1
|
Lindner H, Carreira EM. Photo- and Cobalt-Catalyzed Cycloisomerization of Unsaturated Guanidines, (Iso-)Ureas, and Carbonates. Org Lett 2025; 27:704-708. [PMID: 39772755 PMCID: PMC11744792 DOI: 10.1021/acs.orglett.4c04695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
We report intramolecular photocatalyzed cycloisomerization of unactivated olefins with pendant nucleophiles. The reaction proceeds under mild conditions and utilizes guanidines, ureas, isoureas, isothioureas, and carbonates to yield several different five-, six-, and seven-membered heterocycles. Use of benzothiazinoquinoxaline as an organophotocatalyst and cobalt-salen catalyst obviates the need for a stoichiometric oxidant or reductant.
Collapse
Affiliation(s)
- Henry Lindner
- Laboratory of Organic Chemistry,
Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zurich, Switzerland
| | - Erick M. Carreira
- Laboratory of Organic Chemistry,
Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
Kalomenopoulos PG, Emayavaramban B, Johnston CP. Enantioselective Synthesis of α-Aryl Ketones by a Cobalt-Catalyzed Semipinacol Rearrangement. Angew Chem Int Ed Engl 2025; 64:e202414342. [PMID: 39312676 PMCID: PMC11720393 DOI: 10.1002/anie.202414342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
A highly enantioselective cobalt-catalyzed semipinacol rearrangement of symmetric α,α-diarylallylic alcohols is disclosed. A chiral cobalt-salen catalyst generates a highly electrophilic carbocation surrogate following hydrogen atom transfer and radical-polar crossover steps. This methodology provides access to enantioenriched α-aryl ketones through invertive displacement of a cobalt(IV) complex during 1,2-aryl migration. A combination of readily available reagents, silane and N-fluoropyridinium oxidant, are used to confer this type of reactivity. An exploration into the effect of aryl substitution revealed the reaction tolerates para- and meta-halogenated, mildly electron-rich and electron-poor aromatic rings with excellent enantioselectivities and yields. The yield of the rearrangement diminished with highly electron-rich aryl rings whereas very electron-deficient and ortho-substituted arenes led to poor enantiocontrol. A Hammett analysis demonstrated the migratory preference for electron-rich aromatic rings, which is consistent with the intermediacy of a phenonium cation.
Collapse
Affiliation(s)
| | | | - Craig P. Johnston
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
3
|
Zhao G, Khosravi A, Sharma S, Musaev DG, Ngai MY. Cobalt-Hydride-Catalyzed Alkene-Carboxylate Transposition (ACT) of Allyl Carboxylates. J Am Chem Soc 2024; 146:31391-31399. [PMID: 39530786 DOI: 10.1021/jacs.4c12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The alkene-carboxylate transposition (ACT) of allyl carboxylates is one of the most atom-economic and synthetically reliable transformations in organic chemistry, as allyl carboxylates are versatile synthetic intermediates. Classic ACT transformations, including [3,3]-sigmatropic rearrangement and transition metal-catalyzed allylic rearrangement, typically yield 1,2-alkene/1,3-acyloxy shifted products through a two-electron process. However, position-altered ACT to produce distinct 1,3-alkene/1,2-acyloxy shifted products remains elusive. Here, we report the first cobalt-hydride-catalyzed ACT of allyl carboxylates, enabling access to these unprecedented 1,3-alkene/1,2-acyloxy shifted products via a 1,2-radical migration (RaM) strategy. This transformation demonstrates broad functional group tolerance, is suitable for late-stage modification of complex molecules, and is amenable to gram-scale synthesis. It also expands the reaction profiles of both allyl carboxylates and cobalt catalysis. Preliminary experimental and computational studies suggest a mechanism involving metal-hydride hydrogen atom transfer (MHAT) and the 1,2-RaM process. This reaction is expected to serve as the basis for the development of versatile Co-H-catalyzed transformations of allyl carboxylates, generating a wide array of valuable building blocks for synthetic, medicinal, and materials chemistry.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Arman Khosravi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sahil Sharma
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Latha AT, Swamy PCA. Unveiling the Reactivity of Part Per Million Levels of Cobalt-Salen Complexes in Hydrosilylation of Ketones. Chemistry 2024; 30:e202401841. [PMID: 38853149 DOI: 10.1002/chem.202401841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/11/2024]
Abstract
A series of air-stable cobalt(III)salen complexes Co-1 to Co-4 have been synthesized and employed in the hydrosilylation of ketones. Notably, the most intricately tailored Co-3 pre-catalyst exhibited exceptional catalytic activity under mild reaction conditions. The developed catalytic hydrosilylation protocol proceeded with an unusual ppm level (5 ppm) catalyst loading of Co-3 and achieved a maximum turnover number (TON) of 200,000. A wide variety of aromatic, aliphatic, and heterocyclic ketones encompassing both electron-donating and electron-withdrawing substituents were successfully transformed into the desired silyl ethers or secondary alcohols in moderate to excellent yields.
Collapse
Affiliation(s)
- Anjima T Latha
- Main Group Organometallics Optoelectronic Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology, Calicut, 673601, India
| | - P Chinna Ayya Swamy
- Main Group Organometallics Optoelectronic Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology, Calicut, 673601, India
| |
Collapse
|
5
|
Liu HC, Xu XY, Tang S, Bao J, Wang YZ, Chen Y, Han X, Liang YM, Zhang K. Photoinduced Co/Ni-cocatalyzed Markovnikov hydroarylation of unactivated olefins with aryl bromides. Chem Sci 2024:d4sc03355h. [PMID: 39184295 PMCID: PMC11342154 DOI: 10.1039/d4sc03355h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Transition-metal-catalyzed hydroarylation of unactivated alkenes via metal hydride hydrogen atom transfer (MHAT) is an attractive approach for the construction of C(sp2)-C(sp3) bonds. However, this kind of reaction focuses mainly on using reductive hydrosilane as a hydrogen donor. Here, a novel photoinduced Co/Ni-cocatalyzed Markovnikov hydroarylation of unactivated alkenes with aryl bromides using protons as a hydrogen source has been developed. This reaction represents the first example of photoinduced MHAT via a reductive route intercepting an organometallic coreactant. The key to this transformation was that the CoIII-H species was generated from the protonation of the CoI intermediate, and the formed CoIII-C(sp3) intermediate interacted with the organometallic coreactant rather than reacting with nucleophiles, a method which has been well developed in photoinduced Co-catalyzed MHAT reactions. This reaction is characterized by its high catalytic efficiency, construction of quaternary carbons, simple reaction conditions and expansion of the reactive mode of Co-catalyzed MHAT reactions via a reductive route. Moreover, this catalytic system could also be applied to complex substrates derived from glycosides.
Collapse
Affiliation(s)
- Hong-Chao Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Xin-Yu Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Siyuan Tang
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Jiawei Bao
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Yu-Zhao Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong China
| | - Yiliang Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| |
Collapse
|
6
|
Buzsaki SR, Mason SM, Kattamuri PV, Serviano JMI, Rodriguez DN, Wilson CV, Hood DM, Ellefsen JD, Lu YC, Kan J, West JG, Miller SJ, Holland PL. Fe/Thiol Cooperative Hydrogen Atom Transfer Olefin Hydrogenation: Mechanistic Insights That Inform Enantioselective Catalysis. J Am Chem Soc 2024; 146:17296-17310. [PMID: 38875703 PMCID: PMC11209773 DOI: 10.1021/jacs.4c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Asymmetric hydrogenation of activated olefins using transition metal catalysis is a powerful tool for the synthesis of complex molecules, but traditional metal catalysts have difficulty with enantioselective reduction of electron-neutral, electron-rich, and minimally functionalized olefins. Hydrogenation based on radical, metal-catalyzed hydrogen atom transfer (mHAT) mechanisms offers an outstanding opportunity to overcome these difficulties, enabling the mild reduction of these challenging olefins with selectivity that is complementary to traditional hydrogenations with H2. Further, mHAT presents an opportunity for asymmetric induction through cooperative hydrogen atom transfer (cHAT) using chiral thiols. Here, we report insights from a mechanistic study of an iron-catalyzed achiral cHAT reaction and leverage these insights to deliver stereocontrol from chiral thiols. Kinetic analysis and variation of silane structure point to the transfer of hydride from silane to iron as the likely rate-limiting step. The data indicate that the selectivity-determining step is quenching of the alkyl radical by thiol, which becomes a more potent H atom donor when coordinated to iron(II). The resulting iron(III)-thiolate complex is in equilibrium with other iron species, including FeII(acac)2, which is shown to be the predominant off-cycle species. The enantiodetermining nature of the thiol trapping step enables enantioselective net hydrogenation of olefins through cHAT using a commercially available glucose-derived thiol catalyst with up to 80:20 enantiomeric ratio. To the best of our knowledge, this is the first demonstration of asymmetric hydrogenation via iron-catalyzed mHAT. These findings advance our understanding of cooperative radical catalysis and act as a proof of principle for the development of enantioselective iron-catalyzed mHAT reactions.
Collapse
Affiliation(s)
- Sarah R. Buzsaki
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Savannah M. Mason
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | - Juan M. I. Serviano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Dinora N. Rodriguez
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Conner V. Wilson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Drew M. Hood
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Jonathan D. Ellefsen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Yen-Chu Lu
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Jolie Kan
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Julian G. West
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
7
|
Cai Q, McWhinnie IM, Dow NW, Chan AY, MacMillan DWC. Engaging Alkenes in Metallaphotoredox: A Triple Catalytic, Radical Sorting Approach to Olefin-Alcohol Cross-Coupling. J Am Chem Soc 2024; 146:12300-12309. [PMID: 38657210 PMCID: PMC11493080 DOI: 10.1021/jacs.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metallaphotoredox cross-coupling is a well-established strategy for generating clinically privileged aliphatic scaffolds via single-electron reactivity. Correspondingly, expanding metallaphotoredox to encompass new C(sp3)-coupling partners could provide entry to a novel, medicinally relevant chemical space. In particular, alkenes are abundant, bench-stable, and capable of versatile C(sp3)-radical reactivity via metal-hydride hydrogen atom transfer (MHAT), although metallaphotoredox methodologies invoking this strategy remain underdeveloped. Importantly, merging MHAT activation with metallaphotoredox could enable the cross-coupling of olefins with feedstock partners such as alcohols, which undergo facile open-shell activation via photocatalysis. Herein, we report the first C(sp3)-C(sp3) coupling of MHAT-activated alkenes with alcohols by performing deoxygenative hydroalkylation via triple cocatalysis. Through synergistic Ir photoredox, Mn MHAT, and Ni radical sorting pathways, this branch-selective protocol pairs diverse olefins and methanol or primary alcohols with remarkable functional group tolerance to enable the rapid construction of complex aliphatic frameworks.
Collapse
Affiliation(s)
- Qinyan Cai
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Iona M. McWhinnie
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Nathan W. Dow
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Amy Y. Chan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
8
|
Lindner H, Amberg WM, Martini T, Fischer DM, Moore E, Carreira EM. Photo- and Cobalt-Catalyzed Synthesis of Heterocycles via Cycloisomerization of Unactivated Olefins. Angew Chem Int Ed Engl 2024; 63:e202319515. [PMID: 38415968 DOI: 10.1002/anie.202319515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
We report a general, intramolecular cycloisomerization of unactivated olefins with pendant nucleophiles. The reaction proceeds under mild conditions and tolerates ethers, esters, protected amines, acetals, pyrazoles, carbamates, and arenes. It is amenable to N-, O-, as well as C-nucleophiles, yielding a number of different heterocycles including, but not limited to, pyrrolidines, piperidines, oxazolidinones, and lactones. Use of both a benzothiazinoquinoxaline as organophotocatalyst and a Co-salen catalyst obviates the need for stoichiometric oxidant or reductant. We showcase the utility of the protocol in late-stage drug diversification and synthesis of several small natural products.
Collapse
Affiliation(s)
- Henry Lindner
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Willi M Amberg
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Tristano Martini
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - David M Fischer
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Eléonore Moore
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|