1
|
Li L, Xing D, Yu H, Wang Z, Zhou Y, Yan F. CO 2-crosslinked cellulose for radiative-cooling-driven passive thermoelectric devices: one stone, two birds. MATERIALS HORIZONS 2025; 12:3546-3558. [PMID: 40034041 DOI: 10.1039/d5mh00020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Radiative-cooling-driven passive thermoelectric devices (RC-TEDs) offer a potentially sustainable energy solution. However, most RC-TED strategies utilize unsustainable polymers. Herein, a green and sustainable CO2-crosslinked cellulose (Pulp-CO2) was developed for simultaneous use as a passive radiative cooling membrane and an ionogel thermoelectric scaffold. The incorporation of CO2 in the form of carbonate group linkages in the cellulose backbone resulted in a superior passive radiative cooling effect of the membrane and improved the thermoelectric efficiency of the ionogel compared to the pure pulp. The integrated RC-TED, comprising the Pulp-CO2 membranes and ionogels, exhibited an impressive thermal voltage output of 1200 mV with a subambient temperature reduction of 5.0 °C under simulated solar radiation (280 W m-2), highlighting its potential in low-grade energy harvesting. Thus, this all-cellulose inspired RC-TED device showcases a promising and sustainable strategy for converting solar energy into electricity cost-effectively.
Collapse
Affiliation(s)
- Legeng Li
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Doudou Xing
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Hao Yu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Zhihan Wang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yingjie Zhou
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Feng Yan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Delliere P, Laborie D, Caillol S, Bakkali‐Hassani C. Controlling Hybrid Polyhydroxyurethane Adhesive and Rheological Properties by Partial Carbonation of Biobased Epoxy Monomer. Macromol Rapid Commun 2024; 45:e2400542. [PMID: 39073729 PMCID: PMC11628358 DOI: 10.1002/marc.202400542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Controlling hybrid material properties by simple monomer design offers an elegant pathway to prepare thermoset adhesives with tunable properties. Herein, biobased hybrid polyhydroxyurethane/polyepoxy is prepared starting from partially carbonated cashew nut shell epoxy derivatives (NC514) and m-xylene diamine (MXDA). The curing reactions, that is, epoxy-amine and cyclic carbonate aminolysis, monitored by ATR-IR spectroscopy at 50 °C are found to be concomitant yielding highly homogeneous materials. Hybrid networks are extensively characterized by swelling tests, TGA, DMA, DSC, tensile tests, rheology, and lap-shear-test on aluminum substrates. The introduction of hydroxyurethane moieties within the epoxy-amine networks enhanced the adhesion properties (up to 20% compare to neat epoxy resins) by combining hydrogen bonding capability and vitrimeric properties (thermoset able to flow). Rheological characterizations and reprocessing tests demonstrated that hybrid adhesives with up to 47 mol% of cyclic carbonate groups are capable of covalent exchange (internally catalyzed by tertiary amine) while keeping similar thermomechanical properties and enhanced adhesion strength compare to the permanent epoxy network.
Collapse
Affiliation(s)
| | - Dorian Laborie
- ICGM, Univ Montpellier, CNRS, ENSCMMontpellier34293France
| | | | | |
Collapse
|
3
|
Du S, Yang S, Wang B, Li P, Zhu J, Ma S. Acetal-thiol Click-like Reaction: Facile and Efficient Synthesis of Dynamic Dithioacetals and Recyclable Polydithioacetals. Angew Chem Int Ed Engl 2024; 63:e202405653. [PMID: 38764409 DOI: 10.1002/anie.202405653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 05/21/2024]
Abstract
Dithioacetals are heavily used in organic, material and medical chemistries, and exhibit huge potential to synthesize degradable or recyclable polymers. However, the current synthetic approaches of dithioacetals and polydithioacetals are overwhelmingly dependent on external catalysts and organic solvents. Herein, we disclose a catalyst- and solvent-free acetal-thiol click-like reaction for synthesizing dithioacetals and polydithioacetals. High conversion, higher than acid catalytic acetal-thiol reaction, can be achieved. High universality was confirmed by monitoring the reactions of linear and cyclic acetals (including renewable bio-sourced furan-acetal) with aliphatic and aromatic thiols, and the reaction mechanism of monomolecular nucleophilic substitution (SN1) and auto-protonation (activation) by thiol was clarified by combining experiments and density functional theory computation. Subsequently, we utilize this reaction to synthesize readily recyclable polydithioacetals. By simple heating and stirring, linear polydithioacetals withM ‾ ${\bar M}$ w of ~110 kDa were synthesized from acetal and dithiol, and depolymerization into macrocyclic dithioacetal and repolymerization into polydithioacetal can be achieved; through reactive extrusion, a semi-interpenetrating polymer dynamic network with excellent mechanical properties and continuous reprocessability was prepared from poly(vinyl butyral) and pentaerythritol tetrakis(3-mercaptopropionate). This green and high-efficient synthesis method for dithioacetals and polydithioacetals is beneficial to the sustainable development of chemistry.
Collapse
Affiliation(s)
- Shuai Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Shuaiqi Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Binbo Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Pengyun Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Songqi Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
4
|
Ochiai B, Kobayashi Y. Non-Isocyanate Synthesis of Aliphatic Polyurethane by BiCl 3-Catalyzed Transurethanization Polycondensation. Polymers (Basel) 2024; 16:1136. [PMID: 38675057 PMCID: PMC11053453 DOI: 10.3390/polym16081136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Non-isocyanate polyurethane synthesis by non-Sn catalysis is an essential challenge toward green polyurethane synthesis. Bismuth compounds are attractive candidates due to their low cost, low toxicity, and availability to urethane chemistry. This work applied various Bi catalysts to the self-polycondensation of a bishydroxyurethane monomer and found BiCl3 to be an excellent catalyst through optimization. The catalytic activity and price of BiCl3 are comparable to those of Bu2SnO, while its toxicity is significantly low. BiCl3 is, therefore, a promising alternative to Sn-based catalysts in non-isocyanate polyurethane synthesis.
Collapse
Affiliation(s)
- Bungo Ochiai
- Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8510, Japan
| | | |
Collapse
|