1
|
Li M, Xue B, Yin P. Microscopic Mechanism for Precise Control of the Sizes of Molybdenum Blue Nanorings. NANO LETTERS 2024; 24:15921-15925. [PMID: 39601434 DOI: 10.1021/acs.nanolett.4c05095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Molybdenum blue (MB) nanorings with monodispersed, well-defined structures can be feasibly prepared via treatment of molybdate solutions with reducing agents at acidic conditions. However, the hidden constraints that control their ring sizes have been unknown for decades. Herein, the formation of 3.4 and 4.1 nm nanorings, {Mo154} and {Mo176}, is monitored using small-angle X-ray scattering (SAXS) with systematically varied synthetic conditions. Results suggest that {Mo154} forms quickly in solution and then undergoes slow transformation into {Mo176} when reducing agents are used, while {Mo176} can form directly with MoCl5 supplied as reduced MoV. These are attributed to {Mo154} being the kinetic product catalyzed by the template-effect while {Mo176} is the thermodynamic product due to its low ring tension. Our findings unravel one of the long-standing mysteries in MB and point out effective routes for the precise synthesis of nanorings.
Collapse
Affiliation(s)
- Mu Li
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
- Institute of Advanced Science Facilities, Shenzhen 518107, P. R. China
| | - Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
2
|
Sukmana NC, Sugiarto, Shinogi J, Minato T, Kojima T, Fujibayashi M, Nishihara S, Inoue K, Cao Y, Zhu T, Ubukata H, Higashiura A, Yamamoto A, Tassel C, Kageyama H, Sakaguchi T, Sadakane M. Structure Transformation of Methylammonium Polyoxomolybdates via In-Solution Acidification and Solid-State Heating from Methylammonium Monomolybdate and Application as Negative Staining Reagents for Coronavirus Observation. Inorg Chem 2024; 63:10207-10220. [PMID: 38767574 DOI: 10.1021/acs.inorgchem.4c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We prepared polyoxomolybdates with methylammonium countercations from methylammonium monomolybdate, (CH3NH3)2[MoO4], through two dehydrative condensation methods, acidifying in the aqueous solution and solid-state heating. Discrete (CH3NH3)10[Mo36O112(OH)2(H2O)14], polymeric ((CH3NH3)8[Mo36O112(H2O)14])n, and polymeric ((CH3NH3)4[γ-Mo8O26])n were selectively isolated via pH control of the aqueous (CH3NH3)2[MoO4] solution. The H2SO4-acidified solution of pH < 1 produced "sulfonated α-MoO3", polymeric ((CH3NH3)2[(MoO3)3(SO4)])n. The solid-state heating of (CH3NH3)2[MoO4] in air released methylamine and water to produce several methylammonium polyoxomolybdates in the sequence of discrete (CH3NH3)8[Mo7O24-MoO4], discrete (CH3NH3)6[Mo7O24], discrete (CH3NH3)8[Mo10O34], and polymeric ((CH3NH3)4[γ-Mo8O26])n, before their transformation into molybdenum oxides such as hexagonal-MoO3 and α-MoO3. Notably, some of their polyoxomolybdate structures were different from polyoxomolybdates produced from ammonium molybdates, such as (NH4)2[MoO4] or (NH4)6[Mo7O24], indicating that countercation affected the polyoxomolybdate structure. Moreover, among the tested polyoxomolybdates, (CH3NH3)6[Mo7O24] was the best negative staining reagent for the observation of the SARS-CoV-2 virus using transmission electron microscopy.
Collapse
Affiliation(s)
- Ndaru Candra Sukmana
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Sugiarto
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Jun Shinogi
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Takuo Minato
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Tatsuhiro Kojima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043, Japan
| | - Masaru Fujibayashi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- CResCent, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Sadafumi Nishihara
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- CResCent, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Katsuya Inoue
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- CResCent, WPI SKCM2, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yu Cao
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Tong Zhu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroki Ubukata
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Akifumi Higashiura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Akima Yamamoto
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Cédric Tassel
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masahiro Sadakane
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
3
|
Liu YF, Lin XL, Ming BM, Hu QL, Liu HQ, Chen XJ, Liu YH, Yang GP. Three Polyoxometalate-Based Ag-Organic Compounds as Heterogeneous Catalysts for the Synthesis of Benzimidazoles. Inorg Chem 2024; 63:5681-5688. [PMID: 38484383 DOI: 10.1021/acs.inorgchem.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Three new POM-based compounds, with formulae [Na0.63Ag3(Htba)2.37(tba)0.63(H2O)2(PMo12O40)]·4H2O (Ag3PMo), [Ag4(Htba)4(H2O)2(PMo12O40)](NO3)·H2O (Ag4PMo), and [Ag3(Htba)2(tba)(PW12O40)0.5](NO3)0.5·13H2O (Ag3PW), were prepared with a 3-(4H-1,2,4-triazol-4-yl)benzoic acid (Htba) ligand, Keggin-type anions ([PMo12O40]3-/[PW12O40]3-), and a silver ion (Ag+). The structural features of these compounds are particularly different from the multinuclear subunits, which are [Ag3(tba)3] clusters in Ag3PMo, [Ag4(tba)3] chains in Ag4PMo, and [Ag3(tba)3]2 clusters in Ag3PW, connected by multidonor atom tba ligands and Ag+ ions. Meanwhile, in these compounds, polyanions act as polydentate ligands to link adjacent Ag-tba metal-organic units and expand their spatial dimensions. These compounds, as heterogeneous catalysts, exhibit high stability and excellent catalytic activity to construct benzimidazoles. Ag3PMo could efficiently catalyze the condensation of benzene-1,2-diamines and benzaldehydes and produce benzimidazoles in good yields. In addition, Ag3PMo could be reused up to 7 times and was suitable for gram-scale reactions.
Collapse
Affiliation(s)
- Yu-Feng Liu
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| | - Xiao-Ling Lin
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| | - Bang-Ming Ming
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| | - Qi-Long Hu
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| | - Hao-Qi Liu
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| | - Xue-Jiao Chen
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| | - Yun-Hai Liu
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| | - Guo-Ping Yang
- School of Chemistry and Materials Science, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China
| |
Collapse
|