1
|
He Y, Xiong C, Lv L, Li D, Shi S, Xue C, Ji H. Advancing Propylene Epoxidation: the Role of Ethyl Acetate Autoxidation via Cobalt-Nickel Catalyzed C(acyl)─O Bond Scission. Angew Chem Int Ed Engl 2025; 64:e202500384. [PMID: 40034004 DOI: 10.1002/anie.202500384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
The selective autoxidation for the synthesis of valuable oxygenates has provoked keen interest from both academic and industrial sectors. Although the generation of reactive oxygen species via oxygen attack on C─H bonds near ester linkages is well-established, research into aliphatic ester oxidation has primarily focused on combustion, neglecting their potential utility in oxidation processes. Herein, a protocol for producing propylene oxide through the autoxidation of ethyl acetate in tandem with propylene epoxidation is demonstrated. The ethoxy radical, generated by ester C(acyl)─O bond cleavage in situ, subsequently underwent proton-coupled electron transfer with the Co(OAc)(μ-H2O)2Ni, followed by the formation of the peracetic acid optimally suited for the epoxidation reaction. The research not only eliminates the need for co-substrates in the epoxidation process but also fills the application gap in bulk-ester autoxidation, offering insights into the effective utilization of oxy-intermediates in autoxidation reactions.
Collapse
Affiliation(s)
- Yaorong He
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chao Xiong
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Luotian Lv
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongpo Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sixuan Shi
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Can Xue
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Hongbing Ji
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Regnier M, Vega C, Ioannou DI, Zhang Z, Noël T. Flow Electroreductive Nickel-Catalyzed Cyclopropanation of Alkenes Using gem-Dichloroalkanes. Angew Chem Int Ed Engl 2025; 64:e202500203. [PMID: 39888099 DOI: 10.1002/anie.202500203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
Cyclopropanes are valuable motifs in organic synthesis, widely featured in pharmaceuticals and functional materials. Herein, we report an efficient electrochemical methodology for the cyclopropanation of alkenes, leveraging a nickel-catalyzed process in continuous-flow. The developed protocol demonstrates broad substrate scope, accommodating both electron-rich and electron-poor alkenes with high functional group tolerance. Beyond dichloromethane as a feedstock methylene source, the methodology enables the synthesis of methylated, deuterated, and chloro-substituted cyclopropanes. Mechanistic investigations suggest the electro-generation of a nickel carbene as key intermediate. Notably, the reaction operates under ambient conditions, tolerates air and moisture, and achieves scalability through continuous-flow technology, offering a straightforward route to multi-gram quantities with enhanced throughput.
Collapse
Affiliation(s)
- Morgan Regnier
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| | - Clara Vega
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| | - Dimitris I Ioannou
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| | - Zhenyu Zhang
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The, Netherlands
| |
Collapse
|
3
|
Zhang N, Liang G, Zhang D, Liu G, Liu X, Zhou P, Zhang D, Zhou H, Zhou J. Palladium-catalyzed allylic C-H alkylation of terminal olefins with 3-carboxamide oxindoles. Org Biomol Chem 2025; 23:1828-1831. [PMID: 39812650 DOI: 10.1039/d4ob01991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A novel palladium-catalyzed allylic C-H alkylation of terminal olefins with 3-carboxamide oxindoles is described. A variety of new 3-carboxamide-3-allylation oxindoles with an all-carbon quaternary center were obtained in moderate to good yields (up to 99%). In addition, the asymmetric version of this reaction was also explored, providing moderate enantioselectivity.
Collapse
Affiliation(s)
- Ning Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Guojuan Liang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Dexin Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Gaochen Liu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Xing Liu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Pengfei Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Dong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Zhang M, Wu J. Bioinspired Synthesis of Cucurbalsaminones B and C. Angew Chem Int Ed Engl 2025; 64:e202417318. [PMID: 39501898 DOI: 10.1002/anie.202417318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Indexed: 11/24/2024]
Abstract
Cucurbalsaminones B (1) and C (2) are two abeo-cucurbitane triterpenoids with a unique 5/6/3/6/5-fused ring system and exhibit potent multidrug resistance (MDR)-reversing activity. Herein, we report the first synthesis of these two natural products, both of them were accomplished in 14 steps from commercially available inexpensive resource compound lanosterol. Key features of this synthesis include a biomimetic tandem Wagner-Meerwein type lanostane-to-cucurbitane rearrangement followed by a bioinspired photochemical oxa-di-π-methane (ODPM) rearrangement to complete the skeleton construction and an Eosin Y photoinduced Barton-McCombie deoxygenation to realize the challenging oxidation state adjustment of the sterically hindered C11 position.
Collapse
Affiliation(s)
- Mengqing Zhang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China
| | - Jingjing Wu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
5
|
Shen T, Zhao J, Ren X, Liu ZQ, Liu S. Metal-Free Electrochemical Allylic C-H Aerobic Oxidation. J Org Chem 2025; 90:1148-1158. [PMID: 39772507 DOI: 10.1021/acs.joc.4c02793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A scalable and sustainable electrochemical protocol for allylic C-H aerobic oxidation has been developed, enabling the formation of enones without the use of stoichiometric toxic oxidants or metal catalysts and offering an environmentally benign alternative to traditional chemical oxidation techniques. The process has been successfully applied to selectively oxidize a series of natural products and drug molecules, underscoring its potential for widespread adoption in both academic and industrial contexts.
Collapse
Affiliation(s)
- Tong Shen
- College of Pharmaceutical Engineering, Jiangsu Food & Pharmaceutical Science College, Huaian 210023, China
| | - Jianyou Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuanxuan Ren
- College of Pharmaceutical Engineering, Jiangsu Food & Pharmaceutical Science College, Huaian 210023, China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuai Liu
- Department of Chemistry, University of Konstanz, Konstanz 78467, Germany
| |
Collapse
|
6
|
Tian H, Lu Y, Tang C. Cobalt-Catalyzed Synthesis of Alkenes and Vinyl Sulfones Via Dehydrogenative Coupling of Alcohols and Sulfones. CHEMSUSCHEM 2025; 18:e202401244. [PMID: 39016039 DOI: 10.1002/cssc.202401244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/18/2024]
Abstract
A novel protocol to access vinyl sulfones and internal/terminal olefins via cobalt-catalyzed acceptorless dehydrogenation coupling (ADC) has been established. This system enables the divergent synthesis of three kinds of olefin compounds through the coupling of alcohols and sulfones under oxidant-free conditions. The broad applicability of this procedure is demonstrated by over forty olefin products, including pharmaceutical-related compounds and complex substrates, in a one-pot process. Preliminary mechanistic studies were conducted, and a proposed reaction pathway was presented.
Collapse
Affiliation(s)
- Haitao Tian
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Yanze Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| |
Collapse
|
7
|
Erdivan B, Calikyilmaz E, Bilgin S, Erdali AD, Gul DN, Ercan KE, Türkmen YE, Ozensoy E. Na-Promoted Bimetallic Hydroxide Nanoparticles for Aerobic C-H Activation: Catalyst Design Principles and Insights into Reaction Mechanism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60151-60165. [PMID: 39450826 PMCID: PMC11551905 DOI: 10.1021/acsami.4c11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
A precious metal-free bimetallic FexMn1-x(OH)y hydroxide catalyst was developed that is capable of catalyzing aerobic C-H oxidation reactions at low temperatures, without the need for an initiator, relying sustainably on molecular oxygen. Through a systematic synthetic effort, we scanned a wide nanoparticle synthesis parameter space to lay out a detailed set of catalyst design principles unraveling how the Fe/Mn cation ratio, NaOH(aq) concentration used in the synthesis, catalyst washing procedures, extent of residual Na+ promoters on the catalyst surface, reaction temperature, and catalyst loading influence catalytic C-H activation performance as a function of the electronic, surface chemical, and crystal structure of FexMn1-x(OH)y bimetallic hydroxide nanostructures. Our comprehensive XRD, XPS, BET, ICP-MS, 1H NMR, and XANES structural/product characterization results as well as mechanistic kinetic isotope effect (KIE) studies provided the following valuable insights into the molecular level origins of the catalytic performance of the bimetallic FexMn1-x(OH)y hydroxide nanostructures: (i) catalytic reactivity is due to the coexistence and synergistic operation of Fe3+ and Mn3+ cationic sites (with minor contributions from Fe2+ and Mn2+ sites) on the catalyst surface, where in the absence of one of these synergistic sites (i.e., in the presence of monometallic hydroxides), catalytic activity almost entirely vanishes, (ii) residual Na+ species on the catalyst surface act as efficient electronic promoters by increasing the electron density on the Fe3+ and Mn3+ cationic sites, which in turn, presumably enhance the electrophilic adsorption of organic reactants and strengthen the interaction between molecular oxygen and the catalyst surface, (iii) in the fluorene oxidation reaction the step dictating the reaction rate likely involved the breaking of a C-H bond (kH/kD = 2.4), (iv) reactivity patterns of a variety of alkylarene substrates indicate that the C-H bond cleavage follows a stepwise PT-ET (proton transfer-electron transfer) pathway.
Collapse
Affiliation(s)
- Beyzanur Erdivan
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Eylul Calikyilmaz
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Suay Bilgin
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Ayse Dilay Erdali
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Damla Nur Gul
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
| | - Kerem Emre Ercan
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
- Roketsan
Inc., Elmadag, 06780 Ankara, Türkiye
| | - Yunus Emre Türkmen
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
- UNAM
- National Nanotechnology Research Center and Institute of Materials
Science and Nanotechnology, Bilkent University, 06800 Ankara, Türkiye
| | - Emrah Ozensoy
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Türkiye
- UNAM
- National Nanotechnology Research Center and Institute of Materials
Science and Nanotechnology, Bilkent University, 06800 Ankara, Türkiye
| |
Collapse
|
8
|
Qin Q, Zhang L, Wei J, Qiu X, Hao S, An XD, Jiao N. Direct oxygen insertion into C-C bond of styrenes with air. Nat Commun 2024; 15:9015. [PMID: 39424824 PMCID: PMC11489579 DOI: 10.1038/s41467-024-53266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Skeletal editing of single-atom insertion to basic chemicals has been demonstrated as an efficient strategy for the discovery of structurally diversified compounds. Previous endeavors in skeletal editing have successfully facilitated the insertion of boron, nitrogen, and carbon atoms. Given the prevalence of oxygen atoms in biologically active molecules, the direct oxygenation of C-C bonds through single-oxygen-atom insertion like Baeyer-Villiger reaction is of particular significance. Herein, we present an approach for the skeletal modification of styrenes using O2 via oxygen insertion, resulting in the formation of aryl ether frameworks under mild reaction conditions. The broad functional-group tolerance and the excellent chemo- and regioselectivity are demonstrated in this protocol. A preliminary mechanistic study indicates the potential involvement of 1,2-aryl radical migration in this reaction.
Collapse
Affiliation(s)
- Qixue Qin
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China.
| | - Liang Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China
| | - Shuanghong Hao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|
9
|
Hosseini Nasab YS, Rajai-Daryasarei S, Rominger F, Balalaie S. Tosylhydrazide-Induced 1,6-Enyne Radical Cyclization under Copper Catalysis: Access to 3,4-Dihydronaphthalen-1(2 H)-one Derivatives. J Org Chem 2024; 89:13575-13584. [PMID: 39215225 DOI: 10.1021/acs.joc.4c01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We describe an approach to access 4-aroyl-3-aryl-3,4-dihydronaphthalen-1(2H)-one derivatives in 41-79% yields through the Cu-catalyzed radical cyclization/desulfonylation of 1,6-enynes with tosylhydrazide under air conditions. This alternative desulfonylation strategy combines mild conditions, external oxidant-free processes, and sustainability, contributing to more environmentally friendly organic synthesis. The mechanistic studies showed that the CuCl/O2 combination serves as the source of the oxygen atom needed to form the C═O bond. The existence of tosylhydrazide is crucial for this conversion.
Collapse
Affiliation(s)
- Yeganeh Sadat Hosseini Nasab
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran
| | - Saideh Rajai-Daryasarei
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 271, 69120 Heidelberg, Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran
| |
Collapse
|
10
|
Lu Y, Zhu M, Chen S, Yao J, Li T, Wang X, Tang C. Single-Atom Fe-Catalyzed Acceptorless Dehydrogenative Coupling to Quinolines. J Am Chem Soc 2024; 146:23338-23347. [PMID: 39105742 DOI: 10.1021/jacs.4c06145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A single-atom iron catalyst was found to exhibit exceptional reactivity in acceptorless dehydrogenative coupling for quinoline synthesis, outperforming known homogeneous and nanocatalyst systems. Detailed characterizations, including aberration-corrected HAADF-STEM, XANES, and EXAFS, jointly confirmed the presence of atomically dispersed iron centers. Various functionalized quinolines were efficiently synthesized from different amino alcohols and a range of ketones or alcohols. The iron single-atom catalyst achieved a turnover number (TON) of up to 105, far exceeding the results of current homogeneous and nanocatalyst systems. Detailed mechanistic studies verified the significance of single-atom Fe sites in the dehydrogenation process.
Collapse
Affiliation(s)
- Yanze Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Meiling Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Sanxia Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jiewen Yao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xu Wang
- Institute of Advanced Science Facilities, Shenzhen (IASF), No. 268 Zhenyuan Road, Guangming District, Shenzhen 518107, China
| | - Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
11
|
Tian H, Ding CY, Liao RZ, Li M, Tang C. Cobalt-Catalyzed Acceptorless Dehydrogenation of Primary Amines to Nitriles. J Am Chem Soc 2024; 146:11801-11810. [PMID: 38626455 DOI: 10.1021/jacs.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The direct double dehydrogenation from primary amines to nitriles without an oxidant or hydrogen acceptor is both intriguing and challenging. In this paper, we describe a non-noble metal catalyst capable of realizing such a transformation with high efficiency. A cobalt-centered N,N-bidentate complex was designed and employed as a metal-ligand cooperative dehydrogenation catalyst. Detailed kinetic studies, control experiments, and DFT calculations revealed the crucial hydride transfer, proton transfer, and hydrogen evolution processes. Finally, a tandem outer-sphere/inner-sphere mechanism was proposed for the dehydrogenation of amines to nitriles through an imine intermediate.
Collapse
Affiliation(s)
- Haitao Tian
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Cai-Yun Ding
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Man Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Conghui Tang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|