1
|
Chen L, Hu R, Tang BZ. Facile Synthesis of Functional Polytrithiocarbonates from Multicomponent Tandem Polymerizations of CS 2, Thiols, and Alkyl Halides. J Am Chem Soc 2025; 147:1134-1146. [PMID: 39707976 DOI: 10.1021/jacs.4c14708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Polytrithiocarbonates have attracted significant attention recently because of their good thermal stability, light refractivity, crystallinity, and mechanical properties; however, the exploration of their structures and functionalities has been limited by their synthetic approaches. Multicomponent polymerization featuring simple monomers, mild conditions, diversified product structures, and high efficiency could provide a powerful and versatile tool to synthesize various polytrithiocarbonates from commercially available monomers. Herein, a robust and efficient multicomponent tandem polymerization (MCTP) of CS2, dithiols, and alkyl halides was developed in DMF with K2CO3 at room temperature in air to synthesize 12 polytrithiocarbonates with diversified and systematically tuned structures, high molecular weights (Mns up to 37900 g/mol), and high yields (up to 93%). Depending on the different polymer backbone structures, amorphous polytrithiocarbonates showed excellent breaking elongations, and crystallinic polytrithiocarbonates possessed a large process temperature window (about 200 °C) and good mechanical performance (σB of 23.6 MPa and εB of 858%), whose tensile strength could be dramatically enhanced to 87.5 MPa after uniaxial extension deformation. The upper critical solution temperature (UCST) in organic solvents, together with nonconventional luminescence, were observed for the crystallinic polytrithiocarbonates, even without any aromatic ring. This efficient, robust, mild, and economic MCTP of CS2 thus opened up an avenue for the facile construction of polytrithiocarbonates with structural diversity, bringing modulable mechanical, thermal, luminescent, and thermal-responsive properties, which would greatly broaden the scope of structures and applications of sulfur-containing polymers.
Collapse
Affiliation(s)
- Longbin Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
2
|
Stephan J, Olmedo-Martínez JL, Fornacon-Wood C, Stühler MR, Dimde M, Braatz D, Langer R, Müller AJ, Schmalz H, Plajer AJ. Easy Synthetic Access to High-Melting Sulfurated Copolymers and their Self-Assembling Diblock Copolymers from Phenylisothiocyanate and Oxetane. Angew Chem Int Ed Engl 2024; 63:e202405047. [PMID: 38520388 DOI: 10.1002/anie.202405047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
Although sulfurated polymers promise unique properties, their controlled synthesis, particularly when it comes to complex and functional architectures, remains challenging. Here, we show that the copolymerization of oxetane and phenyl isothiocyanate selectively yields polythioimidocarbonates as a new class of sulfur containing polymers, with narrow molecular weight distributions (Mn=5-80 kg/mol with Đ≤1.2; Mn,max=124 kg/mol) and high melting points of up to 181 °C. The method tolerates different substituent patterns on both the oxetane and the isothiocyanate. Self-nucleation experiments reveal that π-stacking of phenyl substituents, the presence of unsubstituted polymer backbones, and the kinetically controlled linkage selectivity are key factors in maximising melting points. The increased tolerance to macro-chain transfer agents and the controlled propagation allows the synthesis of double crystalline and amphiphilic diblock copolymers, which can be assembled into micellar- and worm-like structures with amorphous cores in water. In contrast, crystallization driven self-assembly in ethanol gives cylindrical micelles or platelets.
Collapse
Affiliation(s)
- Jenny Stephan
- Institute for Chemistry and Biochemistry, Free University Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Jorge L Olmedo-Martínez
- Department of Polymers and Advanced Materials, Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain
| | - Christoph Fornacon-Wood
- Macromolecular Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Merlin R Stühler
- Institute for Chemistry and Biochemistry, Free University Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Mathias Dimde
- Institute for Chemistry and Biochemistry, Free University Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Daniel Braatz
- Institute for Chemistry and Biochemistry, Free University Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Robert Langer
- Institute for Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle, Germany
| | - Alejandro J Müller
- Department of Polymers and Advanced Materials, Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Holger Schmalz
- Macromolecular Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Alex J Plajer
- Macromolecular Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|