1
|
Wu HY, Koh MJ, Wang ZC, Shi SL. Modular Access to Arylethylamines Enabled by Ni-Catalyzed Markovnikov-Selective Hydroarylation of Allylic Amines. Angew Chem Int Ed Engl 2025:e202503126. [PMID: 40302289 DOI: 10.1002/anie.202503126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/15/2025] [Accepted: 04/29/2025] [Indexed: 05/02/2025]
Abstract
Arylethylamines are prevalent structural skeletons in bioactive molecules and have significant interest within the organic chemistry community. We report here a modular and efficient nickel-catalyzed Markovnikov-selective hydroarylation of readily available allylic amines, delivering a wide variety of valuable arylethylamines with complete regiocontrol under mild conditions. Key to the success of this protocol is the employment of bulky N-heterocyclic carbenes (NHCs) as ligands. Furthermore, the use of chiral NHC ligands enables straightforward access to enantioenriched arylethylamines with excellent regio- and enantioselectivities.
Collapse
Affiliation(s)
- Hai-Yu Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, Singapore, 117544, Republic of Singapore
| | - Zi-Chao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| |
Collapse
|
2
|
Zhen Y, Jiang W, Xu Y, Hui X, Shi X, Zou H, Chen Q, Chen J, Wei H, Xie W. Asymmetric Synthesis of 10-Demethoxyvincorine Enabled by Dual Ni/Ti-Catalyzed Reductive Cyclization. Org Lett 2025; 27:4305-4309. [PMID: 40207894 DOI: 10.1021/acs.orglett.5c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Herein, we report the asymmetric synthesis of 10-demethoxyvincorine in 12 steps. The synthesis is highlighted by several key transformations: (1) a Pd-catalyzed Catellani-type reaction for the preparation of C2-alkylated tryptamine, (2) a chiral phosphoric acid (CPA)-catalyzed asymmetric bromocyclization to construct enantioenriched 3a-bromo-hexahydropyrroloindoline, (3) a dual Ni/Ti-catalyzed reductive cyclization to establish the bridged ring system, and (4) a SmI2-promoted reductive cyclization to forge the strained E-ring.
Collapse
Affiliation(s)
- Yanxia Zhen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wei Jiang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yuanzhen Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Xiangyu Hui
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Xiaoran Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Huanhuan Zou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Qianhu Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Junhan Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Kong X, Gou MB, Li B, Luo ZQ, Su Y, Li Y, Yang C, Liu B, He Q, Li JF, Zhang J, Wang J, Tang L, Wang RH. Nickel-Catalyzed Rearranged Alkenylation of 2-Arylaziridines with Aryl Alkenes to Access Allylamines. Org Lett 2025; 27:2709-2714. [PMID: 40062692 DOI: 10.1021/acs.orglett.5c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The transition-metal-catalyzed ring-opening functionalization of aziridines presents a promising approach for synthesizing structurally complex amines. However, the rearranged functionalization of aziridines poses significant challenges. Herein, we report the first rearranged alkenylation of aziridines with aryl alkenes via Ni-Brønsted acid co-catalysis, leading to the rapid synthesis of a diverse array of allylamines with yields reaching up to 91%. Mechanistic studies suggest that the reaction occurs through the rearrangement of aziridine to generate an imine intermediate. This intermediate is subsequently captured by an alkene under nickel catalysis, ultimately leading to the formation of allylamines.
Collapse
Affiliation(s)
- Xiangkai Kong
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Ming-Bai Gou
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Bo Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Zhen-Qi Luo
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Yu Su
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Yi Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Chao Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Bin Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Qing He
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Jiang-Fei Li
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Wannan Medical College, 241002 Wuhu, P. R. China
| | - Jiquan Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Jianta Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Lei Tang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Rong-Hua Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| |
Collapse
|
4
|
Gao W, Raghavan P, Shprints R, Coley CW. Revealing the Relationship between Publication Bias and Chemical Reactivity with Contrastive Learning. J Am Chem Soc 2025. [PMID: 40023782 DOI: 10.1021/jacs.5c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
A synthetic method's substrate tolerance and generality are often showcased in a "substrate scope" table. However, substrate selection exhibits a frequently discussed publication bias: unsuccessful experiments or low-yielding results are rarely reported. In this work, we explore more deeply the relationship between such a publication bias and chemical reactivity beyond the simple analysis of yield distributions using a novel neural network training strategy, substrate scope contrastive learning. By treating reported substrates as positive samples and nonreported substrates as negative samples, our contrastive learning strategy teaches a model to group molecules within a numerical embedding space, based on historical trends in published substrate scope tables. Training on 20,798 aryl halides in the CAS Content CollectionTM, spanning thousands of publications from 2010 to 2015, we demonstrate that the learned embeddings exhibit a correlation with physical organic reactivity descriptors through both intuitive visualizations and quantitative regression analyses. Additionally, these embeddings are applicable to various reaction modeling tasks like yield prediction and regioselectivity prediction, underscoring the potential to use historical reaction data as a pretraining task. This work not only presents a chemistry-specific machine learning training strategy to learn from literature data in a new way but also represents a unique approach to uncover trends in chemical reactivity reflected by trends in substrate selection in publications.
Collapse
Affiliation(s)
- Wenhao Gao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Priyanka Raghavan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ron Shprints
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Connor W Coley
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Palamini P, Schoepfer AA, Waser J. Photocatalyzed Azidofunctionalization of Alkenes via Radical-Polar Crossover. Angew Chem Int Ed Engl 2025; 64:e202420455. [PMID: 39748637 DOI: 10.1002/anie.202420455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Indexed: 01/04/2025]
Abstract
The azidofunctionalization of alkenes under mild conditions using commercially available starting materials and easily accessible reagents is reported based on a radical-polar crossover strategy. A broad range of alkenes, including vinyl arenes, enamides, enol ethers, vinyl sulfides, and dehydroamino esters, were regioselectively functionalized with an azide and nucleophiles such as azoles, carboxylic acids, alcohols, phosphoric acids, oximes, and phenols. The method led to a more efficient synthesis of 1,2-azidofunctionalized pharmaceutical intermediates when compared to previous approaches, resulting in both reduction of step count and increase in overall yield. The scope and limitations of these transformations were further investigated through a standard unbiased selection of 15 substrate combinations out of 1,175,658 possible using a clustering technique.
Collapse
Affiliation(s)
- Pierre Palamini
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Alexandre A Schoepfer
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
6
|
Wang L, Zhou PP, Xie D, Yue Q, Sun HZ, Yang SD, Wang GW. Dynamic Kinetic Activation of Aziridines Enables Radical-Polar Crossover (4 + 3) Cycloaddition with 1,3-Dienes. J Am Chem Soc 2025; 147:2675-2688. [PMID: 39791566 DOI: 10.1021/jacs.4c15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The cycloaddition of aziridines with unsaturated compounds is a valuable method for synthesizing nitrogen heterocycles. However, this process is predominantly substrate-controlled, posing significant challenges in regulating the regioselectivity of the C-N bond cleavage. In this study, we report a nickel-catalyzed dynamic kinetic activation strategy that enables catalyst-controlled activation of aziridines. Various types of aziridines, including 2-phenyl, 2-carbonyl, 2-alkyl, and disubstituted aziridines, consistently cleave their more sterically hindered C-N bonds to generate 1,3-radical anion intermediates. These intermediates participate in a highly regioselective 1,4-Heck/allylic substitution cascade with aromatic branched 1,3-dienes, resulting in a radical-polar crossover (4 + 3) cycloaddition that produces seven-membered azepine products. This approach not only complements traditional dipolar cycloaddition, in which aziridines typically act as zwitterionic 1,3-dipoles, but also introduces an unusual cycloaddition mode for 1,3-dienes. Experimental investigations and density functional theory (DFT) calculations provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dong Xie
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qian Yue
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao-Zheng Sun
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Gang-Wei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Aida K, Hirao M, Saitoh T, Yamamoto T, Einaga Y, Ota E, Yamaguchi J. Selective C-N Bond Cleavage in Unstrained Pyrrolidines Enabled by Lewis Acid and Photoredox Catalysis. J Am Chem Soc 2024; 146:30698-30707. [PMID: 39440606 PMCID: PMC11544709 DOI: 10.1021/jacs.4c13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Cleavage of inert C-N bonds in unstrained azacycles such as pyrrolidine remains a formidable challenge in synthetic chemistry. To address this, we introduce an effective strategy for the reductive cleavage of the C-N bond in N-benzoyl pyrrolidine, leveraging a combination of Lewis acid and photoredox catalysis. This method involves single-electron transfer to the amide, followed by site-selective cleavage at the C2-N bond. Cyclic voltammetry and NMR studies demonstrated that the Lewis acid is crucial for promoting the single-electron transfer from the photoredox catalyst to the amide carbonyl group. This protocol is widely applicable to various pyrrolidine-containing molecules and enables inert C-N bond cleavage including C-C bond formation via intermolecular radical addition. Furthermore, the current protocol successfully converts pyrrolidines to aziridines, γ-lactones, and tetrahydrofurans, showcasing its potential of the inert C-N bond cleavage for expanding synthetic strategies.
Collapse
Affiliation(s)
- Kazuhiro Aida
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Marina Hirao
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Tsuyoshi Saitoh
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Yamamoto
- Department
of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Yasuaki Einaga
- Department
of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Eisuke Ota
- Waseda
Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
8
|
Zou L, Yang H, Xie T, Wang LW, Ye Y. Nickel-Catalyzed Cross-Electrophile Vinylation of α-Chloro Phosphonates. J Org Chem 2024; 89:15822-15833. [PMID: 39420776 DOI: 10.1021/acs.joc.4c01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Herein, we report a general and efficient Ni-catalyzed reductive cross-coupling reaction of substituted vinyl bromides and α-chloro phosphonates to access a set of α-vinyl phosphonates using zinc as the terminal reductant. This reaction exhibits broad substrate adaptability and good functional group tolerance, which allows to afford diverse compounds including structurally complex motifs from natural products and drugs. Furthermore, the practicality was certificated through the gram-scale and transformation experiments. The preliminary mechanistic investigations support a radical chain process. The potential to realize enantiomeric control makes it more valuable for further exploration.
Collapse
Affiliation(s)
- Liang Zou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Huimin Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| |
Collapse
|
9
|
Meyer S, Neuhut A, Claraz A. Electrochemical sulfonylation/Truce-Smiles rearrangement of N-allylbenzamides: toward sulfone-containing β-arylethylamines and Saclofen analogues. Org Biomol Chem 2024; 22:8102-8108. [PMID: 39290053 DOI: 10.1039/d4ob01327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The β-arylethylamine pharmacophore is commonly found in medications for central nervous system disorders, prompting the need for safe and efficient methods to endow this motif with relevant functional groups for drug discovery. In this context, herein, we have established electrochemical radical sulfonylation reactions of N-allylbenzamides followed by Truce-Smiles rearrangement to produce sulfone- and sulfonate ester-containing β-arylethylamines. Electricity enables this transformation to occur under mild and oxidant-free conditions. Simple sources of sulfonyl radicals and SO2 surrogates were employed to form sulfones and sulfonate esters, respectively. This practical and operationally robust method exhibited a broad substrate scope with good to high yields. The prospective pharmaceutical utility of the process was further demonstrated by removing the N-protecting groups and hydrolysing the sulfonate ester moiety to provide γ-sulfonyl-β-arylamines and Saclofen.
Collapse
Affiliation(s)
- Sébastien Meyer
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Alexandre Neuhut
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
10
|
Lan Y, Han Q, Liao P, Chen R, Fan F, Zhao X, Liu W. Nickel-Catalyzed Enantioselective C(sp 3)-C(sp 3) Cross-Electrophile Coupling of N-Sulfonyl Styrenyl Aziridines with Alkyl Bromides. J Am Chem Soc 2024; 146:25426-25432. [PMID: 39231321 DOI: 10.1021/jacs.4c08435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Herein, we report the first example of a highly enantioselective alkylative aziridine ring opening. Under the catalysis of a chiral nickel/pyridine-imidazoline complex, asymmetric C(sp3)-C(sp3) cross-electrophile coupling between racemic N-sulfonyl styrenyl aziridines and readily available primary alkyl bromides furnishes a variety of highly enantioenriched phenethylamine derivatives with complete regiocontrol and good functional group tolerance. Preliminary mechanistic studies support a reaction pathway consisting of regioselective iodolysis of aziridines in situ and subsequent enantioconvergent coupling of the generated β-amino benzyl iodides with alkyl bromides.
Collapse
Affiliation(s)
- Yun Lan
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Qiaoying Han
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Pingyong Liao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Ruijia Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Fei Fan
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Xuejun Zhao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| |
Collapse
|
11
|
Ledwith PR, Cooney ML, Bahou KA, García-Cárceles J, Thomson J, Bower JF. A Strategy for the Formal C-N Cross-Coupling of Tertiary Amines. Angew Chem Int Ed Engl 2024:e202411555. [PMID: 39219402 DOI: 10.1002/anie.202411555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
We report a strategy for the formal C-N cross-coupling of tertiary amines via the in situ generation and displacement of N-acyl ammonium species. Specifically, treatment of diverse tertiary amines with TFAA or chloroformates in the presence of NaI leads to the efficient generation of alkyl iodides, which can be engaged directly in Ni-catalyzed cross-couplings. The protocol is applicable to acyclic and cyclic systems, including highly hindered variants. Applications to the late-stage modification of complex heterocycles are presented.
Collapse
Affiliation(s)
- Peter R Ledwith
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, United Kingdom, L69 7ZD
| | - Madelene L Cooney
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, United Kingdom, L69 7ZD
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom, BS8 1TS
| | - Karim A Bahou
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, United Kingdom, L69 7ZD
| | - Javier García-Cárceles
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom, BS8 1TS
| | - Joshua Thomson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom, BS8 1TS
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, United Kingdom, L69 7ZD
| |
Collapse
|
12
|
Samanta S, Biswas P, O'Bannon BC, Powers DC. β-Phenethylamine Synthesis: N-Pyridinium Aziridines as Latent Dual Electrophiles. Angew Chem Int Ed Engl 2024; 63:e202406335. [PMID: 38699820 PMCID: PMC11262962 DOI: 10.1002/anie.202406335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
β-Phenethylamines are widely represented in biologically and pharmacologically active organic small molecules. Here, we introduce N-pyridinium aziridines as latent dual electrophiles for the synthesis of β-phenethylamines. Bromide-promoted ring opening generates β-halopyridinium amines. Selective Ni-catalyzed C-C cross-coupling between organozinc nucleophiles and the benzylic C-Br electrophile affords a diverse family of β-functionalized phenethylaminopyridinium salts, and coupling is stereoconvergent in the presence of chiral ligands. Subsequent Ni-catalyzed reductive N-N bond activation within the β-functionalized phenethylaminopyridinium salts furnishes the products of formal olefin carboamination. Other reductive N-N cleavage reactions are demonstrated to provide access to free primary amines, alkylated amines, heterocycles, and products derived from N-centered radical chemistry. The developed reaction sequence can be implemented in the context of complex molecules and natural product derivatives. Together, the described results provide a general and modular synthesis of β-phenethylamines and significantly expand the utility of N-pyridinium aziridines as linchpins in chemical synthesis.
Collapse
Affiliation(s)
- Samya Samanta
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Promita Biswas
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Braeden C O'Bannon
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| |
Collapse
|
13
|
Derat E, Masson G, Claraz A. Electrochemically-Driven 1,4-Aryl Migration via Radical Fluoromethylation of N-Allylbenzamides: a Straightforward Access to Functionalized β-Arylethylamines. Angew Chem Int Ed Engl 2024; 63:e202406017. [PMID: 38687085 DOI: 10.1002/anie.202406017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
An electrochemical radical Truce Smiles rearrangement of N-allylbenzamides is documented herein. The selective 1,4-aryl migration was triggered by the radical fluoromethylation of the alkene providing a direct route to fluoro derivatives of the highly privileged β-arylethylamine pharmacophore. This practical transformation utilizes readily available starting materials and employs an electrical current to drive the oxidative process under mild reaction conditions. It accommodates a variety of migratory aryl groups with different electronic properties and substitution patterns. Careful selection of the protecting group on the nitrogen atom of the N-allylbenzamide is crucial to outcompete the undesired 6-endo cyclization and achieve high level of selectivity towards the 1,4-aryl migration. DFT calculations support the reaction mechanism and unveil the origin of selectivity between the two competitive pathways.
Collapse
Affiliation(s)
- Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris Cedex 05, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles (ICSN), CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Chen ZH, Zheng YQ, Huang HG, Wang KH, Gong JL, Liu WB. From Quaternary Carbon to Tertiary C(sp 3)-Si and C(sp 3)-Ge Bonds: Decyanative Coupling of Malononitriles with Chlorosilanes and Chlorogermanes Enabled by Ni/Ti Dual Catalysis. J Am Chem Soc 2024; 146:14445-14452. [PMID: 38739877 DOI: 10.1021/jacs.4c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Transition-metal-catalyzed C-Si/Ge cross-coupling offers promising avenues for the synthesis of organosilanes/organogermanes, yet it is fraught with long-standing challenges. A Ni/Ti-catalyzed strategy is reported here, allowing the use of disubstituted malononitriles as tertiary C(sp3) coupling partners to couple with chlorosilanes and chlorogermanes, respectively. This method enables the catalytic cleavage of the C(sp3)-CN bond of the quaternary carbon followed by the formation of C(sp3)-Si/C(sp3)-Ge bonds from ubiquitously available starting materials. The efficiency and generality are showcased by a broad scope for both of the coupling partners, therefore holding the potential to synthesize structurally diverse quaternary organosilanes and organogermanes that were difficult to access previously.
Collapse
Affiliation(s)
- Zi-Hao Chen
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Qing Zheng
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hong-Gui Huang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ke-Hao Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun-Lin Gong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Bo Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
15
|
Zhelavskyi O, Parikh S, Jhang YJ, Staples RJ, Zimmerman PM, Nagorny P. Green Light Promoted Iridium(III)/Copper(I)-Catalyzed Addition of Alkynes to Aziridinoquinoxalines Through the Intermediacy of Azomethine Ylides. Angew Chem Int Ed Engl 2024; 63:e202318876. [PMID: 38267370 PMCID: PMC10939844 DOI: 10.1002/anie.202318876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
This manuscript describes the development of alkyne addition to the aziridine moiety of aziridinoquinoxalines using dual Ir(III)/Cu(I) catalytic system under green light-emitting diode (LED) photolysis (λmax =525 nm). This mild method features high levels of chemo- and regioselectivity and was used to generate 30 highly functionalized substituted dihydroquinoxalines in 36-98 % yield. This transformation was also carried asymmetrically using phthalazinamine-based chiral ligand to provide 9 chiral addition products in 96 : 4 to 86 : 14 e.r. The experimental and quantum chemical explorations of this reaction suggest a mechanism that involves Ir(III)-catalyzed triplet energy transfer followed by a ring-opening reaction ultimately leading to the formation of azomethine ylide intermediates. These azomethine intermediates undergo sequential protonation/copper(I) acetylide addition to provide the products.
Collapse
Affiliation(s)
- Oleksii Zhelavskyi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Seren Parikh
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yin-Jia Jhang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Richard J. Staples
- Department of Chemistry and Chemical Biology, Michigan State University, East Lansing, MI 48824
| | - Paul M. Zimmerman
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Guan YQ, Qiao JF, Liang YF. Nickel-catalysed chelation-assisted reductive defluorinative sulfenylation of trifluoropropionic acid derivatives. Chem Commun (Camb) 2024; 60:2405-2408. [PMID: 38323634 DOI: 10.1039/d3cc06041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Herein we reported a directing-group assisted strategy for nickel-catalysed reductive defluorinative sulfenylation of trifluoropropionic acid derivatives with disulfides in the presence of Zn, involving triple C-F bond cleavage. This process yielded a diverse array of carbonyl-sulfide di-substituted alkenes in moderate to good yields with good functional group tolerance. Specifically, the reactions exhibited high E-selectivity with E/Z ratio up to >99 : 1.
Collapse
Affiliation(s)
- Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jia-Fan Qiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|