1
|
Zheng ZW, Zhang LJ, Li CY, Zhang XY, Huang K, Qin DB. Ion incorporation into cobalt(II)-organic framework for green and efficient synthesis of oxazolidinones via carbon dioxide fixation. J Colloid Interface Sci 2025; 688:32-43. [PMID: 39987839 DOI: 10.1016/j.jcis.2025.02.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Developing a green and efficient method for CO2 transformation is crucial for advancing carbon neutrality and effective resource utilization. Among the transformations, carboxylative cyclization of CO2 to produce oxazolidinones is an atom-economical reaction with valuable pharmaceutical applications. However, most catalytic systems often require high temperatures, organic solvents or show low efficiency. Herein, we report a novel anionic framework, {[NH2(CH3)2]2[Co3(L)3(µ3-O)]·0.37DMA }n (1), which can be synthesized on a gram scale and displays excellent stability. As a catalyst, compound 1 enables the carboxylative cyclization of propargylic amines with CO2 at 70 °C for 12 h under ambient pressure, and can be reused up to 10 times while maintaining structural stability. Given the relatively high temperature and extended reaction time required in the 1-catalytic system, Ag+ and Cu2+ ions are incorporated into the framework of compound 1 through cation exchange. The Ag+-incorporated composite 1-Ag(0.05) exhibits high catalytic efficiency under ambient temperature and CO2 pressure within 6 h without using solvent, and can be reused for at least five successive cycles. Control experiments and DFT calculations reveal that the synergistic interaction between Ag+, Co-framework and DBU is the key factor promoting the reaction. To our knowledge, this study provides the first comprehensive investigation into the impact of ion incorporation on the catalytic performance of a Co-based framework in the carboxylative cyclization of propargylic amines with CO2.
Collapse
Affiliation(s)
- Zhi-Wei Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Ling-Jiao Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Chun-Yang Li
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Xiang-Yu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Da-Bin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
2
|
Liu C, Cao Y, Qi C, Jiang H, Ren Y. Interfacial Electron Modulation of Ag xCu y@ZIF-8 for Photothermally Catalyzing CO 2 Organic Transformations. Inorg Chem 2025; 64:8769-8781. [PMID: 40252031 DOI: 10.1021/acs.inorgchem.5c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Efficiently converting CO2 into valuable chemicals under mild conditions is extremely challenging due to its thermodynamic and kinetic stability. The carboxylation/cyclization of alkynes catalyzed by Cu or Ag nanoparticles (NP) is one of the green pathways for CO2 utilization. However, these reactions are often limited by harsh conditions, as well as the migration, aggregation, and leakage of metal NP during the reaction. Herein, the AgxCuy heterostructure alloy NP are surrounded by a porous metal-organic framework, forming core-shell AgxCuy@ZIF-8 catalysts. Thanks to the light-to-heat capability, these catalysts exhibited excellent catalytic activity in converting various alkynes and CO2 to alkynyl carboxylic acids and promoting the cyclization reactions of propargyl amines with CO2 under ambient conditions using blue LED irradiation. The remarkable catalytic activity of Ag1Cu1@ZIF-8 is attributed to the optimized electronic states of Ag and Cu NP, as well as the core-shell structure that enhances photothermal effects around the catalytic center. In addition, the ZIF-8 shell not only improves the substrate transport but also inhibits the aggregation, migration, and loss of alloy NP cores during the reaction, contributing to enhanced cycling performance compared to unencapsulated Ag1Cu1 NP. The catalytic reaction mechanisms were disclosed by a variety of spectral characterizations, control experiments, and DFT calculations.
Collapse
Affiliation(s)
- Cheng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yilei Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yanwei Ren
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
3
|
Luo J, Lin JT, Luo X, Yin N, Xie M, Chen X, Li YQ, Li YG, Ning GH, Li D. Cyclic Trinuclear Units Based Covalent Metal-Organic Frameworks for Gold Recovery. Angew Chem Int Ed Engl 2025:e202502749. [PMID: 40295201 DOI: 10.1002/anie.202502749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/15/2025] [Accepted: 04/27/2025] [Indexed: 04/30/2025]
Abstract
The development of porous solids for gold recovery is highly desired from both an economical and environmental point of view; however, the design of solid adsorbents with high overall performance is still challenging. Herein, we designed three copper(I) cyclic trinuclear units, Cu(I)-CTUs, based covalent metal-organic frameworks (CMOFs) by networking metal clusters with dynamic covalent linkages. These CMOFs deliver a high gold adsorption capacity of 3687 mg g-1, ultra-fast adsorption kinetics (i.e., removal efficiency > 99% within 20 s), excellent selectivity and reusability. In addition, they can be readily used for gold extraction from e-waste. Owing to the rich redox properties of Cu-CTUs, these CMOFs show three sorption mechanisms including adsorption, chemical reduction and photocatalytic reduction. Interestingly, the gold-loaded CMOFs can be used as catalysts for hydration of alkynes to ketones with high yields (e.g., up to ∼ 95% for 6 examples).
Collapse
Affiliation(s)
- Jie Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Jia-Tong Lin
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xiao Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Na Yin
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xu Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ying-Qiang Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yang-Guang Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
4
|
Xu Y, Dong JP, Wang L, Geng RL, Wang R, Si YN, Zang SQ, Mak TCW. 3D Cluster-Based Covalent Organic Framework for Efficient CO 2 Photoreduction. Angew Chem Int Ed Engl 2025; 64:e202501391. [PMID: 39963905 DOI: 10.1002/anie.202501391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Copper clusters exhibit superior catalytic activity for the CO2 reduction reaction (CO2RR), and their defined structures endow them with unique advantages for modeling the catalytic mechanism at the atomic level. Additionally, the construction of highly stable and regularly structured covalent organic frameworks (COFs) based on copper clusters still presents significant challenges. Herein, we reported two highly stable and reactive cluster-based COFs (termed Cu4COF-1 and Cu4COF-2) constructed via a stepwise assembly strategy. The epitaxially amino-modified Cu4 cluster (Cu4-NH2) was initially synthesized based on coordination bonds. Then, Cu4COFs were obtained by the covalent linkage of Cu4-NH2 clusters and organic linkers. Compared with isolated Cu4 clusters, the Cu4COFs exhibit greater stability, a narrower band gap, a larger specific surface area, and better charge transfer ability, which endow them with superior photocatalytic CO2RR performance under visible light. In-situ infrared spectroscopy and density functional theory (DFT) calculations revealed that the covalently linked Cu4COFs could efficiently lower the energy barrier for the formation of the critical *COOH intermediate, thereby enhancing the photocatalytic activity. This study offers a solid basis for the atomically precise construction of novel metal-cluster-based COF catalysts.
Collapse
Affiliation(s)
- Yue Xu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Jian-Peng Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Le Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Rong-Li Geng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Ya-Nan Si
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
5
|
Wu D, Zhang Q, Yin S, Song C, Gu N, Wang D, Cai T, Zhang B. Room-Temperature Single-Phase Synthesis of Semiconducting Metal-Covalent Organic Frameworks With Microenvironment-Tuned Photocatalytic Efficiency. SMALL METHODS 2025; 9:e2401284. [PMID: 39394717 DOI: 10.1002/smtd.202401284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Indexed: 10/14/2024]
Abstract
In order to improve the solubility of metallated monomers and product crystallinity, metal-covalent organic frameworks (MCOFs) are commonly prepared via high-temperature sol-vothermal synthesis. However, it hampers the direct extraction of crystallization evolution information. Exploring facile room-temperature strategies for both synthesizing MCOFs and exploiting the crystallinity mechanism is extremely desired. Herein, by a novel single-phase synthetic strategy, three MCOFs with different microstructure is rapidly prepared based on the Schiff base reaction between planarity-tunable C3v monomers and metallated monomers at room temperature. Based on detailed time-dependent experiments and theoretical calculations, it is found that there is a planarity-tuned and competitive growth relationship between disordered structures and crystal nucleus for the first time. The high planarity of monomers boosts the formation of crystal nucleus and rapid growth, suppressing the forming of amorphous structures. In addition, the microenvironment effect on selective photocatalytic coupling of benzylamine (BA) is investigated. The strong donor-acceptor (D-A) MCOF exhibits efficient photocatalytic activity with a high conversion rate of 99% and high selectivity of 99% in 5 h under the 520 nm light irradiation. This work opens a new pathway to scalable and efficient synthesis of highly crystalline MCOFs.
Collapse
Affiliation(s)
- Dongchuang Wu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China
| | - Qiongshan Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiyu Yin
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Congying Song
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ning Gu
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China
| | - Dong Wang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Cai
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, 430072, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Intelligent Sensing and Detection, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Wu D, Gu N, Yao J, Cao Y, Wang L, Shakir I, Sun Y, Xu Y. Recent advances in room-temperature synthesis of covalent organic frameworks. Chem Sci 2025; 16:5447-5463. [PMID: 40103715 PMCID: PMC11912503 DOI: 10.1039/d5sc00109a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Covalent organic frameworks (COFs) have become a promising class of highly-crystalline polymers with layered stacking structures, ordered porous channels, and highly-tailorable structures. To date, most COFs have been synthesized via high-temperature solvothermal methods, which require complicated optimization of factors including temperature, solvent ratio, catalyst, and reaction time. Additionally, solvothermal conditions with high temperature and high pressure restrict the facile and large-scale synthesis of COFs for practical applications. In addition, the insolubility and lack of processability of the COF powders obtained via solvothermal methods hinder their potential application in film-related fields. Energy-efficient and environmentally benign synthetic methods to resolve these problems are highly desired. In this review, we provide an overview of the recent progress in room-temperature synthetic strategies for constructing COF powders or COF films. We first discuss in situ characterization technologies for exploring the COF growth mechanism. Then, we present representative room-temperature synthesis methods for COFs, including solid-liquid interfacial synthesis, liquid-liquid interfacial synthesis, on-water surface synthesis, water-phase synthesis, electrosynthesis, sonochemical synthesis, single-solution phase synthesis, mechanochemical synthesis, high-energy ionizing radiation synthesis, and photochemical synthesis. Finally, perspectives on room-temperature synthesis are proposed in the areas of single-crystal domains, novel room-temperature reaction types, crystallization mechanism, the design of chemical structures and green synthesis.
Collapse
Affiliation(s)
- Dongchuang Wu
- School of Energy and Power Engineering, North University of China Taiyuan 030051 China
| | - Ning Gu
- School of Energy and Power Engineering, North University of China Taiyuan 030051 China
| | - Junru Yao
- School of Energy and Power Engineering, North University of China Taiyuan 030051 China
| | - Yang Cao
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - Lun Wang
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - Imran Shakir
- Department of Physics, Faculty of Science, Sustainability Research Center, Islamic University of Madinah Madinah 42351 Saudi Arabia
| | - Youyi Sun
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - Yuxi Xu
- School of Engineering, Westlake University Hangzhou 310024 China
| |
Collapse
|
7
|
Wei RJ, Luo X, Ning GH, Li D. Covalent Metal-Organic Frameworks: Fusion of Covalent Organic Frameworks and Metal-Organic Frameworks. Acc Chem Res 2025; 58:746-761. [PMID: 39982167 DOI: 10.1021/acs.accounts.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
ConspectusMetal-organic frameworks (MOFs) and covalent organic frameworks (COFs), as emerging porous crystalline materials, have attracted remarkable attention in chemistry, physics, and materials science. MOFs are constructed by metal clusters (or ions) and organic linkers through coordination bonds, while COFs are prepared by pure organic building blocks via covalent bonds. Because of the nature of linkages, MOFs and COFs have their own shortcomings. Typically, the relatively weak bond strengths of coordination bonds lead to poor chemical stability of MOFs, which limits their practical implementations. On the other hand, due to the strong covalent bonds, COFs exhibit rather higher stability under harsh conditions, compared to MOFs. However, the lack of open metal sites restricts their functionalization and application. Therefore, it is hypothesized that the "cream-skimming" of MOFs and COFs would address these drawbacks and produce a new class of crystalline porous material, namely, covalent metal-organic frameworks (CMOFs), with unprecedented structural complexity and advanced functionality. The CMOFs reveal a new synthetic approach for the preparation of reticular materials. Specifically, metal ions are reacted with chelating ligands to assemble metal complexes or clusters with functional reactive sites (e.g., -CHO, and -NH2), which can be further connected with organic linkers to form networked structures via dynamic covalent chemistry (DCC). The isolated metal complex or cluster precursors show enhanced stability which prevents structural decomposition and rearrangements during the self-assembly process of CMOFs. Since the topology of preassembled metal nodes is well-defined, the CMOFs structure can be readily predicted upon directed networking of covalent bonds. Unaccessible reticular materials from unstable or highly reactive metal ion/clusters under traditional conditions can be prepared via the DCC approach. Moreover, CMOFs synergize the advantages of MOFs and COFs, containing metal active sites ensuring various interesting properties, and covalent linkages that allow rather high chemical stability even under harsh conditions. In the past few years, our group has specifically focused on the development of general synthetic strategies for CMOFs by networking coinage metal (Cu, Ag, and Au)-based cyclic trinuclear units (CTUs) with DCC. The CTUs exhibit trigonal planar structures and can be functionalized with reactive sites, such as -NH2 and -CHO, that can further react with organic linkers to afford CMOFs. Notably, CTUs also features interesting properties including metallophilic attraction, π-acidity/basicity, luminescence, redox activity and catalytic activity, which can be incorporated into CMOFs. Therefore, we envision that CMOFs would be promising platforms not only for the development of novel reticular materials, but also for potential applications in many research fields including gas absorption/separation, sensing, full-color display, catalysis, energy, and biological applications. In this Account, we summarize the recent studies on CMOFs, starting with linkage and topological design, structural transformation, morphological control, and potential applications in various fields. We also discuss the future opportunities and challenges in this rapidly developed research field of CMOFs. We hope this Account may promote new scientific discoveries and further development of CMOF-based materials and technologies in the future.
Collapse
Affiliation(s)
- Rong-Jia Wei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Xiao Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
8
|
Wu D, Wang H, Wang L, Geng W, Gu N, Fan X, Cao Y, Sun Y, Zhang B. Geomimetic Interfacial Hydrothermal Synthesis of Crystalline Ionic Vinylene-Linked Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409233. [PMID: 39906022 DOI: 10.1002/smll.202409233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Ionic vinylene-linked covalent organic frameworks (ivCOFs) with ionic characteristics and highly conjugated structures have been promising functional materials. However, both the number of reported ionic vinylene-linked COFs and its synthetic methodologies still be limited. Herein, two new kinds of ionic vinylene-linked covalent organic frameworks (named as COF-NUC-1 and COF-NUC-2) are synthesized by novel geomimetic interfacial hydrothermal synthesis for the first time. Due to the insolubility of conjugated aldehyde monomers in water, a molecule/water interface is created, where the water-soluble N-ethyl-2,4,6-trimethylpyridinium bromide (ETMP-Br) can react with aldehyde monomers via the interface-confined Knoevenagel condensation reaction. The resultant ionic COFs show high crystallinity, high chemical stability, and hydrophilic nature. Benefiting from electron-withdrawing and redox properties of pyridinium salts, the as-fabricated memristor based on COF-NUC-1 film shows stable nonvolatile memory effects, featuring a high ON/OFF current ratio of 0.66 × 103 and a small switch-on voltage of -0.68 V. This work expands the realm of ivCOFs and deepens the understanding of hydrothermal synthesis.
Collapse
Affiliation(s)
- Dongchuang Wu
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China
| | - Hao Wang
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lun Wang
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, China
| | - Wenping Geng
- Science and Technology on Electronic Test and Measurement Laboratory, School of Semiconductor and Physics, North University of China, Taiyuan, 030051, China
| | - Ning Gu
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China
| | - Xin Fan
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, China
| | - Yang Cao
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, China
| | - Youyi Sun
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, China
| | - Bin Zhang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
9
|
Chen W, Xu N, Qin L, Deng YF, Zhuang GL, Zhang Z, Xie TZ, Wang P, Zheng Z. A Hollowed-Out Heterometallic Cluster for Catalytic Knoevenagel Condensation. Angew Chem Int Ed Engl 2025; 64:e202420770. [PMID: 39531240 DOI: 10.1002/anie.202420770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Lanthanide-containing clusters are synthetically challenging and with significant chemical and materials applications. Herein, two isostructural heterometallic clusters of the formula (NO3)12@[Ln132Ni78(OH)292(IDA)48(CH3COO)96(NO3)12(H2O)78]Cl44⋅xH2O⋅yCH3OH (IDA=iminodiacetate; Ln=Gd 1, x=110, y=0; Ln=Eu 2, x=95, y=40) were obtained via co-hydrolysis of Ln3+ (Gd3+ or Eu3+) and Ni2+ in the presence of iminodiacetate (IDA). Crystallographic studies show that each features a truncated tetrahedral core of Ln132Ni78 within which a void of 1.1 nm in diameter; connecting the central cage and its exterior are four trumpet-like passageways surface-decorated with dinuclear units of [Gd(μ3-OH)2Gd]. Mass spectroscopic analyses indicate that both clusters maintained their structural integrity in aqueous solution, with cryo-electron microscopy providing the most convincing visual evidence in support of the cluster's solution stability. Size-selective Knoevenagel condensation, believed to occur in the passageways on the basis of experimental and molecular modeling results, was achieved in the presence of 1. The application of 1 as a uniquely structured molecular reactor and a recyclable heterogeneous catalyst was further illustrated by the one-pot three-component synthesis of biologically and pharmaceutically significant 4H-pyran derivatives.
Collapse
Affiliation(s)
- Wanmin Chen
- Department of Chemistry and Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Na Xu
- Department of Chemistry and Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Qin
- Department of Chemistry and Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi-Fei Deng
- Department of Chemistry and Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gui-Lin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, 510006, China
| | - Zhiping Zheng
- Department of Chemistry and Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
10
|
Sun QY, He HZ, Zhou Y, Dai YP, Shang P, Jiang XF. Photocatalytic Hydroxylation and Oxidative Coupling Reactions Mediated by Multinuclear Au(I) Supramolecular Clusters. Angew Chem Int Ed Engl 2025; 64:e202420499. [PMID: 39715710 DOI: 10.1002/anie.202420499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
Polynuclear Au(I) cluster photocatalysts, known for their high activity and stability, hold substantial potential in organic synthetic chemistry. This study synthesized two Au(I) supramolecular cluster catalysts with different nuclearities: a tetranuclear cluster, C1 ([(dppmAu2)2L1] • PF6 -), and a hexadecanuclear cluster, C2 [(dppmAu2)6(Au4)(L1)4] • 4PF6 -, through a multicomponent stepwise self-assembly approach. Both cluster structures feature aurophilicity interaction motifs that endow them with exceptional photocatalytic performance, exhibiting optical band gaps of 2.27 eV and 2.41 eV, respectively. Upon photoexcitation, these clusters efficiently generate reactive oxygen species, significantly enhancing their photocatalytic efficacy for the oxidative hydroxylation of phenylboronic acids and oxidative coupling of benzylamines under mild conditions. Catalytic efficiencies exceeding 90 % were achieved. Turnover frequencies for C2 and C1 were measured at 52.045 h-1 and 6.030 h-1, respectively, representing the highest efficiencies reported for photocatalysts to date. Compared to C1, C2 exhibited superior photocatalytic activity, attributed to its higher photoelectric sensitivity and greater exposure of active metal sites. Using a combination of experimental data and density functional theory calculations, the plausible mechanisms were proposed for two photocatalytic reactions. This study demonstrates that the use of multicomponent cooperative self-assembly strategy to synthesize high-nuclearity Au(I) clusters offers innovative pathways for the development of efficient, green, light-driven organic synthesis.
Collapse
Affiliation(s)
- Qing-Ya Sun
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Hui-Zhen He
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Ying Zhou
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Yu-Peng Dai
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Ping Shang
- Department of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, Hubei, 445000, P. R. China
| | - Xuan-Feng Jiang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| |
Collapse
|
11
|
Jiang K, Yan P, Shi P, Zhang J, Chai X, Wang Y, Zhu C, Yang C, Lu C, Liu Y, Cao K, Zhuang X. Two-Dimensional Silver-Isocyanide Frameworks. Angew Chem Int Ed Engl 2025; 64:e202417658. [PMID: 39354679 DOI: 10.1002/anie.202417658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
Metal-organic frameworks (MOFs) have been widely studied due to their versatile applications and easily tunable structures. However, heteroatom-metal coordination dominates the MOFs community, and the rational synthesis of carbon-metal coordination-based MOFs remains a significant challenge. Herein, two-dimensional (2D) MOFs based on silver-carbon linkages are synthesized through the coordination between silver(I) salt and isocyanide-based monomers at ambient condition. The as-synthesized 2D MOFs possess well-defined crystalline structures and a staggered AB stacking mode. Most interestingly, these 2D MOFs, without π-π stacking between layers, exhibit narrow band gaps down to 1.42 eV. As electrochemical catalysts for converting CO2 to CO, such 2D MOFs demonstrate Faradaic efficiency over 92 %. Surprisingly, the CO2 reduction catalyzed by these MOFs indicates favorable adsorption of CO2 and *COOH on the active carbon sites of the isocyanide groups rather than on silver sites. This is attributed to the critical σ donor role of isocyanides and the corresponding ligand-to-metal charge-transfer effect. This work not only paves the way toward a new family of MOFs based on metal-isocyanide coordination but also offers a rare platform for understanding the electrocatalysis processes on strongly polarized carbon species.
Collapse
Affiliation(s)
- Kaiyue Jiang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
| | - Pu Yan
- School of Physical Science and Technology and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Pengfei Shi
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Xinyu Chai
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
| | - Yunfei Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chongqing Yang
- Carbon Capture and Utilization Research Center, College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenbao Lu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kecheng Cao
- School of Physical Science and Technology and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaodong Zhuang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| |
Collapse
|
12
|
Zhang Q, Che Q, Wu D, Zhao Y, Chen Y, Xuan F, Zhang B. Dual Redox-active Covalent Organic Framework-based Memristors for Highly-efficient Neuromorphic Computing. Angew Chem Int Ed Engl 2024; 63:e202413311. [PMID: 39104289 DOI: 10.1002/anie.202413311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024]
Abstract
Organic memristors based on covalent organic frameworks (COFs) exhibit significant potential for future neuromorphic computing applications. The preparation of high-quality COF nanosheets through appropriate structural design and building block selection is critical for the enhancement of memristor performance. In this study, a novel room-temperature single-phase method was used to synthesize Ta-Cu3 COF, which contains two redox-active units: trinuclear copper and triphenylamine. The resultant COF nanosheets were dispersed through acid-assisted exfoliation and subsequently spin-coated to fabricate a high-quality COF film on an indium tin oxide (ITO) substrate. The synergistic effect of the dual redox-active centers in the COF film, combined with its distinct crystallinity, significantly reduces the redox energy barrier, enabling the efficient modulation of 128 non-volatile conductive states in the Al/Ta-Cu3 COF/ITO memristor. Utilizing a convolutional neural network (CNN) based on these 128 conductance states, image recognition for ten representative campus landmarks was successfully executed, achieving a high recognition accuracy of 95.13 % after 25 training epochs. Compared to devices based on binary conductance states, the memristor with 128 conductance states exhibits a 45.56 % improvement in recognition accuracy and significantly enhances the efficiency of neuromorphic computing.
Collapse
Affiliation(s)
- Qiongshan Zhang
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiang Che
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dongchuang Wu
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunjia Zhao
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fuzhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection, East China University of Science and Technology, Shanghai, 200237, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Intelligent Sensing and Detection, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
13
|
Cao Q, Sun W, Xiao Z, Zhou X, Lu L, Hou H, Chen Y, Wang L. Tri-site Synergistic Cu(I)/Cu(II)─N Single-Atom Catalysts for Additive-Free CO 2 Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404202. [PMID: 39036839 DOI: 10.1002/smll.202404202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Indexed: 07/23/2024]
Abstract
As the highly stable and abundant carbon source in nature, the activation and conversion of CO2 into high-value chemicals is highly desirable yet challenging. The development of Cu(I)/Cu(II)─N tri-site synergistic single-atom catalysts (TS-SACs) with remarkable CO2 activation and conversion performance is presented, eliminating the need for external additives in cascade reactions. Under mild conditions (40 °C, atmospheric CO2), the catalyst achieves high yields (up to 99%) of valuable 2-oxazolidinones from CO2 and propargylamine. Notably, the catalyst demonstrates easy recovery, short reaction times, and excellent tolerance toward various functional groups. Supported by operando techniques and density functional theory calculations, it is elucidated that the spatially proximal Cu(I)/Cu(II)─N sites facilitate the coupling of multiple chemical transformations. This surpasses the performance of supported isolated Cu(I) or Cu(II) catalysts and traditional organic base-assisted cascade processes. These Cu(I)/Cu(II)─N tri-site synergistic atom active sites not only enable the co-activation of CO2 at the Cu(II)─N pair and alkyne at the Cu(I) site but also induce a di-metal locking geometric effect that accelerates the ring closure of cyclic carbamate intermediates. The work overcomes the limitations of single metal sites and paves the way for designing multisite catalysts for CO2 activation, especially for consecutive activation, tandem, or cascade reactions.
Collapse
Affiliation(s)
- Qiuyan Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wenqiang Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhihe Xiao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaole Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lilin Lu
- State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Haonan Hou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yueguang Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
14
|
Zheng ZW, Zhou JJ, Liu H, Zhang XY, Zhao J, Zheng DS, Huang K, Qin DB. Cu(II)-Organic Framework for Carboxylative Cyclization of Propargylic Amines with CO 2. Inorg Chem 2024; 63:16878-16887. [PMID: 39190825 DOI: 10.1021/acs.inorgchem.4c02730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Effective CO2 transformations hold essential significance for carbon neutrality and sustainable energy development. Carboxylative cyclization of propargylic amines with CO2 serves as an atom-economic reaction to afford oxazolidinones, showing broad applications in organic synthesis and pharmaceutical fields. However, most catalysts involved noble metals, exhibited low efficiency, or required large amounts of base. Hence, it is imperative to explore alternative noble-metal-free catalysts in order to achieve efficient conversion while minimizing the use of additives. Herein, a novel nanopore-based Cu(II)-organic framework (1) based on a new imidazole carboxylic ligand was successfully constructed and exhibited excellent stability. Catalytic investigations revealed that the combination of 1 with 1,4-diaza[2.2.2]bicyclooctane (DABCO) efficiently catalyzed the carboxylative cyclization of propargylic amines with CO2, achieving turnover numbers of 142 based on the catalyst and 7.1 based on DABCO. 1 as a heterogeneous catalyst maintained high catalytic performance even after being reused at least 5 cycles, with its structure remaining stable. The strong activation of Cu(II) cluster nodes of catalyst 1 toward -NH- groups within organic substrates, as demonstrated by mechanism experiments, along with excellent CO2 adsorption performance and the presence of regular 1D channels, synergistically facilitates the reaction rate. This research presents the first instance of a Cu(II)-organic framework achieving this cyclization reaction, offering wide prospects for novel catalyst design and CO2 utilization.
Collapse
Affiliation(s)
- Zhi-Wei Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jun-Jie Zhou
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Hua Liu
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Xiang-Yu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian Zhao
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Da-Sheng Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Da-Bin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
15
|
Yang Q, Liu H, Lin Y, Su D, Tang Y, Chen L. Atomically Dispersed Metal Catalysts for the Conversion of CO 2 into High-Value C 2+ Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310912. [PMID: 38762777 DOI: 10.1002/adma.202310912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The conversion of carbon dioxide (CO2) into value-added chemicals with two or more carbons (C2+) is a promising strategy that cannot only mitigate anthropogenic CO2 emissions but also reduce the excessive dependence on fossil feedstocks. In recent years, atomically dispersed metal catalysts (ADCs), including single-atom catalysts (SACs), dual-atom catalysts (DACs), and single-cluster catalysts (SCCs), emerged as attractive candidates for CO2 fixation reactions due to their unique properties, such as the maximum utilization of active sites, tunable electronic structure, the efficient elucidation of catalytic mechanism, etc. This review provides an overview of significant progress in the synthesis and characterization of ADCs utilized in photocatalytic, electrocatalytic, and thermocatalytic conversion of CO2 toward high-value C2+ compounds. To provide insights for designing efficient ADCs toward the C2+ chemical synthesis originating from CO2, the key factors that influence the catalytic activity and selectivity are highlighted. Finally, the relevant challenges and opportunities are discussed to inspire new ideas for the generation of CO2-based C2+ products over ADCs.
Collapse
Affiliation(s)
- Qihao Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Desheng Su
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Yulong Tang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Chen YX, Yu H, Wu L, Tong YJ, Xu J, Pang H, Wu C, Tian T, Ouyang G. Unlocking multi-photon excited luminescence in pyrazolate trinuclear gold clusters for dynamic cell imaging. Nat Commun 2024; 15:7356. [PMID: 39191759 PMCID: PMC11350157 DOI: 10.1038/s41467-024-51753-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
The family of coinage-metal-based cyclic trinuclear complexes exhibits abundant photophysical properties, promising for diverse applications. However, their utility in biochemistry is often hindered by large particle size and strong hydrophobicity. Meanwhile, the investigation into multi-photon excited luminescence within this family remained undocumented, limiting their potential in bio-imaging. Herein, we unveil the multi-photon excited luminescent properties of pyrazolate-based trinuclear gold(I) clusters, facilitated by excimeric gold(I)···gold(I) interactions, revealing a nonlinear optical phenomenon within this family. Furthermore, to address issues of poor biocompatibility, we employ electrospinning coupled with hydroxypropyl-beta-cyclodextrin as the matrix to fabricate a flexible, durable, transparent, and red emissive film with a photoluminescence quantum yield as high as 88.3%. This strategy not only produces the film with sufficient hydrophilicity and stability, but also achieves the downsizing of trinuclear gold(I) clusters from microscale to nanoscale. Following the instantaneous dissolution of the film in the media, the released trinuclear gold(I) nanoparticles have illuminated cells and bacteria through a real-time, non-toxic, multi-photon bio-imaging approach. This achievement offers a fresh approach for utilizing coinage-metal-based cyclic trinuclear complexes in biochemical fields.
Collapse
Affiliation(s)
- Yu-Xin Chen
- GBRCE for Functional Molecular Engineering, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, PR China
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Haidong Yu
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, PR China
| | - Lihua Wu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yuan-Jun Tong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, PR China
| | - Jianqiao Xu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Huan Pang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Chao Wu
- Department of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, PR China.
| | - Tian Tian
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| | - Gangfeng Ouyang
- GBRCE for Functional Molecular Engineering, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, PR China.
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
17
|
Chen X, Song JY, Zheng J, Wang YM, Luo J, Weng P, Cai BC, Lin XC, Ning GH, Li D. Metal Variance in Multivariate Metal-Organic Frameworks for Boosting Catalytic Conversion of CO 2. J Am Chem Soc 2024; 146:19271-19278. [PMID: 38950195 DOI: 10.1021/jacs.4c04556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Developing efficient, low-cost, MOF catalysts for CO2 conversion at low CO2 concentrations under mild conditions is particularly interesting but remains highly challenging. Herein, we prepared an isostructural series of two-dimensional (2D) multivariate metal-organic frameworks (MTV-MOFs) containing copper- and/or silver-based cyclic trinuclear complexes (Cu-CTC and Ag-CTC). These MTV-MOFs can be used as efficient and reusable heterogeneous catalysts for the cyclization of propargylamine with CO2. The catalytic performance of these MTV-MOFs can be engineered by fine-tuning the Ag/Cu ratio in the framework. Interestingly, the induction of 10% Ag remarkably improved the catalytic efficiency with a turnover frequency (TOF) of 243 h-1, which is 20-fold higher than that of 100% Cu-based MOF (i.e., TOF = 10.8 h-1). More impressively, such a bimetallic MOF still exhibited high catalytic activity even for simulated flue gas with 10% CO2 concentration. Furthermore, the reaction mechanism has been examined through the employment of NMR monitoring experiments and DFT calculations.
Collapse
Affiliation(s)
- Xu Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Jing-Yi Song
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Ji Zheng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Yu-Mei Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Jie Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Puxin Weng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Bing-Chen Cai
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Xiao-Chun Lin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
18
|
Liu H, Zheng ZW, Zhang XY, Li Q, Zhou JJ, Huang K, Qin DB. Metal Hydrogen-Bonded Organic Frameworks as Open Lewis Acid Catalysts for Two Types of CO 2 Transformations. Inorg Chem 2024; 63:11554-11565. [PMID: 38815997 DOI: 10.1021/acs.inorgchem.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Efficient and multiple CO2 utilization into high-value-added chemicals holds significant importance in carbon neutrality and industry production. However, most catalysis systems generally exhibit only one type of CO2 transformation with the efficiency to be improved. The restricted abundance of active catalytic sites or an inefficient utilization rate of these sites results in the constraint. Consequently, we designed and constructed two metal hydrogen-bonded organic frameworks (M-HOFs) {[M3(L3-)2(H2O)10]·2H2O}n (M = Co (1), Ni (2); L = 1-(4-carboxyphenyl)-1H-pyrazole-3,5-dicarboxylic acid) in this research. 1 and 2 are well-characterized, and both show excellent stability. The networks connected by multiple hydrogen bonds enhance the structural flexibility and create accessible Lewis acidic sites, promoting interactions between the substrates and catalytic centers. This enhancement facilitates efficient catalysis for two types of CO2 transformations, encompassing both cycloaddition reactions with epoxides and aziridines to afford cyclic carbonates and oxazolidinones. The catalytic activities (TON/TOF) are superior compared with those of most other catalysts. These heterogeneous catalysts still exhibited high performance after being reused several times. Mechanistic studies indicated intense interactions between the metal sites and substrates, demonstrating the reason for efficient catalysis. This marks the first instance on M-HOFs efficiently catalyzing two types of CO2 conversions, finding important significance for catalyst design and CO2 utilization.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Zhi-Wei Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Xiang-Yu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
| | - Qi Li
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, People's Republic of China
| | - Jun-Jie Zhou
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Da-Bin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| |
Collapse
|
19
|
Dou Y, Wang Y, Tian S, Song Q, Deng Y, Zhang Z, Chen P, Sun Y. Metal-organic framework (MOF)-based materials for pyroptosis-mediated cancer therapy. Chem Commun (Camb) 2024; 60:6476-6487. [PMID: 38853690 DOI: 10.1039/d4cc02084g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pyroptosis is regarded as a promising strategy to modulate tumor immune microenvironments for anticancer therapy. Although pyroptosis inducers have been extensively explored in the biomedical field, their drug resistance, off-targeting capacity, and adverse effects do not fulfill the growing demands of therapy. Nowadays, metal-organic frameworks (MOFs) with unique structures and facile synthesis/functionalization characteristics have shown great potential in anticancer therapy. The flexible choices of metal ions and ligands endow MOFs with inherent anti-cancer efficiency, whereas the porous structures in MOFs make them ideal vehicles for delivering various chemodrug-based pyroptosis inducers. In this review, we provide the latest advances in MOF-based materials to evoke pyroptosis and give a brief but comprehensive review of the different types of MOFs for pyroptosis-mediated cancer therapy. Finally, we also discuss the current challenges of MOF-based pyroptosis inducers and their future prospects in this field.
Collapse
Affiliation(s)
- You Dou
- College of Pharmacy, Hubei University of Science & Technology, Xianning 437100, China.
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yuting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| | - Shu Tian
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qiao Song
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yun Deng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Zhipeng Zhang
- College of Pharmacy, Hubei University of Science & Technology, Xianning 437100, China.
| | - PeiYao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning 530021, China
| | - Yao Sun
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
20
|
Wang YM, Ning GH, Li D. Multifunctional Metal-Organic Frameworks as Catalysts for Tandem Reactions. Chemistry 2024; 30:e202400360. [PMID: 38376356 DOI: 10.1002/chem.202400360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
Owing to well-defined structure as well as easy synthesis and modification, metal-organic frameworks (MOFs) have emerged as promising catalysts for tandem reactions. In this article, we aim to summarize the development of multifunctional MOFs, including mixed metal MOFs, MOFs that are synergistically catalyzed by metal nodes and organic linkers, MOFs loaded with metal nanoparticles, etc, as heterogenous catalysts for tandem reactions over the past five years. This concept briefly discusses on present challenges, future trends, and prospects of multifunctional MOFs catalysts in tandem reactions.
Collapse
Affiliation(s)
- Yu-Mei Wang
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Guo-Hong Ning
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Dan Li
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
21
|
Zhang CH, Zhou BX, Lin X, Mo YH, Cao J, Cai SL, Fan J, Zhang WG, Zheng SR. Iodine Adsorption-Desorption-Induced Structural Transformation and Improved Ag + Turn-On Luminescent Sensing Performance of a Nonporous Eu(III) Metal-Organic Framework. Inorg Chem 2024; 63:4185-4195. [PMID: 38364251 DOI: 10.1021/acs.inorgchem.3c04222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Posttreatment of pristine metal-organic frameworks (MOFs) with suitable vapor may be an effective way to regulate their structures and properties but has been less explored. Herein, we report an interesting example in which a crystalline nonporous Eu(III)-MOF was transferred to a porous amorphous MOF (aMOF) via iodine vapor adsorption-desorption posttreatment, and the resulting aMOF showed improved turn-on sensing properties with respect to Ag+ ions. The crystalline Eu-MOF, namely, Eu-IPDA, was assembled from Eu(III) and 4,4'-{4-[4-(1H-imidazol-1-yl)phenyl]pyridine-2,6-diyl}dibenzoic acid (H2IPDA) and exhibited a two-dimensional (2D) coordination network based on one-dimensional secondary building blocks. The close packing of the 2D networks gives rise to a three-dimensional supramolecular framework without any significant pores. Interestingly, the nonporous Eu-IPDA could absorb iodine molecules when Eu-IPDA crystals were placed in iodine vapor at 85 °C, and the adsorption capacity was 1.90 g/g, which is comparable to those of many MOFs with large BET surfaces. The adsorption of iodine is attributed to the strong interactions among the iodine molecule, the carboxy group, and the N-containing group and leads to the amorphization of the framework. After immersion of the iodine-loaded Eu-IPDA in EtOH, approximately 89.7% of the iodine was removed, resulting in a porous amorphous MOF, denoted as a-Eu-IPDA. In addition, the remaining iodine in the a-Eu-IPDA framework causes strong luminescent quenching in the fluorescence emission region of the Eu(III) center when compared with that in Eu-IPDA. The luminescence intensity of a-Eu-IPDA in water suspensions was significantly enhanced when Ag+ ions were added, with a detection limit of 4.76 × 10-6 M, which is 1000 times that of pristine Eu-IPDA. It also showed strong anti-interference ability over many common competitive metal ions and has the potential to sense Ag+ in natural water bodies and traditional Chinese medicine preparations. A mechanistic study showed that the interactions between Ag+ and the absorbed iodine, the carboxylate group, and the N atoms all contribute to the sensing performance of a-Eu-IPDA.
Collapse
Affiliation(s)
- Chu-Hong Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Bing-Xun Zhou
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Xian Lin
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Yi-Hong Mo
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jun Cao
- School of Materials Science and Hydrogen Energy, Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan University, Foshan 528000, P. R. China
| | - Song-Liang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Wei-Guang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Sheng-Run Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, and School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
22
|
Peng S, Sun Y, Li Q, Jiang Z, Rao Y, Wu Y, Li Q. Stepwise construction of coordinative linkages and dynamic covalent linkages for a porous metal-organic framework. Chem Commun (Camb) 2024; 60:1488-1491. [PMID: 38224189 DOI: 10.1039/d3cc05650c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A cyclic trinuclear complex is synthesized from AgI and 1H-pyrazole-4-carbaldehyde. Reticulation of the complex with 1,3,5-tris(4-aminophenyl)benzene through Schiff-base reaction affords a porous FDM-72 framework. Amine choice is systematically investigated as it may initiate metal reduction. This study proposes a new route and its amine selection criterion to synthesize Ag-based frameworks.
Collapse
Affiliation(s)
- Shuyin Peng
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Yuqian Sun
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Qingqing Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Zhongwen Jiang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Yin Rao
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Yichen Wu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Qiaowei Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|