficient polarizing agents in dynamic nuclear polarization (DNP) experiments, which are typically carried out at high magnetic fields. The P1 ultra-high field EPR spectra show multiple peaks which the lower fields spectra do not. In this paper, we present an account of the EPR spectra of P1 centers at ultra-high fields and show that the more complex spectra at 12-20 T are the result of significant state mixing in the mS = +1/2 electron spin manifold. The state mixing is a result of fulfilling the cancellation condition, meaning the e-14N hyperfine interaction equals twice the Larmor frequency of the 14N nuclear spin. We illustrate the influence of the cancellation condition on the EPR spectra by comparing EPR spectra acquired at 6.9 and 13.8 T. While the former are similar to the consensus spectra observed at lower fields, the latter are very different. We present numerical simulations that quantitatively account for the experimental spectra at both 6.9 and 13.8 T. Finally, we use electron electron double resonance (ELDOR) measurements to show that the cancellation condition results in increased spectral diffusion in the 13.8 T spectrum. This work sheds light on the spin properties of P1 centers under DNP-characteristic conditions, which will be conducive to their efficient utilization in DNP.
Collapse
Affiliation(s)
- Orit Nir-Arad
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Eyal Laster
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Mais Daksi
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Nurit Manukovsky
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Ilia Kaminker
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
5
|
Nir-Arad O, Fialkov AB, Shlomi DH, Manukovsky N, Mentink-Vigier F, Kaminker I. High-field pulsed EPR spectroscopy under magic angle spinning. SCIENCE ADVANCES 2024; 10:eadq6073. [PMID: 39213356 PMCID: PMC11364107 DOI: 10.1126/sciadv.adq6073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
In this work, we demonstrate the first pulsed electron paramagnetic resonance (EPR) experiments performed under magic angle spinning (MAS) at high magnetic field. Unlike nuclear magnetic resonance (NMR) and dynamic nuclear polarization (DNP), commonly performed at high magnetic fields and under MAS to maximize sensitivity and resolution, EPR is usually measured at low magnetic fields and, with the exception of the Spiess group work in the late 1990s, never under MAS, due to great instrumentational challenges. This hampers the investigation of DNP mechanisms, in which electron spin dynamics play a central role, because no experimental data about the latter under DNP-characteristic conditions are available. We hereby present our dedicated, homebuilt MAS-EPR probehead and show the pulsed MAS-EPR spectra of P1 center diamond defect recorded at 7 tesla. Our results reveal unique effects of MAS on EPR line shape, intensity, and signal dephasing. Time-domain simulations reproduce the observed changes in the line shapes and the trends in the signal intensity.
Collapse
Affiliation(s)
- Orit Nir-Arad
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | | | - David H. Shlomi
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Nurit Manukovsky
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Ilia Kaminker
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| |
Collapse
|
6
|
Chaklashiya RK, Equbal A, Shernyukov A, Li Y, Tsay K, Stern Q, Tormyshev V, Bagryanskaya E, Han S. Dynamic Nuclear Polarization Using Electron Spin Cluster. J Phys Chem Lett 2024; 15:5366-5375. [PMID: 38735065 DOI: 10.1021/acs.jpclett.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Dynamic nuclear polarization (DNP) utilizing narrow-line electron spin clusters (ESCs) to achieve nuclear spin resonance matching (ESC-DNP) by microwave irradiation is a promising way to achieve NMR signal enhancements with a wide design scope requiring low microwave power at high magnetic field. Here we present the design for a trityl-based tetra-radical (TetraTrityl) to achieve DNP for 1H NMR at 7 T, supported by experimental data and quantum mechanical simulations. A slow-relaxing (T1e ≈ 1 ms) 4-ESC is found to require at least two electron spin pairs at <8 Å e-e spin distance to yield 1H ESC-DNP enhancement, while squeezing the rest of the e-e spin distances to <12 Å results in optimal 1H ESC-DNP enhancements. Fast-relaxing ESCs (T1e ≈ 10 μs) are found to require a weakly coupled narrow-line radical (sensitizer) to extract polarization from the ESC. These results provide design principles for achieving a power-efficient DNP at high field via ESC-DNP.
Collapse
Affiliation(s)
- Raj K Chaklashiya
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Asif Equbal
- Division of Chemistry, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Quantum and Topological Systems, NYUAD Research Institute, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Andrey Shernyukov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Yuanxin Li
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Karen Tsay
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Quentin Stern
- Department of Chemistry, Northwestern University, Wilmette, Illinois 60208, United States
| | - Victor Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Elena Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Songi Han
- Department of Chemistry, Northwestern University, Wilmette, Illinois 60208, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
7
|
Equbal A, Ramanathan C, Han S. Dipolar Order Induced Electron Spin Hyperpolarization. J Phys Chem Lett 2024; 15:5397-5406. [PMID: 38739470 PMCID: PMC11129302 DOI: 10.1021/acs.jpclett.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The structure of coupled electron spin systems is of fundamental interest to many applications, including dynamic nuclear polarization (DNP), enhanced nuclear magnetic resonance (NMR), the generation of electron spin qubits for quantum information science (QIS), and quantitative studies of paramagnetic systems by electron paramagnetic resonance (EPR). However, the characterization of electron spin coupling networks is nontrivial, especially at high magnetic fields. This study focuses on a system containing high concentrations of trityl radicals that give rise to a DNP enhancement profile of 1H NMR characteristic of the presence of electron spin clusters. When this system is subject to selective microwave saturation through pump-probe ELectron DOuble Resonance (ELDOR) experiments, electron spin hyperpolarization is observed. We show that the generation of an out-of-equilibrium longitudinal dipolar order is responsible for the transient hyperpolarization of electron spins. Notably, the coupled electron spin system needs to form an AX-like system (where the difference in the Zeeman interactions of two spins is larger than their coupling interaction) such that selective microwave irradiation can generate signatures of electron spin hyperpolarization. We show that the extent of dipolar order, as manifested in the extent of electron spin hyperpolarization generated, can be altered by tuning the pump or probe pulse length, or the interpulse delay in ELDOR experiments that change the efficiency to generate or readout longitudinal dipolar order. Pump-probe ELDOR with selective saturation is an effective means for characterizing coupled electron spins forming AX-type spin systems that are foundational for DNP and quantum sensing.
Collapse
Affiliation(s)
- Asif Equbal
- Department
of Chemistry, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Center
for Quantum and Topological Systems, New
York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Chandrasekhar Ramanathan
- Department
of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Songi Han
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Nir-Arad O, Shlomi DH, Manukovsky N, Laster E, Kaminker I. Nitrogen Substitutions Aggregation and Clustering in Diamonds as Revealed by High-Field Electron Paramagnetic Resonance. J Am Chem Soc 2024; 146:5100-5107. [PMID: 38112440 PMCID: PMC10910503 DOI: 10.1021/jacs.3c06739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Diamonds have been shown to be an excellent platform for quantum computing and quantum sensing applications. These applications are enabled by the presence of defects in the lattice, which are also known as color centers. The most common nitrogen-based defect in synthetic diamonds is the paramagnetic nitrogen substitution (P1) center. While the majority of quantum applications rely on nitrogen-vacancy (NV) centers, the properties of the latter are heavily influenced by the presence and the spatial distribution of the P1 centers. Hence, understanding the spatial distribution and mutual interactions of P1 centers is crucial for the successful development of diamond-based quantum devices. Unlike NV centers, P1 centers do not have a spin-dependent optical signature, and their spin-related properties, therefore, have to be detected and characterized using magnetic resonance methods. We show that using high-field (6.9 and 13.8 T) pulsed electron paramagnetic resonance (EPR) and dynamic nuclear polarization (DNP) experiments, we can distinguish and quantify three distinct populations of P1 centers: isolated P1 centers, weakly interacting ones, and exchange-coupled ones that are clustered together. While such clustering was suggested before, these clusters were never detected directly and unambiguously. Moreover, by using electron-electron double resonance (ELDOR) pump-probe experiments, we demonstrate that the latter clustered population does not exist in isolation but coexists with the more weakly interacting P1 centers throughout the diamond lattice. Its presence thus strongly affects the quantum properties of the diamond. We also show that the existence of this population can explain recent hyperpolarization results in type Ib high-pressure, high-temperature (HPHT) diamonds. We propose a combination of high-field pulsed EPR, ELDOR, and DNP as a tool for probing the aggregation state and interactions among different populations of nitrogen substitution centers.
Collapse
Affiliation(s)
- Orit Nir-Arad
- School of Chemistry, Faculty
of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - David H. Shlomi
- School of Chemistry, Faculty
of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nurit Manukovsky
- School of Chemistry, Faculty
of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eyal Laster
- School of Chemistry, Faculty
of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ilia Kaminker
- School of Chemistry, Faculty
of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|