1
|
Alves F, Taarit I, Guénée L, Piguet C. Self-assembled multidye-sensitized erbium single molecules for boosting energy transfer light upconversion in solution. Dalton Trans 2025. [PMID: 40492400 DOI: 10.1039/d5dt00438a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
Efficient near-infrared (NIR) to visible (VIS) light upconversion should combine large absorption coefficients εNIR with very large quantum yields ϕUC so that the overall brightness BUC = εNIR·ϕUC is maximum. Relying on linear optics, several photons are collected by strongly absorbing dyes, stored on long-lived intermediate excited states and finally piled up using mechanisms of simple or double operator natures. The miniaturization to implement detectable linear light upconversion in a single molecule is challenging because of the existence of the thermal vibrational bath, which increases non-radiative relaxation and limits quantum yields to 10-9 ≤ ϕUC ≤ 10-6. An acceptable brightness thus requires the connection of a maximum of cationic cyanine dyes around trivalent lanthanide luminophores. Taking advantage of the thermodynamic benefit brought by strict self-assembly processes, three cationic IR-780 dyes could be arranged around a single Er(III) cation in the trinuclear [ZnErZn(L5)3]10+ triple-stranded helicate. NIR excitation at 801 nm in acetonitrile at room temperature induces light upconversion via the energy transfer upconversion (ETU) mechanism. The final green Er(2H11/2,4S3/2 → 4I15/2) emission with ϕUC = 3.6 × 10-8 shows a record brightness of BUC = 2.8 × 10-2 M-1 cm-1 (Pexc = 25 W cm-2) for a molecular-based upconversion process.
Collapse
Affiliation(s)
- Filipe Alves
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Inès Taarit
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
2
|
Zhang MX, Jia T, Cheng PM, Liu WD, Long LS, Zheng LS. Yb 3+-Induced Bright Ligand Up-Conversion Luminescence in 1D Coordination Polymers. Angew Chem Int Ed Engl 2025; 64:e202501349. [PMID: 40016169 DOI: 10.1002/anie.202501349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Ln3+-induced ligand up-conversion luminescence (UCL) in coordination polymers (CPs) effectively overcomes the inherent limitations of conventional organic UCL mechanisms. However, current research on UCL in Ln-CPs has predominantly focused on the UCL of Ln3⁺ ions themselves, while investigations into Ln3⁺-induced ligand UCL is overlooked in Ln-CPs. Herein, by doping Yb3⁺ into the Ln-CPs of [Y2(FCA)6]n 1) (FCA = 9-fluorenone-2-carboxylic acid), Yb3+-doped 1D chain Ln-CPs of [Y2-2xYb2x(FCA)6]n (x = 0.2, 2) x = 0.5, 3) x = 0.7, 4) x = 0.9, 5) x = 1, 6) are prepared. Investigation of the UCL of FCA in these CPs reveals that Ln3⁺-induced ligand UCL are achieved for the first time. Notably, 4 not only displays bright UCL under both 10 and 15 W cm-2 excitation power of 980 nm laser but also achieves an absolute UCQY of 0.003 %, opening new avenues for the development of Ln-CPs as UCL materials.
Collapse
Affiliation(s)
- Ming-Xuan Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tao Jia
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pei-Ming Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei-Dong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lang-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Zhou Y, Yin F, Hu SJ, Zhou LP, Yang J, Sun QF. Supramolecular Eu(III) 4L 4 Tetrahedra-Based Films for Luminescence Sensing of Volatile Amines with Sub-ppt-Level Detection Limit. Inorg Chem 2025; 64:6927-6934. [PMID: 40146921 DOI: 10.1021/acs.inorgchem.4c05480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Metal-organic cages are a class of discrete supramolecular architectures endowed with a well-defined cavity and diverse functionalities, offering a broad range of applications that, however, are predominantly confined to liquid phases. In this study, we present the self-assembly of supramolecular Eu(III)4L4 tetrahedra, constructed from triarylborane-cored tritopic tridentate ligands, which were fabricated into spin-coated films with bright emission, smooth surfaces, and uniform thickness. These films demonstrated ultralow detection limits for a series of volatile amines, reaching the sub-ppt level. This work serves as a compelling example of the preparation and application of metal-organic-cage-based films, paving the way for broader application scenarios.
Collapse
Affiliation(s)
- Yang Zhou
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
| | - Fan Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
| | - Jian Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qing-Fu Sun
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Yao Z, Gao T, Yan P, Zhou Y, Li H. Strong upconverted circularly polarized emission from a chiral tetrahedral Yb/Eu cage. Dalton Trans 2025; 54:5731-5738. [PMID: 40079846 DOI: 10.1039/d5dt00219b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Upconverted circularly polarized luminescence (UC-CPL) materials have attracted significant attention due to their potential in optical sensing and bioimaging. However, achieving UC-CPL in lanthanide supramolecular systems remains a challenge due to the extended distances between lanthanide ions. Here, enantiopure tetrahedral cages, (Yb/Eu)4L4(R/S-BINAPO)4, are assembled using achiral C3-symmetric ligands, Ln(III) ions and chiral ancillary ligands. Upon 980 nm excitation, the heterometallic tetrahedral cages exhibit strong UC-CPL (glum = 0.22) and high ΦUC of 3.50 × 10-6. Moreover, through femtosecond transient absorption spectroscopy, we reveal that the ligand's triplet state (T1) serves as a critical mediator in the upconversion energy transfer process within the lanthanide complex, facilitating the efficient transfer of energy from the excited state of Yb3+ to the Eu3+ center via the mechanistic pathway Yb** → T1 → Eu*.
Collapse
Affiliation(s)
- Zhiwei Yao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, China.
| |
Collapse
|
5
|
Lu W, Yan W, Guo R, Zheng J, Bian Z, Liu Z. Upconversion Luminescence in a Photostable Ion-Paired Yb-Eu Heteronuclear Complex. Angew Chem Int Ed Engl 2024; 63:e202413069. [PMID: 39045802 DOI: 10.1002/anie.202413069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Lanthanide-based upconversion molecular complexes have potential application in diverse fields and attracted considerable research interest in recent years. However, the similar coordination reactivity of lanthanide ions has constrained the designability of target molecule with well-defined structure, and many attempts obtained statistical mixtures. Herein, an ion-paired Yb-Eu heteronuclear complex [Eu(TpPy)2][Yb(ND)4] (TpPy=tris[3-(2-pyridyl)pyrazolyl]hydroborate, ND=3-cyano-2-methyl-1,5-naphthyridin-4-olate) was designed and synthesized. Thanks to the radius difference between Eu3+ (1.07 Å) and Yb3+ (0.98 Å) ions, the hexadentate TpPy ligand was selected to coordinate with Eu3+ and the Yb3+ with a smaller radius was chelated by bidentate ND ligand. As a result, the sites of Eu3+ and Yb3+ in the complex can be clarified by high-resolution mass spectrometry and single-crystal structure analysis. Upon the excitation of Yb3+ at 980 nm, the upconversion emission of Eu3+ was realized through a cooperative sensitization process. Furthermore, [Eu(TpPy)2][Yb(ND)4] demonstrated excellent photostability during continuous high-power density 980 nm laser irradiation, with a LT95 (the time to 95 % of the initial emission intensity) of 420 minutes. This work provides the first example of a pure ion-paired Yb-Eu heteronuclear complex upconversion system and may bring insights into rational design of lanthanide-based upconversion molecular complexes.
Collapse
Affiliation(s)
- Wen Lu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenchao Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ruoyao Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiayin Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Panguluri SPK, Jourdain E, Chakraborty P, Klyatskaya S, Kappes MM, Nonat AM, Charbonnière LJ, Ruben M. Yb-to-Eu Cooperative Sensitization Upconversion in a Multifunctional Molecular Nonanuclear Lanthanide Cluster in Solution. J Am Chem Soc 2024; 146:13083-13092. [PMID: 38701172 DOI: 10.1021/jacs.3c14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Lanthanide metal clusters excel in combining molecular and material chemistry properties. Here, we report an efficient cooperative sensitization UC phenomenon of a Eu3+/Yb3+ nonanuclear lanthanide cluster in CD3OD. The synthesis and characterization of the heteronuclear cluster in the solid state and solution are described together with the UC phenomenon showing Eu3+ luminescence in the visible region upon 980 nm NIR excitation of Yb3+ at concentrations as low as 100 nM. Alongside being the Eu/Yb cluster to display UC (with a quantum yield value of 4.88 × 10-8 upon 1.13 W cm-2 excitation at 980 nm), the cluster exhibits downshifted light emission of Yb3+ in the NIR region upon 578 nm visible excitation of Eu3+, which is ascribed to sensitization pathways for Yb through the 5D0 energy levels of Eu3+. Additionally, a faint emission is also observed at ca. 500 nm upon 980 nm excitation, originating from the cooperative luminescence of Yb3+. The [Eu8Yb(BA)16(OH)10]Cl cluster (BA = benzoylacetonate) is also a field-induced single-molecular magnet (SMM) under 4K with a modest Ueff/kB of 8.48 K, thereby joining the coveted list of Yb-SMMs and emerging as a prototype system for next-generation devices, combining luminescence with single-molecular magnetism in a molecular cluster.
Collapse
Affiliation(s)
- Sai P K Panguluri
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe 76311, Germany
| | - Elsa Jourdain
- Equipe de Synthèse pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS/Université de Strasbourg, ECPM, Strasbourg 67087, France
| | - Papri Chakraborty
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, Karlsruhe 76311, Germany
| | - Svetlana Klyatskaya
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, Karlsruhe 76311, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, Karlsruhe 76311, Germany
| | - Aline M Nonat
- Equipe de Synthèse pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS/Université de Strasbourg, ECPM, Strasbourg 67087, France
| | - Loïc J Charbonnière
- Equipe de Synthèse pour l'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS/Université de Strasbourg, ECPM, Strasbourg 67087, France
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe 76311, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, Karlsruhe 76311, Germany
- Centre Européen de Sciences Quantiques, Institut de Science et d'Ingénierie Supramoléculaires (ISIS, UMR 7006), CNRS-Université de Strasbourg, 8 allée Gaspard Monge BP 70028, Strasbourg, Cedex 67083, France
| |
Collapse
|
7
|
Yin F, Yang J, Zhou LP, Meng X, Tian CB, Sun QF. 54 K Spin Transition Temperature Shift in a Fe 6L 4 Octahedral Cage Induced by Optimal Fitted Multiple Guests. J Am Chem Soc 2024; 146:7811-7821. [PMID: 38452058 DOI: 10.1021/jacs.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Spin-crossover (SCO) coordination cages are at the forefront of research for their potential in crafting next-generation molecular devices. However, due to the scarcity of SCO hosts and their own limited cavities, the interplay between the SCO host and the multiple guests binding has remained elusive. In this contribution, we present a family of pseudo-octahedral coordination cages (M6L4, M = ZnII, CoII, FeII, and NiII) assembled from a tritopic tridentate ligand L with metal ions. The utilization of FeII ion leads to the successful creation of the Fe6L4-type SCO cage. Host-guest studies of these M6L4 cages reveal their capacity to encapsulate four adamantine-based guests. Notably, the spin transition temperature T1/2 of Fe6L4 is dependent on the multiple guests encapsulated. The inclusion of adamantine yields an unprecedented T1/2 shift of 54 K, a record shift in guest-mediated SCO coordination cages to date. This drastic shift is ascribed to the synergistic effect of multiple guests coupled with their optimal fit within the host. Through a straightforward thermodynamic cycle, the binding affinities of the high-spin (HS) and low-spin (LS) states are separated from their apparent binding constant. This result indicates that the LS state has a stronger binding affinity for the multiple guests than the HS state. Exploring the SCO thermodynamics of host-guest complexes allows us to examine the optimal fit of multiple guests to the host cavity. This study reveals that the T1/2 of the SCO host can be manipulated by the encapsulation of multiple guests, and the SCO cage is an ideal candidate for determining the multiple guest fit.
Collapse
Affiliation(s)
- Fan Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jian Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Chong-Bin Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Guo XQ, Zhou LP, Hu SJ, Sun QF. Subtle adjustments for constructing multi-nuclear luminescent lanthanide organic polyhedra with triazole-based chelates. Dalton Trans 2024; 53:4772-4780. [PMID: 38363173 DOI: 10.1039/d3dt03791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Controlled self-assembly of predetermined multi-nuclear lanthanide organic polyhedra (LOPs) still presents a challenge, primarily due to the unpredictable coordination numbers and labile coordination geometries of lanthanide ions. In this study, through introducing triazole-based chelates to increase the chelating angle of C2-symmetric linear ligands and stabilize the coordination geometry of Eu(III) centers, M4L6-type (M = EuIII, L = ligand) tetrahedra were efficiently synthesized, especially a biphenyl-bridged ligand which is well known to form M2L3-type helicates. A series of LOPs were formed and characterized by high-resolution electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS) and X-ray crystallography. Moreover, the europium complexes exhibit bright emission (luminescence quantum yield up to 42.4%) and circularly polarized luminescence properties (|glum| up to 4.5 × 10-2). This study provides a feasible strategy for constructing multi-nuclear luminescent LOPs towards potential applications.
Collapse
Affiliation(s)
- Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
9
|
Charbonnière LJ, Nonat AM, Knighton RC, Godec L. Upconverting photons at the molecular scale with lanthanide complexes. Chem Sci 2024; 15:3048-3059. [PMID: 38425527 PMCID: PMC10901487 DOI: 10.1039/d3sc06099c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
In this perspective, we summarise the major milestones to date in the field of molecular upconversion (UC) with lanthanide based coordination complexes. This begins from the leap firstly from solid-state to nanoparticular regimes, and further down the scale to the molecular domain. We explain the mechanistic intricacies of each differing way of generating upconverted photons, critiquing them and outlining our views on the benefits and limitations of each process, also offering our perspective and opinion on where these new molecular UC edifices will take us. This nascent area is already rapidly expanding and improving, having increased in luminance efficiency by more than four orders of magnitude in the last decade: we conclude that the future is bright for molecular UC.
Collapse
Affiliation(s)
- Loïc J Charbonnière
- Equipe de Synthèse Pour L'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR7178, CNRS, Université de Strasbourg, ECPM 67087 Strasbourg Cedex France
| | - Aline M Nonat
- Equipe de Synthèse Pour L'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR7178, CNRS, Université de Strasbourg, ECPM 67087 Strasbourg Cedex France
| | - Richard C Knighton
- Equipe de Synthèse Pour L'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR7178, CNRS, Université de Strasbourg, ECPM 67087 Strasbourg Cedex France
- School of Chemistry, University of Southampton Southampton SO17 1BJ UK
| | - Léna Godec
- Equipe de Synthèse Pour L'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR7178, CNRS, Université de Strasbourg, ECPM 67087 Strasbourg Cedex France
| |
Collapse
|
10
|
Dai D, Zhang Y, Yang S, Kong W, Yang J, Zhang J. Recent Advances in Functional Materials for Optical Data Storage. Molecules 2024; 29:254. [PMID: 38202837 PMCID: PMC10780730 DOI: 10.3390/molecules29010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
In the current data age, the fundamental research related to optical applications has been rapidly developed. Countless new-born materials equipped with distinct optical properties have been widely explored, exhibiting tremendous values in practical applications. The optical data storage technique is one of the most significant topics of the optical applications, which is considered as the prominent solution for conquering the challenge of the explosive increase in mass data, to achieve the long-life, low-energy, and super high-capacity data storage. On this basis, our review outlines the representative reports for mainly introducing the functional systems based on the newly established materials applied in the optical storage field. According to the material categories, the representative functional systems are divided into rare-earth doped nanoparticles, graphene, and diarylethene. In terms of the difference of structural features and delicate properties among the three materials, the application in optical storage is comprehensively illustrated in the review. Meanwhile, the potential opportunities and critical challenges of optical storage are also discussed in detail.
Collapse
Affiliation(s)
- Dihua Dai
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Yong Zhang
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Siwen Yang
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Weicheng Kong
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Jie Yang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jijun Zhang
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| |
Collapse
|