1
|
Huang A, Liu Z, Wang R, Chang X, Feng M, Xiang Y, Qi X, Zhu J. Halogen-Atom Transfer Enabled Z-Selective Styrene Synthesis via Dual Cobalt and Photocatalysis Through Coupling of Unactivated Alkyl Iodides With Terminal Arylalkynes. Angew Chem Int Ed Engl 2025; 64:e202501630. [PMID: 40170259 DOI: 10.1002/anie.202501630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/12/2025] [Accepted: 03/31/2025] [Indexed: 04/03/2025]
Abstract
An efficient Z-selective cobalt-catalyzed reductive hydroalkylation of terminal aryl alkynes with unactivated alkyl iodides has been achieved, providing a straightforward and modular route to access 1,2-disubstituted Z-styrenes. This reaction operates under mild conditions without requiring over-stoichiometric amounts of metal terminal reductants. Excellent Z/E ratios and good to excellent yields can be achieved for diverse and complex scaffolds with remarkable functional-group compatibility. One potential utility of this reaction is demonstrated by the efficient synthesis of several syn homoallylic alcohols in a one-pot two-step sequence. Control experiments strongly support that the halogen-atom transfer (XAT) process is the key to generating carbon radicals. DFT studies suggest that the catalytic system involves the Co(II)/Co(III) cycle and the steric repulsion between the Co(II) catalyst, and the alkenyl radical in radical capture by Co(II) is the dominant factor controlling the Z/E selectivity. This approach represents the first example of merging photo-XAT with cobalt-catalyzed reductive coupling of terminal aryl alkynes with unactivated alkyl iodides.
Collapse
Affiliation(s)
- Anxiang Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhao Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruobin Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinran Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingxing Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxin Xiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan, 430072, China
| | - Jun Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Wu F, Wang H, Wu Z, Liu Y, Feng X. Solvent-Controlled Enantioselective Allylic C-H Alkylation of 2,5-Dihydrofuran via Synergistic Palladium/Nickel Catalysis. J Am Chem Soc 2025; 147:16237-16247. [PMID: 40310651 DOI: 10.1021/jacs.5c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Enantioenriched, substituted tetrahydrofuran skeletons extensively occur in natural products, bioactive targets, and organic frameworks. The rapid and diverse synthesis of these tetrahydrofuran molecules is highly desired yet challenging. Herein, we present a practical synthetic strategy for asymmetric allylic C-H bond functionalization of oxyheterocyclic alkenes by making use of the synergistic catalysis of achiral Pd complex and chiral N,N'-dioxide-Ni(II) catalyst. Notably, the chemodivergent synthesis of allylic C-H alkylated products and hydroalkylated products was readily achieved in good outcomes via the regulation of solvents. Furthermore, the post-transformation of these functionalized 2,5-dihydrofurans provides an innovative synthetic route to access tetrahydrofuran skeleton compounds containing multiple stereocenters.
Collapse
Affiliation(s)
- Fule Wu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Hongkai Wang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Zhenwei Wu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
3
|
Zi QX, Min L, Du HW, Yu Q, Li YL, Shu W. Switchable Regiodivergent Reductive Alkyl-Alkyl Coupling by Nickel Catalysis: Sorting Different Alkyl-Nickel Intermediates. Angew Chem Int Ed Engl 2025:e202507313. [PMID: 40359072 DOI: 10.1002/anie.202507313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/04/2025] [Accepted: 05/13/2025] [Indexed: 05/15/2025]
Abstract
Site-selective and divergent functionalizations on saturated alkyl chain at specific unfunctionalized positions is a key challenge in organic chemistry and other related areas and offers unprecedented synthetic opportunities. Herein, a ligand-controlled Ni-catalyzed site-selective and divergent alkyl-alkyl reductive coupling between two different alkyl halides has been developed. Notably, the reaction finely tunes and recognizes thermodynamic favored α-aminoalkyl radicals over β-aminoalkyl radicals, and distal ipso-alkyl radicals to deliver chemo- and position-selective alkylation of unactivated α-H and β-H of amines under reductive conditions. Moreover, the reaction selectively functionalizes one alkyl chain over two migratable alkyl chains. By just switching the catalytic parameters, α- and β-alkylation of saturated C─H bonds, and ipso-alkyl-alkyl coupling allow for rapid access to three types of branched aliphatic amine architectures from identical starting materials.
Collapse
Affiliation(s)
- Quan-Xing Zi
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Lin Min
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Hai-Wu Du
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Qiong Yu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, P.R. China
| | - Wei Shu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P.R. China
- College of Chemistry and Environmental Engineering, Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, P.R. China
| |
Collapse
|
4
|
Wang JS, Liu Z, Qian G, Chen X, Cao L, Yu T, Ye J, Ma Y, Chen S, Yang Z, Cheng HG, Yang YF, Zhou Q. ortho-C─H Alkylation of Aryl Chlorides by a Catellani Strategy. Angew Chem Int Ed Engl 2025:e202509300. [PMID: 40331347 DOI: 10.1002/anie.202509300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/08/2025]
Abstract
Herein we report a general and practical palladium/norbornene catalysis system that effectively promotes difunctionalization of less reactive aryl chlorides. The key to success lies in the use of a particular norbornene (NBE) derivative as a powerful mediator that synergistically cooperates with the palladium catalyst and an electron-rich phosphine ligand. A broad spectrum of electronically diverse aryl chlorides (57 examples) delivered the corresponding ortho-C─H alkylation/ipso-olefination products in moderate to good yields. Notably, this protocol features excellent functional-group tolerance, high concentration, scalability, and late-stage functionalization of complex aryl chlorides. Furthermore, by integrating this chemistry with its counterparts involving aryl iodides and bromides, an intriguing triple-Catellani reaction sequence was developed, rapidly increasing molecular complexity and diversity. Finally, DFT calculations were performed, revealing that noncovalent C─H⋯O interactions between the XPhos ligand and the NBE mediator promote the pivotal NBE insertion step.
Collapse
Affiliation(s)
- Jian-Shu Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Zequan Liu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Guangyin Qian
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liming Cao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Tiaozhen Yu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Jinxiang Ye
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuanyuan Ma
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuqing Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuo Yang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong-Gang Cheng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qianghui Zhou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
5
|
Zhu DY, Zhang YT, Cheng F, Kong Q, Dang HX, Jiao HJ, Zhang Y, Zhang XM, Wang SH, Li SY. Enantio- and Diastereoselective Synthesis of P-Stereogenic Phospholane Oxides via Cobalt-Catalyzed Hydroalkylation. Org Lett 2025; 27:4251-4256. [PMID: 40207617 DOI: 10.1021/acs.orglett.5c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Chiral phospholane ligands and catalysts have been widely applied in asymmetric catalysis and synthesis. However, the construction of the chiral phospholane skeleton remains challenging and primarily relies on the use of chiral auxiliaries or resolution. In this work, a highly enantioselective and diastereoselective synthesis of P-stereogenic phospholane oxides has been achieved through a cobalt-catalyzed desymmetric hydroalkylation strategy. This method enables the construction of two discrete stereocenters with excellent yields and enantiomeric excesses.
Collapse
Affiliation(s)
- Dao-Yong Zhu
- School of Pharmacy and State Key Laboratory of Natural Product Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ya-Ting Zhang
- School of Pharmacy and State Key Laboratory of Natural Product Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Fu Cheng
- School of Pharmacy and State Key Laboratory of Natural Product Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qiao Kong
- School of Pharmacy and State Key Laboratory of Natural Product Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - He-Xiang Dang
- School of Pharmacy and State Key Laboratory of Natural Product Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hai-Juan Jiao
- School of Pharmacy and State Key Laboratory of Natural Product Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ye Zhang
- School of Pharmacy and State Key Laboratory of Natural Product Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Ming Zhang
- School of Pharmacy and State Key Laboratory of Natural Product Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shao-Hua Wang
- School of Pharmacy and State Key Laboratory of Natural Product Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Si-Yao Li
- School of Pharmacy and State Key Laboratory of Natural Product Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
6
|
Liu B, Lu Q, Hu X, Li D, Xu Z, Lu X, Fu Y, Liu Q. Regiodivergent Hydroamidation of Alkenes via Cobalt-Hydride Catalysis. J Am Chem Soc 2025; 147:13983-13992. [PMID: 40209261 DOI: 10.1021/jacs.5c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Regiodivergent hydroamin(d)ation of alkenes presents a valuable strategy for the synthesis of diverse amines or amides from a common set of starting materials, yet achieving controlled regioselectivity remains a significant challenge. In this work, we present a cobalt-catalyzed regiodivergent hydroamidation of alkenes, enabling enantioselective ipso- and migratory hydroamidation of heterocyclic alkenes. The ability to finely tune various reaction parameters allows for a seamless switch in regioselectivity. Notably, ipso- and migratory selectivity are governed by the choice of cobalt catalyst anions. Mechanistic studies reveal a neutral Co-H species mediating ipso-hydroamidation and a cationic Co-H intermediate promoting migratory hydroamidation. This protocol exhibits a broad substrate scope, high functional group tolerance, and provides an efficient pathway for synthetizing structurally diverse amides.
Collapse
Affiliation(s)
- Bingxue Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qianqian Lu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Hu
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Dandan Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zheyuan Xu
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xi Lu
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Li W, Wei H, Wang B, He X, Jiang Y, Nie M, Yan H, Hu Z, Gao Q, Qu S, Wang X. Selective Hydrodisulfuration of Alkenes with Dithiosulfonate. Angew Chem Int Ed Engl 2025; 64:e202424209. [PMID: 39930319 DOI: 10.1002/anie.202424209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Indexed: 02/22/2025]
Abstract
In this study, we have discovered the versatility of the dithiosulfonate reagent (ArSO2-SSR) in transition metal catalyzed selective hydrodisulfuration of unactivated alkenes. The hydrodisulfuration displays a unique Markovnikov selectivity with a Salen-cobalt complex, while an anti-Markovnikov selectivity is observed when employing a nickel/bidentate N-donor ligand. Furthermore, precise control over nickel/ligand enables the successful achievement of remote site-selective hydrodisulfuration for both internal and terminal alkenes via a chain-walking process. In these processes, silanes are employed as a hydride source. Mechanistic insights into these innovative catalytic systems are also elucidated. Experimental findings suggest that Markovnikov hydrodisulfuration is likely to proceed through radical substitution on dithiosulfonate reagents, while nickel catalyzed anti-Markovnikov selectivity and remote site-selectivity likely occur via the radical addition of the reductively formed dithiosulfonate radical anion ([ArSO2-SSR]⋅-) to alkyl Ni(II) species (alkyl-Ni(II)LnX) and subsequent reductive elimination on Ni(III) intermediate (alkyl-Ni(III)Ln(X)-SSR) as the key steps based on DFT calculation analysis.
Collapse
Affiliation(s)
- Wenhao Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Haonan Wei
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Baoxu Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Xihang He
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Yao Jiang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Mengna Nie
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Hang Yan
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Zijing Hu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Qianwen Gao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Shuanglin Qu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Xi Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, P. R. China
| |
Collapse
|
8
|
Dana S, Pandit NK, Boos P, von Münchow T, Peters SE, Trienes S, Haberstock L, Herbst-Irmer R, Stalke D, Ackermann L. Parametrization of κ 2- N, O-Oxazoline Preligands for Enantioselective Cobaltaelectro-Catalyzed C-H Activations. ACS Catal 2025; 15:4450-4459. [PMID: 40144676 PMCID: PMC11934137 DOI: 10.1021/acscatal.5c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025]
Abstract
Enantioselective electrocatalyzed C-H activations have emerged as a transformative platform for the assembly of value-added chiral organic molecules. Despite the recent progress, the construction of multiple C(sp3)-stereogenic centers via a C(sp3)-C(sp3) bond formation has thus far proven to be elusive. In contrast, we herein report an annulative C-H activation strategy, generating chiral Fsp3-rich molecules with high levels of diastereo- and enantioselectivity. κ2-N,O-oxazoline preligands were effectively employed in enantioselective cobalt(III)-catalyzed C-H activation reactions. Using DFT-derived descriptors and regression statistical modeling, we performed a parametrization study on the modularity of chiral κ2-N,O-oxazoline preligands. The study resulted in a model describing ligands' selectivity characterized by key steric, electronic, and interaction behaviors.
Collapse
Affiliation(s)
| | | | | | - Tristan von Münchow
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Sven Erik Peters
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Sven Trienes
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Laura Haberstock
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Regine Herbst-Irmer
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Dietmar Stalke
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Lutz Ackermann
- WISCh (Wöhler-Research
Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Dong W, Liu Z, Bai A, Zhang X, Han P, He J, Li C. Enantioselective Cobalt-Catalyzed Remote Hydroboration of Alkenylboronates. Org Lett 2025; 27:1895-1900. [PMID: 39949241 DOI: 10.1021/acs.orglett.5c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Heteroatomic groups in alkenes typically direct thermodynamically favored chain walking of C═C bonds toward themselves, thereby facilitating C-H bond functionalization near the heteroatoms. We present herein an efficient cobalt-catalyzed contra-thermodynamic remote hydroboration of alkenylboronates with pinacolborane to synthesize chiral 1,n-diboronates. This protocol features a broad substrate scope, high functional group tolerance, and excellent enantioselectivity. Mechanistic studies indicate the involvement of a chain-walking process. Gram-scale reactions and various product derivatizations further highlight its practicality.
Collapse
Affiliation(s)
- Wenke Dong
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, People's Republic of China
| | - Zheming Liu
- Hunan Petrochemical Company, Limited, Yueyang, Hunan 414000, People's Republic of China
| | - Anbang Bai
- College of Pharmacy, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiaoyu Zhang
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, People's Republic of China
| | - Peiwen Han
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, People's Republic of China
| | - Jingyi He
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, People's Republic of China
| | - Chenchen Li
- College of Pharmacy, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
10
|
Wang JW, Zhu QW, Liu D, Chen PW, Chen HZ, Lu X, Fu Y. Nickel-Catalyzed α-selective Hydroalkylation of Vinylarenes. Angew Chem Int Ed Engl 2024; 63:e202413074. [PMID: 39133520 DOI: 10.1002/anie.202413074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
C(sp3) centers adjacent to (hetero) aryl groups are widely present in physiologically active molecules. Metal-hydride-catalyzed hydroalkylation of alkenes represents an efficient means of forging C(sp3)-C(sp3) bonds, boasting advantages as a wide source of substrates, mild reaction conditions, and facile selectivity manipulation. Nevertheless, the hydroalkylation of vinylarenes encounters constraints in terms of substrate scope, necessitating the employment of activated alkyl halides or alkenes containing chelating groups, remains a challenge. In this context, we report a general nickel-hydride-catalyzed hydroalkylation protocol for vinylarenes. Remarkably, this system enables α-selective hydroalkylation of both aryl and heteroaryl alkenes under an extra ligand-free condition, demonstrating excellent coupling efficiency and selectivity. Furthermore, through the incorporation of chiral bisoxazoline ligands, we have achieved regio- and enantioselective hydroalkylation of vinylpyrroles, thereby facilitating the synthesis of α-branched alkylated pyrrole derivatives.
Collapse
Affiliation(s)
- Jia-Wang Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Qing-Wei Zhu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Deguang Liu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Pei-Wen Chen
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hong-Zhong Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xi Lu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yao Fu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
11
|
Xu L, Zhang F, Wang YE, Bai C, Xiong D, Mao J. Cobalt-Catalyzed Three-Component Alkyl Arylation of Acrylates with Alkyl Iodides and Aryl Grignard Reagents. Org Lett 2024; 26:9288-9293. [PMID: 39431957 DOI: 10.1021/acs.orglett.4c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
A highly regioselective cobalt-catalyzed three-component alkyl arylation of acrylates with alkyl iodides and aryl Grignard reagents has been established. The reaction efficiently provides an alternative strategy for the construction of α-aryl esters with a broad substrate scope and good yields under mild conditions. The practical applicability of this protocol is shown by the scaled-up reaction and further transformations of the products. In addition, the preliminary mechanistic explorations demonstrated that the alkyl radicals generated by the efficient cobalt catalysis are instantaneously added to the acrylates to finally afford the desired products.
Collapse
Affiliation(s)
- Lei Xu
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Fan Zhang
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Congcong Bai
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| |
Collapse
|
12
|
Zhang J, Jiao M, Lu Z, Lu H, Wang M, Shi Z. Hydrodeuteroalkylation of Unactivated Olefins Using Thianthrenium Salts. Angew Chem Int Ed Engl 2024; 63:e202409862. [PMID: 38866703 DOI: 10.1002/anie.202409862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Isotopically labeled alkanes play a crucial role in organic and pharmaceutical chemistry. While some deuterated methylating agents are readily available, the limited accessibility of other deuteroalkyl reagents has hindered the synthesis of corresponding products. In this study, we introduce a nickel-catalyzed system that facilitates the synthesis of various deuterium-labeled alkanes through the hydrodeuteroalkylation of d2-labeled alkyl TT salts with unactivated alkenes. Diverging from traditional deuterated alkyl reagents, alkyl thianthrenium (TT) salts can effectively and selectively introduce deuterium at α position of alkyl chains using D2O as the deuterium source via a single-step pH-dependent hydrogen isotope exchange (HIE). Our method allows for high deuterium incorporation, and offers precise control over the site of deuterium insertion within an alkyl chain. This technique proves to be invaluable for the synthesis of various deuterium-labeled compounds, especially those of pharmaceutical relevance.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mengjie Jiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zheng Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Jiangsu Nata Opto-electronic Material Co., Ltd., Suzhou, 215126, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
13
|
Huang S, Chen X, Xu Z, Zeng X, Xiong B, Qiu X. Radical alkylation and protonation induced anti-Markovnikov hydroalkylation of unactivated olefins via cobalt catalysis. Chem Commun (Camb) 2024; 60:9258-9261. [PMID: 39119642 DOI: 10.1039/d4cc03136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Although strategies of olefin hydroalkylation continue to emerge rapidly, the precise control of the regio- or chemoselectivity and the expansion of the reaction range are still challenges. Herein, a straightforward route for cobalt-catalyzed anti-Markovnikov hydroalkylation of unactivated olefins with alkyl iodides has been achieved. The developed reaction is compatible with oxa-, aza-, cyclo- and a series of other functional groups as well as the frameworks of some bioactive compounds. Mechanism studies confirm that an alkyl radical is involved and cobalt-alkyl insertion followed by protonation with water are possible pathways in this reaction.
Collapse
Affiliation(s)
- Shanshan Huang
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, China.
| | - Xiaoyang Chen
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, China.
| | - Zhangwenyi Xu
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, China.
| | - Xiaobao Zeng
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, China.
| | - Biao Xiong
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, China.
| | - Xiaodong Qiu
- Nantong Key Laboratory of Small Molecular Drug Innovation, School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, China.
| |
Collapse
|
14
|
Liu HC, Xu XY, Tang S, Bao J, Wang YZ, Chen Y, Han X, Liang YM, Zhang K. Photoinduced Co/Ni-cocatalyzed Markovnikov hydroarylation of unactivated olefins with aryl bromides. Chem Sci 2024:d4sc03355h. [PMID: 39184295 PMCID: PMC11342154 DOI: 10.1039/d4sc03355h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Transition-metal-catalyzed hydroarylation of unactivated alkenes via metal hydride hydrogen atom transfer (MHAT) is an attractive approach for the construction of C(sp2)-C(sp3) bonds. However, this kind of reaction focuses mainly on using reductive hydrosilane as a hydrogen donor. Here, a novel photoinduced Co/Ni-cocatalyzed Markovnikov hydroarylation of unactivated alkenes with aryl bromides using protons as a hydrogen source has been developed. This reaction represents the first example of photoinduced MHAT via a reductive route intercepting an organometallic coreactant. The key to this transformation was that the CoIII-H species was generated from the protonation of the CoI intermediate, and the formed CoIII-C(sp3) intermediate interacted with the organometallic coreactant rather than reacting with nucleophiles, a method which has been well developed in photoinduced Co-catalyzed MHAT reactions. This reaction is characterized by its high catalytic efficiency, construction of quaternary carbons, simple reaction conditions and expansion of the reactive mode of Co-catalyzed MHAT reactions via a reductive route. Moreover, this catalytic system could also be applied to complex substrates derived from glycosides.
Collapse
Affiliation(s)
- Hong-Chao Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Xin-Yu Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Siyuan Tang
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Jiawei Bao
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Yu-Zhao Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong China
| | - Yiliang Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 P. R. China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
| |
Collapse
|
15
|
Shen M, Niu C, Wang X, Huang JB, Zhao Z, Ni SF, Rong ZQ. Regio- and Enantioselective Hydromethylation of 3-Pyrrolines and Glycals Enabled by Cobalt Catalysis. JACS AU 2024; 4:2312-2322. [PMID: 38938800 PMCID: PMC11200246 DOI: 10.1021/jacsau.4c00275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Enantioenriched 3-methylpyrrolidine, with its unique chiral nitrogen-containing core skeleton, exists widely in various functional molecules, including natural products, bioactive compounds, and pharmaceuticals. Traditional methods for synthesizing these valuable methyl-substituted heterocycles often involve enzymatic processes or complex procedures with chiral auxiliaries, limiting the substrate scope and efficiency. Efficient catalytic methylation, especially in an enantioselective manner, has been a long-standing challenge in chemical synthesis. Herein, we present a novel approach for the remote and stereoselective installation of a methyl group onto N-heterocycles, leveraging a CoH-catalyzed asymmetric hydromethylation strategy. By effectively combining a commercial cobalt precursor with a modified bisoxazoline (BOX) ligand, a variety of easily accessible 3-pyrrolines can be converted to valuable enantiopure 3-(isotopic labeling)methylpyrrolidine compounds with outstanding enantioselectivity. This efficient protocol streamlines the two-step synthesis of enantioenriched 3-methylpyrrolidine, which previously required up to five or six steps under harsh conditions or expensive starting materials.
Collapse
Affiliation(s)
- Mengyang Shen
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Caoyue Niu
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Xuchao Wang
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Jia-Bo Huang
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Zhen Zhao
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Shao-Fei Ni
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Zi-Qiang Rong
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
16
|
Zhao L, Liu F, Zhuang Y, Shen M, Xue J, Wang X, Zhang Y, Rong ZQ. CoH-catalyzed asymmetric remote hydroalkylation of heterocyclic alkenes: a rapid approach to chiral five-membered S- and O-heterocycles. Chem Sci 2024; 15:8888-8895. [PMID: 38873055 PMCID: PMC11168172 DOI: 10.1039/d4sc01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Saturated heterocycles, which incorporate S and O heteroatoms, serve as fundamental frameworks in a diverse array of natural products, bioactive compounds, and pharmaceuticals. Herein, we describe a unique cobalt-catalyzed approach integrated with a desymmetrization strategy, facilitating precise and enantioselective remote hydroalkylation of unactivated heterocyclic alkenes. This method delivers hydroalkylation products with high yields and excellent stereoselectivity, representing good efficiency in constructing alkyl chiral centers at remote C3-positions within five-membered S/O-heterocycles. Notably, the broad scope and good functional group tolerance of this asymmetric C(sp3)-C(sp3) coupling enhance its applicability.
Collapse
Affiliation(s)
- Lingzi Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yan Zhuang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Mengyang Shen
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Jing Xue
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yuting Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
17
|
Ren J, Sun Z, Zhao S, Huang J, Wang Y, Zhang C, Huang J, Zhang C, Zhang R, Zhang Z, Ji X, Shao Z. Enantioselective synthesis of chiral α,α-dialkyl indoles and related azoles by cobalt-catalyzed hydroalkylation and regioselectivity switch. Nat Commun 2024; 15:3783. [PMID: 38710722 DOI: 10.1038/s41467-024-48175-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
General, catalytic and enantioselective construction of chiral α,α-dialkyl indoles represents an important yet challenging objective to be developed. Herein we describe a cobalt catalyzed enantioselective anti-Markovnikov alkene hydroalkylation via the remote stereocontrol for the synthesis of α,α-dialkyl indoles and other N-heterocycles. This asymmetric C(sp3)-C(sp3) coupling features high flexibility in introducing a diverse set of alkyl groups at the α-position of chiral N-heterocycles. The utility of this methodology has been demonstrated by late-stage functionalization of drug molecules, asymmetric synthesis of bioactive molecules, natural products and functional materials, and identification of a class of molecules exhibiting anti-apoptosis activities in UVB-irradiated HaCaT cells. Ligands play a vital role in controlling the reaction regioselectivity. Changing the ligand from bi-dentate L6 to tridentate L12 enables CoH-catalyzed Markovnikov hydroalkylation. Mechanistic studies disclose that the anti-Markovnikov hydroalkylation involves a migratory insertion process while the Markovnikov hydroalkylation involves a MHAT process.
Collapse
Affiliation(s)
- Jiangtao Ren
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- Southwest United Graduate School, 650092, Kunming, China
| | - Zheng Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Shuang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Jinyuan Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Yukun Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Cheng Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Jinhai Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Chenhao Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Ruipu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 430079, Wuhan, China.
| | - Xu Ji
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China.
- School of Pharmacy, Yunnan University, 650500, Kunming, China.
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China.
- Southwest United Graduate School, 650092, Kunming, China.
| |
Collapse
|