1
|
Wu W. Stable organic radicals - a material platform for developing molecular quantum technologies. Phys Chem Chem Phys 2025; 27:1214-1221. [PMID: 39714131 DOI: 10.1039/d4cp02405b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
An electron spin is a natural candidate for a quantum bit - the quantum information storage unit. Stable organic radicals, consisting of unpaired electron spins, can thus be explored for the development of quantum science and technologies, owing to their excellent chemical tunability and their great promise for scalability. The molecular network formed by the stable organic radicals can be used for the design of spin-based quantum computing circuits. Here the state-of-the-art development of stable organic radicals is reviewed from a variety of perspectives. The categories of stable organic radicals are discussed, emphasizing on the π-conjugated radical networks. The applications of the stable organic radicals to quantum communications, quantum computing and quantum sensing are reviewed. The quantum teleportation based on the donor-acceptor-radical molecular system is reviewed. For controllable quantum gate operations, the spin dynamics in a bi-radical molecule driven by a triplet is discussed. Quantum sensing of lithium ions using stable organic radicals is realized for the development of new energy materials. Quantum timing and quantum imaging are still unexplored by using stable organic radicals. In conclusion, stable organic radicals, especially the π-conjugated radical networks, can make a great new contribution to the development of quantum technologies.
Collapse
Affiliation(s)
- Wei Wu
- UCL Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Kuppusamy SK, Hunger D, Ruben M, Goldner P, Serrano D. Spin-bearing molecules as optically addressable platforms for quantum technologies. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:4357-4379. [PMID: 39679189 PMCID: PMC11636422 DOI: 10.1515/nanoph-2024-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 12/17/2024]
Abstract
Efforts to harness quantum hardware relying on quantum mechanical principles have been steadily progressing. The search for novel material platforms that could spur the progress by providing new functionalities for solving the outstanding technological problems is however still active. Any physical property presenting two distinct energy states that can be found in a long-lived superposition state can serve as a quantum bit (qubit), the basic information processing unit in quantum technologies. Molecular systems that can feature electron and/or nuclear spin states together with optical transitions are one of the material platforms that can serve as optically addressable qubits. The attractiveness of molecular systems for quantum technologies relies on the fact that molecular structures of atomically defined nature can be obtained in endless diversity of chemical compositions. Crucially, by harnessing the molecular design protocols, the optical and spin (electronic and nuclear) properties of molecules can be tailored, aiding the design of optically addressable spin qubits and quantum sensors. In this contribution, we present a concise and collective discussion of optically addressable spin-bearing molecules - namely, organic molecules, transition metal (TM) and rare-earth ion (REI) complexes - and highlight recent results such as chemical tuning of optical and electron spin quantum coherence, optical spin initialization and readout, intramolecular quantum teleportation, optical coherent storage, and photonic-enhanced optical addressing. We envision that optically addressable spin-carrying molecules could become a scalable building block of quantum hardware for applications in the fields of quantum sensing, quantum communication and quantum computing.
Collapse
Affiliation(s)
- Senthil Kumar Kuppusamy
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - David Hunger
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mario Ruben
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d’Ingénierie Supramoléculaire (ISIS), Université de Strasbourg, Strasbourg, France
| | - Philippe Goldner
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| | - Diana Serrano
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| |
Collapse
|
3
|
Yamauchi A, Yanai N. Toward Quantum Noses: Quantum Chemosensing Based on Molecular Qubits in Metal-Organic Frameworks. Acc Chem Res 2024; 57:2963-2972. [PMID: 39324781 DOI: 10.1021/acs.accounts.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
ConspectusQuantum sensing leverages quantum properties to enhance the sensitivity and resolution of sensors beyond their classical sensing limits. Quantum sensors, such as diamond defect centers, have been developed to detect various physical properties, including magnetic fields and temperature. However, the spins of defects are buried within dense solids, making it difficult for them to strongly interact with molecular analytes. Therefore, nanoporous materials have been implemented in combination with electron spin center of molecules (molecular qubits) to produce quantum chemosensors that can distinguish various chemical substances. Molecular qubits have a uniform structure, and their properties can be precisely controlled by changing their chemical structure. Metal-organic frameworks (MOFs) are suitable for supporting molecular qubits because of their high porosity, structural regularity, and designability. Molecular qubits can be inserted in the MOF structures or adsorbed as guest molecules. The qubits in the MOF can interact with analytes upon exposure, providing an effective and tunable sensing platform.In this Account, we review the recent progress in qubit-MOF hybrids toward the realization of room-temperature quantum chemosensing. Molecular qubits can be introduced in controlled concentrations at targeted positions by exploiting metal ions, ligands, or guests that compose the MOF. Heavy metal-free organic chromophores have several outstanding features as molecular qubits; namely, they can be initialized by light irradiation and exhibit relatively long coherence times of submicroseconds to microseconds, even at room temperature. One detection method involves monitoring the hyperfine interaction between the electron spins of the molecular qubits and the nuclear spins of the analyte incorporated in the pore. There is also an indirect detection method that relies on the motional change in molecular qubits. If the motion of the molecular qubit changes with the adsorption of the analyte, it can be detected as a change in the spin relaxation process. This mechanism is unique to qubits exposed in nanopores, not observed in conventional qubits embedded in dense solids.By maximizing the guest recognition ability of MOFs and the environmental sensitivity of qubits, quantum chemosensing that recognizes specific chemical species in a highly selective and sensitive manner may be possible. It is difficult to distinguish between diverse chemical species by employing only one combination of MOF and qubit, but by creating arrays of different qubit-MOF hybrids, it would become possible to distinguish between various analytes based on pattern recognition. Inspired by the human olfactory mechanism, we propose the use of multiple qubit-MOF hybrids and pattern recognition to identify specific molecules. This system represents a quantum version of olfaction, and thus we propose the concept of a "quantum nose." Quantum noses may be used to recognize biometabolites and biomarkers and enable new medical diagnostic technologies and olfactory digitization.
Collapse
Affiliation(s)
- Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
4
|
Zhang Q, Shao X, Li W, Mi W, Pavanello M, Akimov AV. Nonadiabatic molecular dynamics with subsystem density functional theory: application to crystalline pentacene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:385901. [PMID: 38866023 DOI: 10.1088/1361-648x/ad577d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
In this work, we report the development and assessment of the nonadiabatic molecular dynamics approach with the electronic structure calculations based on the linearly scaling subsystem density functional method. The approach is implemented in an open-source embedded Quantum Espresso/Libra software specially designed for nonadiabatic dynamics simulations in extended systems. As proof of the applicability of this method to large condensed-matter systems, we examine the dynamics of nonradiative relaxation of excess excitation energy in pentacene crystals with the simulation supercells containing more than 600 atoms. We find that increased structural disorder observed in larger supercell models induces larger nonadiabatic couplings of electronic states and accelerates the relaxation dynamics of excited states. We conduct a comparative analysis of several quantum-classical trajectory surface hopping schemes, including two new methods proposed in this work (revised decoherence-induced surface hopping and instantaneous decoherence at frustrated hops). Most of the tested schemes suggest fast energy relaxation occurring with the timescales in the 0.7-2.0 ps range, but they significantly overestimate the ground state recovery rates. Only the modified simplified decay of mixing approach yields a notably slower relaxation timescales of 8-14 ps, with a significantly inhibited ground state recovery.
Collapse
Affiliation(s)
- Qingxin Zhang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| | - Xuecheng Shao
- Department of Physics, Rutgers University, The State University of New Jersey, Newark, NJ 07102, United States of America
| | - Wei Li
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Wenhui Mi
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, People's Republic of China
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Michele Pavanello
- Department of Physics, Rutgers University, The State University of New Jersey, Newark, NJ 07102, United States of America
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States of America
| |
Collapse
|
5
|
Inoue M, Yamauchi A, Parmar B, Orihashi K, Singh M, Asada M, Nakamura T, Yanai N. Guest-responsive coherence time of radical qubits in a metal-organic framework. Chem Commun (Camb) 2024; 60:6130-6133. [PMID: 38770580 DOI: 10.1039/d4cc01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metal-organic frameworks (MOFs) integrated with molecular qubits are promising for quantum sensing. In this study, a new UiO-type MOF with a 5,12-diazatetracene (DAT)-containing ligand is synthesized, and the radicals generated in the MOF exhibit high stability and a relatively long coherence time (T2) responsive to the introduction of various guest molecules.
Collapse
Affiliation(s)
- Miku Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Bhavesh Parmar
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kana Orihashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Manpreet Singh
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Mizue Asada
- Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Toshikazu Nakamura
- Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
6
|
Orihashi K, Yamauchi A, Inoue M, Parmar B, Fujiwara S, Kimizuka N, Asada M, Nakamura T, Yanai N. Radical qubits photo-generated in acene-based metal-organic frameworks. Dalton Trans 2024; 53:872-876. [PMID: 38164969 DOI: 10.1039/d3dt03959e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A series of metal-organic frameworks (MOFs) assembled with diazatetracene (DAT)-based linkers were synthesized and characterized. Despite different chromophore orientations and spacings, photoinduced persistent radicals were generated in all the MOFs, and their spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) were found to be relatively long even at room temperature. The generality of long T1 and T2 values of photogenerated radicals in the chromophore-assembled MOFs provides a new platform towards quantum sensing applications.
Collapse
Affiliation(s)
- Kana Orihashi
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Miku Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Bhavesh Parmar
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Saiya Fujiwara
- RIKEN Center for Emergent Matter Science, Riken, Wako, Saitama 351-0198, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Mizue Asada
- Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Toshikazu Nakamura
- Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- FOREST, CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|