1
|
Sato Y, Hisada T, Yamashita Y, Kobayashi S. Visible-Light-Driven Catalytic Alkylation of Reactive Alkyl Nitriles with Nonactivated Alkenes Using an Amine as a Hydrogen Atom Transfer Catalyst. Org Lett 2025; 27:4701-4705. [PMID: 40302629 DOI: 10.1021/acs.orglett.5c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
We have developed a photoinduced catalytic alkylation reaction of reactive alkyl nitriles with nonactivated alkenes using a simple amine as a hydrogen atom transfer (HAT) catalyst. This reaction proceeds smoothly under mild reaction conditions with blue LED irradiation to afford a variety of alkylated nitriles. Not only were unactivated alkenes employable but also styrene derivatives. The key to success of this reaction is the generation of an electrophilic alkyl radical species from alkyl nitrile. The use of a readily available amine catalyst such as N,N-dialkylanilines is effective to promote this reaction efficiently.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| | - Tomoya Hisada
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| |
Collapse
|
2
|
Zhou XS, Li ZQ, Qu WY, Zhang Z, Xiao WJ, Chen JR. Direct Asymmetric α-Alkylation of β-Ketocarbonyl Compounds with Simple Olefins by Photoredox-Nickel-Hydrogen Atom Transfer Triple Catalysis. Angew Chem Int Ed Engl 2025; 64:e202424915. [PMID: 39935403 DOI: 10.1002/anie.202424915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/13/2025]
Abstract
Although the asymmetric α-alkylation of carbonyl compounds with activated olefins has already been established, extending this methodology to less activated or nonactivated olefins remains a significant challenge due to the polarity mismatch in these ionic processes. An alternative approach involves the activation of the parent carbonyl compounds into electrophilic α-carbonyl radicals, which could potentially overcome this limitation. However, the lack of efficient catalytic systems has impeded the wide adoption of this strategy, particularly in realm of the catalytic asymmetric reactions. Here, we present a cooperative triple catalytic system that integrates photoredox, chiral Lewis acid, and hydrogen atom transfer (HAT) catalysts to achieve a direct asymmetric α-alkylation of β-ketocarbonyl compounds using simple olefins as alkylating agents. By combining a multifunctional chiral nickel Lewis acid with an iridium photoredox catalyst and a thiophenol catalyst under visible light, we have developed a highly efficient process that is temporally synchronized to facilitate a novel mechanism of electron and hydrogen transfer. This triple catalytic approach enables the intermolecular coupling of β-ketocarbonyl compounds with both less and non-activated olefins. This redox-neutral protocol provides an atom- and step-economic route to enantioselectively synthesize high-value molecules featuring an all-carbon quaternary stereocenter from feedstock chemicals, while only consuming photons.
Collapse
Affiliation(s)
- Xue-Song Zhou
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zi-Qing Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Wen-Yuan Qu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
| | - Jia-Rong Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
3
|
Morris AO, O'Brien TE, Barriault L. Photoredox-Catalyzed Hydroalkylation of C(sp 3)-H Acids. Chemistry 2025:e202501148. [PMID: 40192510 DOI: 10.1002/chem.202501148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
We present a detailed study on a photoredox catalysis platform that directly engages 1,3-dicarbonyl C(sp3)-H acids toward radical reactions. This platform enables redox-neutral hydroalkylation and cross-coupling, as well as oxidative transformations that demonstrably improve on the prior state of the art. Herein, we present interrogations of the underlying catalytic cycle and mechanism for this platform through kinetic, thermodynamic, and computational studies. The present investigations also demonstrate the key role of lithium trifluoroacetate under complementary Ce-containing and Ce-free photoredox conditions to enable ligand-to-metal charge transfer (LMCT) or multi-site proton-coupled electron transfer (MS-PCET) activations, respectively.
Collapse
Affiliation(s)
- Avery O Morris
- Center for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, K1N 6N5, Canada
| | - Tegan E O'Brien
- Center for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, K1N 6N5, Canada
| | - Louis Barriault
- Center for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, K1N 6N5, Canada
| |
Collapse
|
4
|
Zhang S, Gan M, Zhang F, Zhou L, Li W. Photocatalyzed/Base-Mediated Defluorinative Three-Component Cascade Cyclization: Access to Monofluorocyclohexenes and 6-Fluoro-1,2,3,4-tetrahydropyridines. Org Lett 2025; 27:3013-3018. [PMID: 40106684 DOI: 10.1021/acs.orglett.5c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A three-component cascade cyclization of α-CF3 alkenes, electron-rich alkenes, and dimethyl esters or sulfonamides via a dual C-F bond cleavage process is described. This methodology provides a general and efficient strategy to access monofluorocyclohexenes and 6-fluoro-1,2,3,4-tetrahydropyridines by switching the bifunctional reagents (dimethyl esters or sulfonamides), which are valuable building blocks in synthetic chemistry and the pharmaceutical industries. The reaction mechanism and the synthetic applications of the products have been demonstrated.
Collapse
Affiliation(s)
- Shuyue Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Meixue Gan
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fan Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Weiyu Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Xiao M, Shang Q, Pu L, Wang Z, Zhu L, Yang Z, Huang J. Photoredox-Catalyzed Radical Cyclization of Unactivated Alkene-Substituted β-Ketoesters Enabled Asymmetric Total Synthesis of Tricyclic Prostaglandin D 2 Metabolite Methyl Ester. JACS AU 2025; 5:1367-1375. [PMID: 40151232 PMCID: PMC11937966 DOI: 10.1021/jacsau.4c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Regio- and stereoselective photoredox-catalyzed cyclizations of alkene-substituted β-ketoesters have been accomplished for the synthesis of polyfunctionalized cyclopentanones. This was achieved using 2,3,5,6-tetrakis(carbazol-9-yl)-1,4-dicyanobenzene (4CzTPN) and 2,4,6-triisopropyl-thiophenol as cocatalysts under illumination of a blue-light-emitting-diode at ambient temperature. The developed chemistry was successfully applied in the enantioselective total synthesis of the tricyclic prostaglandin D2 metabolite (tricyclic-PGDM) methyl ester, which was completed in 9 steps with an overall yield of 7%.
Collapse
Affiliation(s)
- Miao Xiao
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Qiaoli Shang
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Liuyang Pu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Zheyuan Wang
- State
Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate
School, Shenzhen 518055, China
| | - Lei Zhu
- College
of Pharmacy, Third Military Medical University, Chongqing 200038, China
| | - Zhen Yang
- State
Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical
Genomics, Peking University Shenzhen Graduate
School, Shenzhen 518055, China
| | - Jun Huang
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| |
Collapse
|
6
|
Singh S, Saini R, Kumar Chaudhary V, Ghosh K. Organometallic Ru(III) Catalysts for α-Alkylation of Carbonyl Compounds using Alcohols: Mechanistic Insights via Detection of Key Intermediates. Chem Asian J 2025; 20:e202400811. [PMID: 39482933 DOI: 10.1002/asia.202400811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Three novel cyclometalated ruthenium complexes ([Ru.L(9)] [Ru.L(10)] and [Ru.L(11)]) featuring azo functionalities were synthesized and characterized using a variety of spectroscopic techniques, namely FT-IR, electronic absorption spectroscopy, and ESI-MS. Representative solid-state structures of the acquired complexes were determined through X-ray crystallography. These complexes were evidenced to be efficient catalysts for the synthesis of various α-alkylated compounds utilizing simple acetophenone derivatives with easily affordable and economically viable alcohols, which were isolated and characterized via 1H and 13C NMR spectroscopy. The optimum reaction conditions were found by employing toluene as solvent and potassium tert-butoxide as a base at 115 °C temperature utilizing 0.8 mol % of catalyst [Ru.L(10)]. The yield of the desired compounds was found to be in the range of 83-97 %. Additionally, mass spectrometry provided insights into the in-situ generated ruthenium hydride and ruthenium alkoxy intermediates, shedding light on the catalytic mechanism.
Collapse
Affiliation(s)
- Sain Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Rajat Saini
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | | | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
7
|
Shi JL, Wang Y, Han Y, Chen J, Pu X, Xia Y. Hydroalkylation of unactivated olefins with C(sp 3)─H compounds enabled by NiH-catalyzed radical relay. SCIENCE ADVANCES 2024; 10:eads6885. [PMID: 39693419 DOI: 10.1126/sciadv.ads6885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
The hydroalkylation reaction of olefins with alkanes is a highly desirable synthetic transformation toward the construction of C(sp3)─C(sp3) bonds. However, such transformation has proven to be challenging for unactivated olefins, particularly when the substrates lack directing groups or acidic C(sp3)─H bonds. Here, we address this challenge by merging NiH-catalyzed radical relay strategy with a HAT (hydrogen atom transfer) process. In this catalytic system, a nucleophilic alkyl radical is generated from a C(sp3)─H compound in the presence of a HAT promotor, which couples with an alkyl metallic intermediate generated from the olefin substrate with a NiH catalyst to form the C(sp3)─C(sp3) bond. Starting from easily available materials, the reaction not only demonstrates wide functional group compatibility but also provides hydroalkylation products with regiodivergence and excellent enantioselectivity through effective catalyst control under mild conditions.
Collapse
Affiliation(s)
- Jiang-Ling Shi
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy,Sichuan University, Chengdu 610041, China
| | - Youcheng Wang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy,Sichuan University, Chengdu 610041, China
| | - Yufeng Han
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy,Sichuan University, Chengdu 610041, China
| | - Jinqi Chen
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy,Sichuan University, Chengdu 610041, China
| | - Xiaolan Pu
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy,Sichuan University, Chengdu 610041, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy,Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Gong M, Li Q, Qin H, Fu H, Li G, Li Y, Wu Y. Visible-light-induced hydroalkylation of alkenes with aromatic β-ketoesters. Chem Commun (Camb) 2024; 60:14664-14667. [PMID: 39575681 DOI: 10.1039/d4cc05985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
A mild and environmentally friendly photocatalytic method for C-C bond formation between 1,3-dicarbonyls and styrene derivatives has been developed in a green solvent - ethanol. A series of α-functionalized β-diketones were obtained in moderate to good yields. Based on the results of control experimental and theoretical calculations, the photocatalytic transformation might be accomplished by generating reactive radicals via a single electron transfer process. Moreover, the matching of reduced-state photocatalyst with the radical intermediate is considered to be critical for this conversion.
Collapse
Affiliation(s)
- Ming Gong
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| | - Qingrui Li
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| | - Honghong Qin
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| | - Haixin Fu
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| | - Guoping Li
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| | - Yabo Li
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| | - Yangjie Wu
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
9
|
Yamashita Y, Kobayashi S. Efficient Radical-Mediated Intermolecular α-Alkylation Reactions of Carbonyl Compounds with Nonactivated Alkenes. Chem Asian J 2024; 19:e202400319. [PMID: 38676345 DOI: 10.1002/asia.202400319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Alkylation reactions are fundamental carbon-carbon bond-forming reactions in synthetic organic chemistry. Among them, intermolecular α-alkylation reactions of carbonyl compounds with alkenes are important because they are more atom-economical than the equivalent processes using alkyl halides. However, intermolecular reactions with nonactivated alkenes such as 1-hexene, which can allow the use of a wide range of valuable substrates, have been considered to be very challenging for a long time. In this review, radical-mediated intermolecular α-alkylation reactions of carbonyl compounds with nonactivated alkenes are discussed. The examples are grouped into three types of reactions: peroxide-mediated reactions, metal-oxidant-mediated reactions, and photoactivated reactions. Photoredox-catalyzed alkylation reactions under visible-light irradiation are discussed as a particularly promising recent hot topic. This review provides brief history and new prospects on the α-alkylation process with nonactivated alkenes using α-carbonyl radical species.
Collapse
Affiliation(s)
- Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| |
Collapse
|
10
|
Sreedharan R, Gandhi T. Masters of Mediation: MN(SiMe 3) 2 in Functionalization of C(sp 3)-H Latent Nucleophiles. Chemistry 2024; 30:e202400435. [PMID: 38497321 DOI: 10.1002/chem.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Organoalkali compounds have undergone a far-reaching transformation being a coupling partner to a mediator in unusual organic conversions which finds its spot in the field of sustainable synthesis. Transition-metal catalysis has always been the priority in C(sp3)-H bond functionalization, however alternatively, in recent times this has been seriously challenged by earth-abundant alkali metals and their complexes arriving at new sustainable organometallic reagents. In this line, the importance of MN(SiMe3)2 (M=Li, Na, K & Cs) reagent revived in C(sp3)-H bond functionalization over recent years in organic synthesis is showcased in this minireview. MN(SiMe3)2 reagent with higher reactivity, enhanced stability, and bespoke cation-π interaction have shown eye-opening mediated processes such as C(sp3)-C(sp3) cross-coupling, radical-radical cross-coupling, aminobenzylation, annulation, aroylation, and other transformations to utilize readily available petrochemical feedstocks. This article also emphasizes the unusual reactivity of MN(SiMe3)2 reagent in unreactive and robust C-X (X=O, N, F, C) bond cleavage reactions that occurred alongside the C(sp3)-H bond functionalization. Overall, this review encourages the community to exploit the untapped potential of MN(SiMe3)2 reagent and also inspires them to take up this subject to even greater heights.
Collapse
Affiliation(s)
- Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|