1
|
Bhattacharjee S, Gordiy I, Sirohiwal A, Pantazis DA. Microscopic basis of reaction center modulation in PsbA variants of photosystem II. Proc Natl Acad Sci U S A 2025; 122:e2417963122. [PMID: 40354529 DOI: 10.1073/pnas.2417963122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/26/2025] [Indexed: 05/14/2025] Open
Abstract
Photosystem II (PSII) is a protein-pigment complex that utilizes sunlight to catalyze water oxidation and plastoquinone reduction, initiating the electron transfer (ET) cascade in oxygenic photosynthesis. The D1 and D2 proteins are the most important transmembrane subunits of PSII that bind all redox-active components involved in primary charge separation (CS) and ET. D1 is susceptible to oxidative photodamage, particularly under high light, and protection partly involves genetic regulation. Cyanobacterial D1 is encoded by the psbA gene family that expresses distinct isoforms (PsbA1-3) depending on environmental conditions. Most differences in D1 isoforms are close to the active-branch reaction center (RC) pigments PD1, PD2, ChlD1, and PheoD1. Here, we combine molecular dynamics simulations with multiscale quantum-mechanics/molecular-mechanics calculations on the membrane-bound PSII monomer of each variant to compare the redox and excited state properties of RC pigments using long-range-corrected density functional theory. We identify specific amino acid substitutions responsible for electrochromic shifts on distinct pigments and pigment groups. Our results indicate that the PheoD1 acceptor is the primary regulatory target. The redox properties of the ChlD1-PheoD1 pair and the energetics of ChlD1δ+PheoD1δ- charge-transfer states are distinctly modulated in the three isoforms: Compared to the standard psbA1, charge separation is inhibited in psbA2 and facilitated in psbA3 PSII. The results provide a microscopic description of how genetic variations modulate protein electrostatics and influence primary processes in photosynthetic reaction centers.
Collapse
Affiliation(s)
- Sinjini Bhattacharjee
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| | - Igor Gordiy
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| | - Abhishek Sirohiwal
- Department of Inorganic and Physical Chemistry, Division of Chemical Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Dimitrios A Pantazis
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
2
|
Li Y, Cao T, Guo Y, Grimm B, Li X, Duanmu D, Lin R. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:887-911. [PMID: 39853950 PMCID: PMC12016751 DOI: 10.1111/jipb.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins. Given that many tetrapyrrole precursors possess photo-oxidative properties that are deleterious to macromolecules and can lead to cell death, tetrapyrrole biosynthesis (TBS) requires stringent regulation under various developmental and environmental conditions. Thanks to decades of research on model plants and algae, we now have a deeper understanding of the regulatory mechanisms that underlie Chl synthesis, including (i) the many factors that control the activity and stability of TBS enzymes, (ii) the transcriptional and post-translational regulation of the TBS pathway, and (iii) the complex roles of tetrapyrrole-mediated retrograde signaling from chloroplasts to the cytoplasm and the nucleus. Based on these new findings, Chls and their derivatives will find broad applications in synthetic biology and agriculture in the future.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
| | - Tianjun Cao
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Yunling Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlin10115Germany
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475004China
| | - Xiaobo Li
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
- Institute of Biotechnology, Xianghu LaboratoryHangzhou311231China
| |
Collapse
|
3
|
Cianfarani N, Calcinoni A, Agostini A, Elias E, Bortolus M, Croce R, Carbonera D. Far-Red Absorbing LHCII Incorporating Chlorophyll d Preserves Photoprotective Carotenoid Triplet-Triplet Energy Transfer Pathways. J Phys Chem Lett 2025; 16:1720-1728. [PMID: 39928962 PMCID: PMC11849036 DOI: 10.1021/acs.jpclett.4c03463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/12/2025]
Abstract
Chlorophyll d (Chl d) can be successfully introduced in reconstituted LHCII with minimal interference with the energy equilibration processes within the complex, thereby facilitating the development of plant light-harvesting complexes (LHCs) with enhanced capabilities for light absorption in the far-red spectrum. In this study, we address whether Chl d introduction affects LHCII's ability to protect itself from photo-oxidation, a crucial point for successfully exploiting modified complexes to extend light harvesting in plants. Here we focus on incorporating Chl d into Lhcb1 (the monomeric unit of LHCII), specifically studying the Chl triplet quenching by carotenoids using time-resolved electron paramagnetic resonance (TR-EPR) and optically detected magnetic resonance (ODMR). We also characterize the A2 mutant of LHCII, in which the Chl 612 is removed, to assist in determining the triplet quenching sites on the Lhcb1 complex reconstituted with Chl d. We found that far-red absorbing LHCII incorporating Chl d maintains the efficiency of the photoprotective process.
Collapse
Affiliation(s)
- Niccolò Cianfarani
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Biophysics
of Photosynthesis, Department of Physics and Astronomy, Faculty of
Science, Vrije Universiteit Amsterdam and
LaserLaB Amsterdam, De Boelelaan 1100, 1081 HZ Amsterdam, The Netherlands
| | - Andrea Calcinoni
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Alessandro Agostini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Eduard Elias
- Biophysics
of Photosynthesis, Department of Physics and Astronomy, Faculty of
Science, Vrije Universiteit Amsterdam and
LaserLaB Amsterdam, De Boelelaan 1100, 1081 HZ Amsterdam, The Netherlands
| | - Marco Bortolus
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Roberta Croce
- Biophysics
of Photosynthesis, Department of Physics and Astronomy, Faculty of
Science, Vrije Universiteit Amsterdam and
LaserLaB Amsterdam, De Boelelaan 1100, 1081 HZ Amsterdam, The Netherlands
| | - Donatella Carbonera
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Gisriel CJ, Ranepura G, Brudvig GW, Gunner MR. Assignment of chlorophyll d in the Chl D1 site of the electron transfer chain of far-red light acclimated photosystem II supported by MCCE binding calculations. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149496. [PMID: 39038640 DOI: 10.1016/j.bbabio.2024.149496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Affiliation(s)
| | - Gehan Ranepura
- Ph.D. Program in Physics, The Graduate Center, City University of New York, New York, NY 10016, USA; Department of Physics, City College of New York, New York, NY 10031, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - M R Gunner
- Ph.D. Program in Physics, The Graduate Center, City University of New York, New York, NY 10016, USA; Department of Physics, City College of New York, New York, NY 10031, USA
| |
Collapse
|
5
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Seki S, Miyata T, Norioka N, Tanaka H, Kurisu G, Namba K, Fujii R. Structure-based validation of recombinant light-harvesting complex II. PNAS NEXUS 2024; 3:pgae405. [PMID: 39346626 PMCID: PMC11428208 DOI: 10.1093/pnasnexus/pgae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Light-harvesting complex II (LHCII) captures sunlight and dissipates excess energy to drive photosynthesis. To elucidate this mechanism, the individual optical properties of pigments in the LHCII protein must be identified. In vitro reconstitution with apoproteins synthesized by Escherichia coli and pigment-lipid mixtures from natural sources is an effective approach; however, the local environment surrounding each pigment within reconstituted LHCII (rLHCII) has only been indirectly estimated using spectroscopic and biochemical methods. Here, we used cryo-electron microscopy to determine the 3D structure of the rLHCII trimer and found that rLHCII exhibited a structure that was virtually identical to that of native LHCII, with a few exceptions: some C-terminal amino acids were not visible, likely due to aggregation of the His-tags; a carotenoid at the V1 site was not visible; and at site 614 showed mixed occupancy by both chlorophyll a and b molecules. Our observations confirmed the applicability of the in vitro reconstitution technique.
Collapse
Affiliation(s)
- Soichiro Seki
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoko Norioka
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ritsuko Fujii
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Research Center for Artificial Photosynthesis, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
7
|
Zazubovich V, Jankowiak R. High-Resolution Frequency-Domain Spectroscopic and Modeling Studies of Photosystem I (PSI), PSI Mutants and PSI Supercomplexes. Int J Mol Sci 2024; 25:3850. [PMID: 38612659 PMCID: PMC11011720 DOI: 10.3390/ijms25073850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Photosystem I (PSI) is one of the two main pigment-protein complexes where the primary steps of oxygenic photosynthesis take place. This review describes low-temperature frequency-domain experiments (absorption, emission, circular dichroism, resonant and non-resonant hole-burned spectra) and modeling efforts reported for PSI in recent years. In particular, we focus on the spectral hole-burning studies, which are not as common in photosynthesis research as the time-domain spectroscopies. Experimental and modeling data obtained for trimeric cyanobacterial Photosystem I (PSI3), PSI3 mutants, and PSI3-IsiA18 supercomplexes are analyzed to provide a more comprehensive understanding of their excitonic structure and excitation energy transfer (EET) processes. Detailed information on the excitonic structure of photosynthetic complexes is essential to determine the structure-function relationship. We will focus on the so-called "red antenna states" of cyanobacterial PSI, as these states play an important role in photochemical processes and EET pathways. The high-resolution data and modeling studies presented here provide additional information on the energetics of the lowest energy states and their chlorophyll (Chl) compositions, as well as the EET pathways and how they are altered by mutations. We present evidence that the low-energy traps observed in PSI are excitonically coupled states with significant charge-transfer (CT) character. The analysis presented for various optical spectra of PSI3 and PSI3-IsiA18 supercomplexes allowed us to make inferences about EET from the IsiA18 ring to the PSI3 core and demonstrate that the number of entry points varies between sample preparations studied by different groups. In our most recent samples, there most likely are three entry points for EET from the IsiA18 ring per the PSI core monomer, with two of these entry points likely being located next to each other. Therefore, there are nine entry points from the IsiA18 ring to the PSI3 trimer. We anticipate that the data discussed below will stimulate further research in this area, providing even more insight into the structure-based models of these important cyanobacterial photosystems.
Collapse
Affiliation(s)
- Valter Zazubovich
- Department of Physics, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|