1
|
Wang ZJ, Li W, Li X, Nakajima T, Rubinstein M, Gong JP. Rapid self-strengthening in double-network hydrogels triggered by bond scission. NATURE MATERIALS 2025; 24:607-614. [PMID: 40011594 PMCID: PMC12010354 DOI: 10.1038/s41563-025-02137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
The scission of chemical bonds in materials can lead to catastrophic failure, with weak bonds typically undermining the materials' strength. Here we demonstrate how weak bonds can be leveraged to achieve self-strengthening in polymer network materials. These weak sacrificial bonds trigger mechanochemical reactions, forming new networks rapidly enough to reinforce the material during deformation and significantly improve crack resistance. This rapid strengthening exhibits strong rate dependence, dictated by the interplay between bond breaking and the kinetics of force-induced network formation. As the network formation is generally applicable to diverse monomers and crosslinkers with different kinetics, a wide range of mechanical properties can be obtained. These findings may inspire the design of tough polymer materials with on-demand, rate-dependent mechanical behaviours through mechanochemistry, broadening their applications across various fields.
Collapse
Affiliation(s)
- Zhi Jian Wang
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
| | - Wei Li
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
| | - Xueyu Li
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tasuku Nakajima
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Michael Rubinstein
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan.
- Thomas Lord Department of Mechanical Engineering and Materials Science, Departments of Chemistry, Department of Physics, and Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan.
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Hu H, Meng L, Zhou Y, Chen Y, Zhou Y, Xi B, Li Y. Mechanochemical Release of 9,10-Diphenylanthracene via Flex-Activation of Its 1,4-Diels-Alder Adduct. ACS Macro Lett 2025; 14:14-19. [PMID: 39680925 DOI: 10.1021/acsmacrolett.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Flex-activated mechanophores capable of releasing small molecules utilize bond bending to facilitate their mechanochemical activation without compromising the overall macromolecular architecture, which have great potential in various applications. However, the development of such mechanophores remains underexplored. Here we report a novel flex-activated mechanophore based on the 1,4-Diels-Alder (DA) adduct of 9,10-diphenylanthracene (DPA) with acetylenedicarboxylate (ADC). Compression of the mechanophore-crosslinked polymer networks mechanochemically activates the weakly fluorescent DPA-ADC mechanophores to undergo a retro-DA reaction in accompany with the release of highly fluorescent DPA molecules (quantum yield close to unity), as confirmed by fluorescence spectroscopy and gas chromatography-mass spectrometry (GC-MS) analysis. As a new member of the small family of flex-activated mechanophores, this fluorogenic DPA-ADC mechanophore possesses promising applications in stress sensing and damage detection.
Collapse
Affiliation(s)
- Hui Hu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lvjiang Meng
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yang Zhou
- School of Textile Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yujing Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yecheng Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bin Xi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanchao Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Huang X, Kevlishvili I, Craig SL, Kulik HJ. Force-Activated Spin-Crossover in Fe 2+ and Co 2+ Transition Metal Mechanophores. Inorg Chem 2025; 64:380-392. [PMID: 39714959 DOI: 10.1021/acs.inorgchem.4c04732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Transition metal mechanophores exhibiting force-activated spin-crossover are attractive design targets, yet large-scale discovery of them has not been pursued due in large part to the time-consuming nature of trial-and-error experiments. Instead, we leverage density functional theory (DFT) and external force explicitly included (EFEI) modeling to study a set of 395 feasible Fe2+ and Co2+ mechanophore candidates with tridentate ligands that we curate from the Cambridge Structural Database. Among nitrogen-coordinating low-spin complexes, we observe the prevalence of spin crossover at moderate force, and we identify 155 Fe2+ and Co2+ spin-crossover mechanophores and derive their threshold force for low-spin to high-spin transition (FSCO). The calculations reveal strong correlations of FSCO with spin-splitting energies and coordination bond lengths, facilitating rapid prediction of FSCO using force-free DFT calculations. Then, among all Fe2+ and Co2+ spin-crossover mechanophores, we further identity 11 mechanophores that combine labile spin-crossover and good mechanical robustness that are thus predicted to be the most versatile for force-probing applications. We discover two classes of mer-symmetric complexes comprising specific heteroaromatic rings within extended π-conjugation that give rise to Fe2+ mechanophores with these characteristics. We expect the set of spin-crossover mechanophores, the design principles, and the computational approach to be useful in guiding the high-throughput discovery of transition metal mechanophores with diverse functionalities and broad applications, including mechanically activated catalysis.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L Craig
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Heather J Kulik
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
4
|
Hu Y, Wang L, Kevlishvili I, Wang S, Chiou CY, Shieh P, Lin Y, Kulik HJ, Johnson JA, Craig SL. Self-Amplified HF Release and Polymer Deconstruction Cascades Triggered by Mechanical Force. J Am Chem Soc 2024; 146:10115-10123. [PMID: 38554100 DOI: 10.1021/jacs.4c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Hydrogen fluoride (HF) is a versatile reagent for material transformation, with applications in self-immolative polymers, remodeled siloxanes, and degradable polymers. The responsive in situ generation of HF in materials therefore holds promise for new classes of adaptive material systems. Here, we report the mechanochemically coupled generation of HF from alkoxy-gem-difluorocyclopropane (gDFC) mechanophores derived from the addition of difluorocarbene to enol ethers. Production of HF involves an initial mechanochemically assisted rearrangement of gDFC mechanophore to α-fluoro allyl ether whose regiochemistry involves preferential migration of fluoride to the alkoxy-substituted carbon, and ab initio steered molecular dynamics simulations reproduce the observed selectivity and offer insights into the mechanism. When the alkoxy gDFC mechanophore is derived from poly(dihydrofuran), the α-fluoro allyl ether undergoes subsequent hydrolysis to generate 1 equiv of HF and cleave the polymer chain. The hydrolysis is accelerated via acid catalysis, leading to self-amplifying HF generation and concomitant polymer degradation. The mechanically generated HF can be used in combination with fluoride indicators to generate an optical response and to degrade polybutadiene with embedded HF-cleavable silyl ethers (11 mol %). The alkoxy-gDFC mechanophore thus provides a mechanically coupled mechanism of releasing HF for polymer remodeling pathways that complements previous thermally driven mechanisms.
Collapse
Affiliation(s)
- Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Liqi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Chun-Yu Chiou
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yangju Lin
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27705, United States
| |
Collapse
|