1
|
Yu M, Ouyang D, Wang L, Liu YN. Catalytic Reduction of Aromatic Nitro Compounds to Phenylhydroxylamine and Its Derivatives. Molecules 2024; 29:4353. [PMID: 39339349 PMCID: PMC11433948 DOI: 10.3390/molecules29184353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Phenylhydroxylamine and its derivates (PHAs) are important chemical intermediates. Phenylhydroxylamines are mainly produced via the catalytic reduction of aromatic nitro compounds. However, this catalytic reduction method prefers to generate thermodynamically stable aromatic amine. Thus, designing suitable catalytic systems, especially catalysts to selectively convert aromatic nitro compounds to PHAs, has received increasing attention but remains challenging. In this review, we initially provide a brief overview of the various strategies employed for the synthesis of PHAs, focusing on reducing aromatic nitro compounds. Subsequently, an in-depth analysis is presented on the catalytic reduction process, encompassing discussions on catalysts, reductants, hydrogen sources, and a comprehensive assessment of the merits and drawbacks of various catalytic systems. Furthermore, a concise overview is provided regarding the progress made in comprehending the mechanisms involved in this process of catalytic reduction of aromatic nitro compounds. Finally, the main challenges and prospects in PHAs' production via catalytic reduction are outlined.
Collapse
Affiliation(s)
- Min Yu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Dachen Ouyang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
2
|
Cao M, Wang Z, Hou F, Liu X, Sun S, Wang X, Liu L. Catalytic Asymmetric Access to Structurally Diverse N-Alkoxy Amines via a Kinetic Resolution Strategy. JACS AU 2024; 4:1935-1940. [PMID: 38818075 PMCID: PMC11134360 DOI: 10.1021/jacsau.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
Chiral N-alkoxy amines are increasingly vital substrates in bioscience. However, asymmetric synthetic strategies for these compounds remain scarce. Catalytic kinetic resolution represents an attractive approach to prepare structurally diverse enantiopure N-alkoxy amines, which has remained elusive due to the notably reduced nucleophilicity of the nitrogen atom together with the low bond dissociation energies of labile NO-C and N-O bonds. We here report a general kinetic resolution of N-alkoxy amines through chemo- and enantioselective oxygenation. The mild and green titanium-catalyzed approach features broad substrate scope (55 examples), noteworthy functional group compatibility, high catalyst turnover number (up to 5200), excellent selectivity factor (s > 150), and scalability.
Collapse
Affiliation(s)
- Min Cao
- School
of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University, Jinan 250117, Shandong, China
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
| | - Zehua Wang
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
| | - Fangao Hou
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
| | - Xiaoyuan Liu
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
| | - Shutao Sun
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
| | - Xinning Wang
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
| | - Lei Liu
- School
of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University, Jinan 250117, Shandong, China
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250100, China
- Shenzhen
Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
3
|
Xu L, Yang T, Sun H, Zeng J, Mu S, Zhang X, Chen GQ. Rhodium-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation of 1,3-Dipolar Nitrones. Angew Chem Int Ed Engl 2024; 63:e202319662. [PMID: 38366812 DOI: 10.1002/anie.202319662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Owing to their distinctive 1,3-dipolar structure, the catalytic asymmetric hydrogenation of nitrones to hydroxylamines has been a formidable and longstanding challenge, characterized by intricate enantiocontrol and susceptibility to N-O bond cleavage. In this study, the asymmetric hydrogenation and transfer hydrogenation of nitrones were accomplished with a tethered TsDPEN-derived cyclopentadienyl rhodium(III) catalyst (TsDPEN: p-toluenesulfonyl-1,2-diphenylethylene-1,2-diamine), the reaction proceeds via a novel 7-membered cyclic transition state, producing chiral hydroxylamines with up to 99 % yield and >99 % ee. The practical viability of this methodology was underscored by gram-scale catalytic reactions and subsequent transformations. Furthermore, mechanistic investigations and DFT calculations were also conducted to elucidate the origin of enantioselectivity.
Collapse
Affiliation(s)
- Liren Xu
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Tilong Yang
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Hao Sun
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Jingwen Zeng
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Shuo Mu
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Xumu Zhang
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Yin S, Weeks KN, Aponick A. Catalytic Enantioselective Alkyne Addition to Nitrones Enabled by Tunable Axially Chiral Imidazole-Based P,N-Ligands. J Am Chem Soc 2024; 146:7185-7190. [PMID: 38446821 PMCID: PMC10962052 DOI: 10.1021/jacs.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Although catalytic enantioselective alkyne addition is an established method for the synthesis of chiral propargylic alcohols and amines, addition to nitrones presents unique challenges, and no general chiral catalyst system has been developed. In this manuscript, we report the first Cu-catalyzed enantioselective alkyne addition to nitrones utilizing tunable axially chiral imidazole-based P,N-ligands. Our approach effectively overcomes difficulties in both reactivity and selectivity, resulting in a simple Cu-catalyzed protocol. The reaction accommodates a wide range of nitrones and alkynes, enabling the streamlined synthesis of chiral propargyl N-hydroxylamines via the enantioselective C-C bond formation. A diverse array of optically active nitrogen-containing compounds, including chiral hydroxylamines, can be accessed directly through facile transformations of the reaction products.
Collapse
Affiliation(s)
- Shengkang Yin
- Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kendall N Weeks
- Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aaron Aponick
- Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
5
|
Li S, Liu X, Tung CH, Liu L. Late-Stage Chemo- and Enantioselective Oxidation of Indoles to C3-Monosubstituted Oxindoles. J Am Chem Soc 2023. [PMID: 38038721 DOI: 10.1021/jacs.3c11742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Catalytic asymmetric preparation of chiral 3-monosubstituted oxindoles represents a significant challenge in synthetic chemistry due to the ease of racemization of the tertiary stereocenter through enolization. Here, we describe a general titanium-catalyzed chemo- and enantioselective indole oxidation to produce a diverse set of chiral 3-monosubstituted oxindoles with up to 96% yield, 99% ee, and with a substrate/catalyst ratio of 10,000 by using the combination of a simple titanium(salan) catalyst with green and atom-economic terminal oxidant H2O2. The mild approach tolerates a broad range of functional groups, enabling late-stage asymmetric diversification of a series of commercial drugs and natural products together with late-stage asymmetric construction of a wide set of enzyme antagonists, all of which are difficult to achieve through existing methods.
Collapse
Affiliation(s)
- Song Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xigong Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|