1
|
Guo L, Li T, Yang T, Hu Z, Wang A, Luo J. Ion-Docking Effect Enabling Rechargeable High-Voltage Magnesium-Iodine/Chlorine Battery. Angew Chem Int Ed Engl 2025; 64:e202503209. [PMID: 40119853 DOI: 10.1002/anie.202503209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 03/24/2025]
Abstract
Rechargeable magnesium (Mg) batteries represent a promising energy storage system by offering low cost and dendrite-less propensity. However, the limited selection of cathode materials, and often with low voltage and capacity, constrain Mg batteries. Herein, by exploiting the ion-docking effect between two halogen species-iodine cations (I+) and chlorine anions (Cl-)-we activate the cathodic activity of halogens and develop a magnesium-iodine/chlorine (Mg-I/Cl) battery prototype with high energy and power density. The ion-docking effect enables I+ and Cl- to mutually balance and disperse their charges, and weakens the coordination strength between Cl- and Mg2+ while enhancing the stability of I+, thus facilitating the multi-electron (2 + 1/3) redox reactions of halogens. We also find the solvation state of iodine species determines the reaction process of the I0/I3 -/I- redox couples. The here-developed magnesium-iodine/chlorine battery features an impressively high discharge plateau of up to 3.0 V with a high capacity exceeding 400 mAh g-1, and demonstrates a stable lifespan for 500 cycles, with the ability of ultra-fast charging at 20C and low-temperature cycling under -30 °C. These findings may provide new insights for developing high-energy-density Mg battery systems.
Collapse
Affiliation(s)
- Longyuan Guo
- Institute of Advanced Energy Materials, Fujian Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian, 350116, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Tong Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Ting Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zhenglin Hu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Aoxuan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jiayan Luo
- School of Materials Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Huang J, Xu L, Wang Y, Wu X, Zhang M, Zhang H, Tong X, Guo C, Han K, Li J, Meng J, Wang X. Ultrafast Rechargeable Aluminum-Chlorine Batteries Enabled by a Confined Chlorine Conversion Chemistry in Molten Salts. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1868. [PMID: 40333541 PMCID: PMC12028977 DOI: 10.3390/ma18081868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
Rechargeable metal chloride batteries, with their high discharge voltage and specific capacity, are promising for next-generation sustainable energy storage. However, sluggish solid-to-gas conversion kinetics between solid metal chlorides and gaseous Cl2 cause unsatisfactory rate capability and limited cycle life, hindering their further applications. Here we present a rechargeable aluminum-chlorine (Al-Cl2) battery that relies on a confined chlorine conversion chemistry in a molten salt electrolyte, exhibiting ultrahigh rate capability and excellent cycling stability. Both experimental analysis and theoretical calculations reveal a reversible solution-to-gas conversion reaction between AlCl4- and Cl2 in the cathode. The designed nitrogen-doped porous carbon cathode enhances Cl2 adsorption, thereby improving the cycling lifespan and coulombic efficiency of the battery. The resulting Al-Cl2 battery demonstrates a high discharge plateau of 1.95 V, remarkable rate capability without capacity decay at different rates from 5 to 50 A g-1, and good cycling stability with over 1200 cycles at a rate of 10 A g-1. Additionally, we implemented a carbon nanofiber membrane on the anode side to mitigate dendrite growth, which further extends the cycle life to 3000 cycles at an ultrahigh rate of 30 A g-1. This work provides a new perspective on the advancement of high-rate metal chloride batteries.
Collapse
Affiliation(s)
- Junling Huang
- Department of Physical Science & Technology, School of Physics and Mechanics, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
| | - Linhan Xu
- Institute of Materials Plainification, Liaoning Academy of Materials, Shenyang 110167, China
| | - Yu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
| | - Xiaolin Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
| | - Hao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
| | - Xin Tong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
| | - Changyuan Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
| | - Kang Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
| | - Jianwei Li
- Zhongyu Feima New Material Technology Innovation Center (Zhengzhou) Co., Ltd., Zhengzhou 450001, China;
| | - Jiashen Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
- Zhongyu Feima New Material Technology Innovation Center (Zhengzhou) Co., Ltd., Zhengzhou 450001, China;
| | - Xuanpeng Wang
- Department of Physical Science & Technology, School of Physics and Mechanics, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.W.); (H.Z.); (C.G.)
- Zhongyu Feima New Material Technology Innovation Center (Zhengzhou) Co., Ltd., Zhengzhou 450001, China;
| |
Collapse
|
3
|
Chen R. New Redox Chemistries of Halogens in Aqueous Batteries. CHEMSUSCHEM 2025; 18:e202401678. [PMID: 39435849 DOI: 10.1002/cssc.202401678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/23/2024]
Abstract
Halogen-based redox-active materials represent an important class of materials in aqueous electrochemistry. The existence of versatile halogen species and their rich bonding coordination create great flexibility in designing new redox couples. Novel redox reaction mechanisms and electrochemical reversibility can be unlocked in specifically configurated electrolyte environments and electrodes. In this review, the halogen-based redox couples and their appealing redox chemistries in aqueous batteries, including redox flow batteries and traditional static batteries that have been studied in recent years, are discussed. New aqueous electrochemistry provides hope to outperform the state-of-the-art materials and systems that are facing resources and performance limitation, and to enrich the existing battery chemistries.
Collapse
Affiliation(s)
- Ruiyong Chen
- Department of Chemistry, University of Liverpool, Liverpool, L7 3NY, United Kingdom
- Korea Institute of Science and Technology (KIST) Europe, Campus E7 1, 66123, Saarbrücken, Germany
| |
Collapse
|
4
|
Chen G, Liu X, Hou H, Gao X, Hu L, Dong S, Cui G. Regulating reversibility of Li-SOCl 2 batteries by elucidating intrinsic charging conversion strategy. Sci Bull (Beijing) 2025; 70:140-143. [PMID: 39490327 DOI: 10.1016/j.scib.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/21/2024] [Accepted: 09/29/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Guodong Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoqi Hou
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Gao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Hu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Shanmu Dong
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Zhao T, Yan Z, Liu T, Ding L, Fang Y. Tetraphenylethene-Containing Nanofilm via Interfacial Confinement Self-Assembly for Fluorescent Monitoring of SOCl 2 Leakage in a Li-SOCl 2 Battery Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62944-62951. [PMID: 39496140 DOI: 10.1021/acsami.4c12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Lithium thionyl chloride (Li-SOCl2) batteries are widely used due to their high energy density and long shelf life. However, the corrosive nature of SOCl2 poses a safety hazard, necessitating effective leak detection methods. We report an approach for real-time fluorescent detection of SOCl2 leakage in Li-SOCl2 batteries using a tetraphenylethene-based nanofilm. The nanofilms were prepared through the interfacial confined self-assembly method and exhibit excellent flexibility, homogeneity, tunable size and thickness, and adaptability to various substrates, enabling easy integration into sensor devices. They possess high photochemical stability and a photoluminescence quantum yield exceeding 25%, demonstrating their potential as high-performance fluorescent sensing material. The nanofilms also exhibit high sensitivity, good reproducibility, and selectivity toward SOCl2 detection. Upon exposure to SOCl2 vapor, the nanofilm shows a red-shifted and fluorescence quenching response, attributed to the protonation of the acylhydrazone bond in the nanofilm by the hydrolysis product of SOCl2, which disrupts the electronic structure of the nanofilm and leads to a decrease in the fluorescence intensity and a shift in the emission wavelength. A detection limit of ∼1.31 ppt and excellent repeatability over 300 cycles are demonstrated, highlighting their high sensitivity and reliability. This work paves the way for a highly sensitive and reliable leak detection system for Li-SOCl2 batteries, enhancing their safety and reliability in various applications.
Collapse
Affiliation(s)
- Tianyu Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Zhen Yan
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| |
Collapse
|
6
|
Feng W, Wei X, Yang J, Ma C, Sun Y, Han J, Kong D, Zhi L. Iodine-induced self-depassivation strategy to improve reversible kinetics in Na-Cl 2 battery. Nat Commun 2024; 15:6904. [PMID: 39134537 PMCID: PMC11319802 DOI: 10.1038/s41467-024-51033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
Rechargeable sodium-chlorine (Na-Cl2) batteries show high theoretical specific energy density and excellent adaptability for extreme environmental applications. However, the reported cycle life is mostly less than 500 cycles, and the understanding of battery failure mechanisms is quite limited. In this work, we demonstrate that the substantially increased voltage polarization plays a critical role in the battery failure. Typically, the passivation on the porous cathode caused by the deposition of insulated sodium chloride (NaCl) is a crucial factor, significantly influencing the three-phase chlorine (NaCl/Na+, Cl-/Cl2) conversion kinetics. Here, a self-depassivation strategy enabled by iodine anion (I-)-tuned NaCl deposition was implemented to enhance the chlorine reversibility. The nucleation and growth of NaCl crystals are well balanced through strong coordination of the NaI deposition-dissolution process, achieving depassivation on the cathode and improving the reoxidation efficiency of solid NaCl. Consequently, the resultant Na-Cl2 battery delivers a super-long cycle life up to 2000 cycles.
Collapse
Affiliation(s)
- Wenting Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, China
| | - Xinru Wei
- College of New Energy, China University of Petroleum (East China), Qingdao, China
| | - Jianhang Yang
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao, China
| | - Chenyu Ma
- College of New Energy, China University of Petroleum (East China), Qingdao, China
| | - Yiming Sun
- College of New Energy, China University of Petroleum (East China), Qingdao, China
| | - Junwei Han
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, China
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao, China
| | - Debin Kong
- College of New Energy, China University of Petroleum (East China), Qingdao, China.
| | - Linjie Zhi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, China.
- College of New Energy, China University of Petroleum (East China), Qingdao, China.
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao, China.
| |
Collapse
|
7
|
Xie Z, Sun L, Sajid M, Feng Y, Lv Z, Chen W. Rechargeable alkali metal-chlorine batteries: advances, challenges, and future perspectives. Chem Soc Rev 2024; 53:8424-8456. [PMID: 39007548 DOI: 10.1039/d4cs00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The emergence of Li-SOCl2 batteries in the 1970s as a high-energy-density battery system sparked considerable interest among researchers. However, limitations in the primary cell characteristics have restricted their potential for widespread adoption in today's sustainable society. Encouragingly, recent developments in alkali/alkaline-earth metal-Cl2 (AM-Cl2) batteries have shown impressive reversibility with high specific capacity and cycle performance, revitalizing the potential of SOCl2 batteries and becoming a promising technology surpassing current lithium-ion batteries. In this review, the emerging AM-Cl2 batteries are comprehensively summarized for the first time. The development history and advantages of Li-SOCl2 batteries are traced, followed by the critical working mechanisms for achieving high rechargeability. The design concepts of electrodes and electrolytes for AM-Cl2 batteries as well as key characterization techniques are also demonstrated. Furthermore, the current challenges and corresponding strategies, as well as future directions regarding the battery are systematically discussed. This review aims to deepen the understanding of the state-of-the-art AM-Cl2 battery technology and accelerate the development of practical AM-Cl2 batteries for next-generation high-energy storage systems.
Collapse
Affiliation(s)
- Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Lidong Sun
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Muhammad Sajid
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yuancheng Feng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhenshan Lv
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
8
|
Ge B, Hu L, Yu X, Wang L, Fernandez C, Yang N, Liang Q, Yang QH. Engineering Triple-Phase Interfaces around the Anode toward Practical Alkali Metal-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400937. [PMID: 38634714 DOI: 10.1002/adma.202400937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Alkali metal-air batteries (AMABs) promise ultrahigh gravimetric energy densities, while the inherent poor cycle stability hinders their practical application. To address this challenge, most previous efforts are devoted to advancing the air cathodes with high electrocatalytic activity. Recent studies have underlined the solid-liquid-gas triple-phase interface around the anode can play far more significant roles than previously acknowledged by the scientific community. Besides the bottlenecks of uncontrollable dendrite growth and gas evolution in conventional alkali metal batteries, the corrosive gases, intermediate oxygen species, and redox mediators in AMABs cause more severe anode corrosion and structural collapse, posing greater challenges to the stabilization of the anode triple-phase interface. This work aims to provide a timely perspective on the anode interface engineering for durable AMABs. Taking the Li-air battery as a typical example, this critical review shows the latest developed anode stabilization strategies, including formulating electrolytes to build protective interphases, fabricating advanced anodes to improve their anti-corrosion capability, and designing functional separator to shield the corrosive species. Finally, the remaining scientific and technical issues from the prospects of anode interface engineering are highlighted, particularly materials system engineering, for the practical use of AMABs.
Collapse
Affiliation(s)
- Bingcheng Ge
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Liang Hu
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiaoliang Yu
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lixu Wang
- Fujian XFH New Energy Materials Co, Ltd, No. 38, Shuidong Industry Park, Yongan, 366000, China
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB107QB, UK
| | - Nianjun Yang
- Department of Chemistry & IMO-IMOMEC, Hasselt University, Diepenbeek, 3590, Belgium
| | - Qinghua Liang
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, China
| | - Quan-Hong Yang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, TianjinUniversity, Tianjin, 300072, China
| |
Collapse
|
9
|
Xu Y, Wang M, Sajid M, Meng Y, Xie Z, Sun L, Jin J, Chen W, Zhang S. Organocatalytic Lithium Chloride Oxidation by Covalent Organic Frameworks for Rechargeable Lithium-Chlorine Batteries. Angew Chem Int Ed Engl 2024; 63:e202315931. [PMID: 38050465 DOI: 10.1002/anie.202315931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Rechargeable Li-Cl2 battery is a promising high energy density battery system. However, reasonable cycle life could only be achieved under low specific capacities due to the sluggish oxidation of LiCl to Cl2 . Herein, we propose an amine-functionalized covalent organic framework (COF) with catalytic activity, namely COF-NH2 , that significantly decreases the oxidation barrier of LiCl and accelerates the oxidation kinetics of LiCl in Li-Cl2 cell. The resulting Li-Cl2 cell using COF-NH2 (Li-Cl2 @COF-NH2 ) simultaneously exhibits low overpotential, ultrahigh discharge capacity up to 3500 mAh/g and a promoted utilization ratio of deposited LiCl at the first cycle (UR-LiCl) of 81.4 %, which is one of the highest reported values to date. Furthermore, the Li-Cl2 @COF-NH2 cell could be stably cycled for over 200 cycles when operating at a capacity of 2000 mAh/g at -20 °C with a Coulombic efficiency (CE) of ≈100 % and a discharge plateau of 3.5 V. Our superior Li-Cl2 batteries enabled by organocatalyst enlighten an arena towards high-energy storage applications.
Collapse
Affiliation(s)
- Yan Xu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Muhammad Sajid
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lidong Sun
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
10
|
Xu Y, Zhang S, Wang M, Meng Y, Xie Z, Sun L, Huang C, Chen W. Enrichment of Chlorine in Porous Organic Nanocages for High-Performance Rechargeable Lithium-Chlorine Batteries. J Am Chem Soc 2023; 145:27877-27885. [PMID: 38053318 DOI: 10.1021/jacs.3c11726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Rechargeable Li-Cl2 batteries are recognized as promising candidates for energy storage due to their ultrahigh energy densities and superior safety features. However, Li-Cl2 batteries suffer from a short cycle life and low Coulombic efficiency (CE) at a high specific cycling capacity due to a sluggish and insufficient Cl2 supply during the redox reaction. To achieve Li-Cl2 batteries with high discharge capacity and CE, herein, we propose and design an imine-functionalized porous organic nanocage (POC) to enrich Cl2 molecules. Based on density functional theory (DFT) calculations, the imine group sites in host cages strongly interact with Cl2 molecules, facilitating the rapid capture of Cl2. As a result, the output capacity of the Li-Cl2 battery using POC (Li-Cl2@POC) is significantly boosted, achieving an ultrahigh discharge capacity of 4000 mAh/g at ∼100% CE. Benefiting from the designed POC, the highest utilization ratio of deposited LiCl at the first cycle in the Li-Cl2@POC battery reaches as high as 85%, superior to all reported values. The Li-Cl2@POC battery exhibits excellent electrochemical performance even at low temperatures, delivering stable cycling over 200 cycles under a capacity of 2000 mAh/g at -20 °C with a voltage plateau of 3.5 V and an average CE of 99.7%. We also demonstrate that the Li-Cl2@POC cells can be assembled and well-operated in a dry room, showing advantages for mass production. Our designed POC promotes the practical deployment of rechargeable Li-Cl2 batteries.
Collapse
Affiliation(s)
- Yan Xu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, Jiangsu, China
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, Jiangsu, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Mingming Wang
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yahan Meng
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zehui Xie
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Lidong Sun
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Cheng Huang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, Jiangsu, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wei Chen
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|