1
|
Nikkel DJ, Wetmore SD. Distinctive Formation of a DNA-Protein Cross-Link during the Repair of DNA Oxidative Damage: Insights into Human Disease from MD Simulations and QM/MM Calculations. J Am Chem Soc 2023. [PMID: 37285289 DOI: 10.1021/jacs.3c01773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reactive oxygen species damage DNA and result in health issues. The major damage product, 8-oxo-7,8-dihydroguanine (8oG), is repaired by human adenine DNA glycosylase homologue (MUTYH). Although MUTYH misfunction is associated with a genetic disorder called MUTYH-associated polyposis (MAP) and MUTYH is a potential target for cancer drugs, the catalytic mechanism required to develop disease treatments is debated in the literature. This study uses molecular dynamics simulations and quantum mechanics/molecular mechanics techniques initiated from DNA-protein complexes that represent different stages of the repair pathway to map the catalytic mechanism of the wild-type MUTYH bacterial homologue (MutY). This multipronged computational approach characterizes a DNA-protein cross-linking mechanism that is consistent with all previous experimental data and is a distinct pathway across the broad class of monofunctional glycosylase repair enzymes. In addition to clarifying how the cross-link is formed, accommodated by the enzyme, and hydrolyzed for product release, our calculations rationalize why cross-link formation is favored over immediate glycosidic bond hydrolysis, the accepted mechanism for all other monofunctional DNA glycosylases to date. Calculations on the Y126F mutant MutY highlight critical roles for active site residues throughout the reaction, while investigation of the N146S mutant rationalizes the connection between the analogous N224S MUTYH mutation and MAP. In addition to furthering our knowledge of the chemistry associated with a devastating disorder, the structural information gained about the distinctive MutY mechanism compared to other repair enzymes represents an important step for the development of specific and potent small-molecule inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
2
|
Popov AV, Endutkin AV, Yatsenko DD, Yudkina AV, Barmatov AE, Makasheva KA, Raspopova DY, Diatlova EA, Zharkov DO. Molecular dynamics approach to identification of new OGG1 cancer-associated somatic variants with impaired activity. J Biol Chem 2021; 296:100229. [PMID: 33361155 PMCID: PMC7948927 DOI: 10.1074/jbc.ra120.014455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023] Open
Abstract
DNA of living cells is always exposed to damaging factors. To counteract the consequences of DNA lesions, cells have evolved several DNA repair systems, among which base excision repair is one of the most important systems. Many currently used antitumor drugs act by damaging DNA, and DNA repair often interferes with chemotherapy and radiotherapy in cancer cells. Tumors are usually extremely genetically heterogeneous, often bearing mutations in DNA repair genes. Thus, knowledge of the functionality of cancer-related variants of proteins involved in DNA damage response and repair is of great interest for personalization of cancer therapy. Although computational methods to predict the variant functionality have attracted much attention, at present, they are mostly based on sequence conservation and make little use of modern capabilities in computational analysis of 3D protein structures. We have used molecular dynamics (MD) to model the structures of 20 clinically observed variants of a DNA repair enzyme, 8-oxoguanine DNA glycosylase. In parallel, we have experimentally characterized the activity, thermostability, and DNA binding in a subset of these mutant proteins. Among the analyzed variants of 8-oxoguanine DNA glycosylase, three (I145M, G202C, and V267M) were significantly functionally impaired and were successfully predicted by MD. Alone or in combination with sequence-based methods, MD may be an important functional prediction tool for cancer-related protein variants of unknown significance.
Collapse
Affiliation(s)
- Aleksandr V Popov
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.
| | - Anton V Endutkin
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Darya D Yatsenko
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anna V Yudkina
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Alexander E Barmatov
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Kristina A Makasheva
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Darya Yu Raspopova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Evgeniia A Diatlova
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Dmitry O Zharkov
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
3
|
Kaur R, Nikkel DJ, Wetmore SD. Computational studies of DNA repair: Insights into the function of monofunctional DNA glycosylases in the base excision repair pathway. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry University of Lethbridge Lethbridge Alberta Canada
| | - Dylan J. Nikkel
- Department of Chemistry and Biochemistry University of Lethbridge Lethbridge Alberta Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry University of Lethbridge Lethbridge Alberta Canada
| |
Collapse
|
4
|
Tyugashev TE, Vorobjev YN, Kuznetsova AA, Lukina MV, Kuznetsov NA, Fedorova OS. Roles of Active-Site Amino Acid Residues in Specific Recognition of DNA Lesions by Human 8-Oxoguanine-DNA Glycosylase (OGG1). J Phys Chem B 2019; 123:4878-4887. [PMID: 31117610 DOI: 10.1021/acs.jpcb.9b02949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human 8-oxoguanine-DNA glycosylase (hOGG1) possesses very high specificity for 8-oxoguanine (oxoG), even though this damaged base differs from normal guanine by only two atoms. Our aim was to determine the roles of certain catalytically important amino acid residues in the hOGG1 enzymatic pathway and describe their involvement in the mechanism of DNA lesion recognition. Molecular dynamic simulation and pre-steady-state fluorescence kinetics were performed to analyze the conformational behavior of wild-type hOGG1 and mutants G42S, D268A, and K249Q, as well as damaged and undamaged DNA. A loss of electrostatic interactions in the K249Q mutant leads to the disruption of specific contacts in the active site of the enzyme and the loss of catalytic activity. The absence of residue Asp-268 abrogates the ability of the enzyme to fully flip out the oxoG base from the double helix, thereby disrupting proper positioning of the damaged base in the active site. Furthermore, substitution of Gly-42 with Ser, which forms a damage-specific H-bond with the N7 atom of the oxoG base, creates a stable H-bond between N7 of undamaged G and Oγ of Ser-42. Nevertheless, positioning of the undamaged base in the active site is unsuitable for catalytic hydrolysis of the N-glycosidic bond.
Collapse
Affiliation(s)
- Timofey E Tyugashev
- Institute of Chemical Biology and Fundamental Medicine , Lavrentyev Avenue 8 , Novosibirsk 630090 , Russia
| | - Yury N Vorobjev
- Institute of Chemical Biology and Fundamental Medicine , Lavrentyev Avenue 8 , Novosibirsk 630090 , Russia
| | - Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine , Lavrentyev Avenue 8 , Novosibirsk 630090 , Russia
| | - Maria V Lukina
- Institute of Chemical Biology and Fundamental Medicine , Lavrentyev Avenue 8 , Novosibirsk 630090 , Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine , Lavrentyev Avenue 8 , Novosibirsk 630090 , Russia.,Department of Natural Sciences , Novosibirsk State University , Pirogova Street 2 , Novosibirsk 630090 , Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine , Lavrentyev Avenue 8 , Novosibirsk 630090 , Russia.,Department of Natural Sciences , Novosibirsk State University , Pirogova Street 2 , Novosibirsk 630090 , Russia
| |
Collapse
|
5
|
Mullins EA, Rodriguez AA, Bradley NP, Eichman BF. Emerging Roles of DNA Glycosylases and the Base Excision Repair Pathway. Trends Biochem Sci 2019; 44:765-781. [PMID: 31078398 DOI: 10.1016/j.tibs.2019.04.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
The base excision repair (BER) pathway historically has been associated with maintaining genome integrity by eliminating nucleobases with small chemical modifications. In the past several years, however, BER was found to play additional roles in genome maintenance and metabolism, including sequence-specific restriction modification and repair of bulky adducts and interstrand crosslinks. Central to this expanded biological utility are specialized DNA glycosylases - enzymes that selectively excise damaged, modified, or mismatched nucleobases. In this review we discuss the newly identified roles of the BER pathway and examine the structural and mechanistic features of the DNA glycosylases that enable these functions.
Collapse
Affiliation(s)
- Elwood A Mullins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Alyssa A Rodriguez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
6
|
Lu Y, Farrow MR, Fayon P, Logsdail AJ, Sokol AA, Catlow CRA, Sherwood P, Keal TW. Open-Source, Python-Based Redevelopment of the ChemShell Multiscale QM/MM Environment. J Chem Theory Comput 2019; 15:1317-1328. [PMID: 30511845 DOI: 10.1021/acs.jctc.8b01036] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ChemShell is a scriptable computational chemistry environment with an emphasis on multiscale simulation of complex systems using combined quantum mechanical and molecular mechanical (QM/MM) methods. Motivated by a scientific need to efficiently and accurately model chemical reactions on surfaces and within microporous solids on massively parallel computing systems, we present a major redevelopment of the ChemShell code, which provides a modern platform for advanced QM/MM embedding models. The new version of ChemShell has been re-engineered from the ground up with a new QM/MM driver module, an improved parallelization framework, new interfaces to high performance QM and MM programs, and a user interface written in the Python programming language. The redeveloped package is capable of performing QM/MM calculations on systems of significantly increased size, which we illustrate with benchmarks on zirconium dioxide nanoparticles of over 160000 atoms.
Collapse
Affiliation(s)
- You Lu
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| | - Matthew R Farrow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom
| | - Pierre Fayon
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| | - Andrew J Logsdail
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.,Cardiff Catalysis Institute, School of Chemistry , Cardiff University , Cardiff CF10 3AT , United Kingdom
| | - Alexey A Sokol
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom
| | - C Richard A Catlow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , United Kingdom.,Cardiff Catalysis Institute, School of Chemistry , Cardiff University , Cardiff CF10 3AT , United Kingdom.,UK Catalysis Hub, Research Complex at Harwell, STFC Rutherford Appleton Laboratory , Harwell Science and Innovation Campus , Oxon OX11 0QX , United Kingdom
| | - Paul Sherwood
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| | - Thomas W Keal
- Scientific Computing Department , STFC Daresbury Laboratory , Keckwick Lane, Daresbury , Warrington WA4 4AD , United Kingdom
| |
Collapse
|
7
|
Votaw KA, McCullagh M. Characterization of the Search Complex and Recognition Mechanism of the AlkD-DNA Glycosylase. J Phys Chem B 2018; 123:95-105. [PMID: 30525620 DOI: 10.1021/acs.jpcb.8b09555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA damage is a routine problem for cells, and pathways such as base excision repair have evolved to protect the genome by using DNA glycosylases to first recognize and excise lesions. The search mechanism of these enzymes is of particular interest due to the seemingly intractable problem of probing the billions of base pairs in the genome for potential damage. It has been hypothesized that glycosylases form multiple protein-DNA conformational states to efficiently search and recognize DNA lesions, ultimately only flipping out the damaged substrate into the active site. A unique DNA glycosylase, the Bacillus cereus AlkD enzyme, has been shown to excise damaged DNA without flipping the nucleobase into a protein binding pocket following lesion recognition. Here, we use microsecond-scale all-atom molecular dynamics simulations to characterize the AlkD recognition mechanism, putting it in perspective with other DNA glycosylases. We first identify and describe two distinct enzyme-DNA conformations of AlkD: the search complex (SC) and excision complex (EC). The SC is distinguished by the linearity of DNA, changes in four helical parameters in the vicinity of the lesion, and changes in distance between active site residues and the DNA. Free DNA simulations are used to demonstrate that the DNA structural deviations and increased active site interactions present in the EC are initiated by the recognition of a methylation-induced signal in the rises both 5' to the methylation and opposing this base. Our results support the hypothesis that subtle geometric distortions in DNA are recognized by AlkD and are consequently probed to initiate concerted protein and DNA conformational changes which prime excise without additional intermediate states. This mechanism is shown to be consistent among the three methylated DNA sequences that have been crystallized bound to AlkD.
Collapse
Affiliation(s)
- Kevin A Votaw
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523, United States
| | - Martin McCullagh
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523, United States
| |
Collapse
|
8
|
Nunes EA, Manieri TM, Matias AC, Bertuchi FR, da Silva DA, Lago L, Sato RH, Cerchiaro G. Protective effects of neocuproine copper chelator against oxidative damage in NSC34 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:62-71. [DOI: 10.1016/j.mrgentox.2018.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 11/28/2022]
|
9
|
Belostotskii AM. Nanosecond-Scale Isomerization of the 4'-Carboxonium Cation Oxidatively Produced in Pyrimidine Units of DNA. J Org Chem 2018; 83:11604-11613. [PMID: 30153025 DOI: 10.1021/acs.joc.8b01580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The long-standing puzzle of the chemistry producing the Stubbe-Kozarich abasic site, which is the minor product in the oxidation of 2'-deoxycytidine units of DNA by Fe(II)-bleomycin, has been computationally solved in this study. Scrupulous DFT-based calculations that included extensive screening of the potential energy surface of model-solvated nucleotides and the elucidation of the chemical structure of the located nucleotide cations via natural bond orbital analysis demonstrated that the 2'-deoxycytidine unit bearing the 2'-deoxyribose ring 2e-oxidized at the 4'-position undergoes carboxonium ion- iminium ion (C═O+-C → C═N+) isomerization. This 1,2-elimination of the carbonyl group 4'-C═O from the carboxonium cation fragment is associated with minimal spatial reorganization of the molecule and appears to be an ultrafast reaction. The calculated barrier Δ G0# of 2.7 kcal mol-1 for this isomerization is lower than that reported for the addition of water to oxocarbenium ions. Thus, this unusual nucleotide transformation is the key chemical reaction that yields the Stubbe-Kozarich product. Such a product cannot be formed for purine nucleotide units in DNA. The isomerization of 4'-dehydro-2'-deoxyribose-4'-carboxonium cations formed in these DNA units is slower because it destroys the purine aromaticity, and the cations are intercepted by water molecules before they isomerize.
Collapse
|
10
|
Lukina MV, Koval VV, Lomzov AA, Zharkov DO, Fedorova OS. Global DNA dynamics of 8-oxoguanine repair by human OGG1 revealed by stopped-flow kinetics and molecular dynamics simulation. MOLECULAR BIOSYSTEMS 2018; 13:1954-1966. [PMID: 28770925 DOI: 10.1039/c7mb00343a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The toxic action of different endogenous and exogenous agents leads to damage in genomic DNA. 8-Oxoguanine is one of the most often generated and highly mutagenic oxidative forms of damage in DNA. Normally, in human cells it is promptly removed by 8-oxoguanine-DNA-glycosylase hOGG1, the key DNA-repair enzyme. An association between the accumulation of oxidized guanine and an increased risk of harmful processes in organisms was already found. However, the detailed mechanism of damaged base recognition and removal is still unclear. To clarify the role of active site amino acids in the damaged base coordination and to reveal the elementary steps in the overall enzymatic process we investigated hOGG1 mutant forms with substituted amino acid residues in the enzyme base-binding pocket. Replacing the functional groups of the enzyme active site allowed us to change the rates of the individual steps of the enzymatic reaction. To gain further insight into the mechanism of hOGG1 catalysis a detailed pre-steady state kinetic study of this enzymatic process was carried out using the stopped-flow approach. The changes in the DNA structure after mixing with enzymes were followed by recording the FRET signal using Cy3/Cy5 labels in DNA substrates in the time range from milliseconds to hundreds of seconds. DNA duplexes containing non-damaged DNA, 8-oxoG, or an AP-site or its unreactive synthetic analogue were used as DNA-substrates. The kinetic parameters of DNA binding and damage processing were obtained for the mutant forms and for WT hOGG1. The analyses of fluorescence traces provided information about the DNA dynamics during damage recognition and removal. The kinetic study for the mutant forms revealed that all introduced substitutions reduced the efficiency of the hOGG1 activity; however, they played pivotal roles at certain elementary stages identified during the study. Taken together, our results gave the opportunity to restore the role of substituted amino acids and main "damaged base-amino acid" contacts, which provide an important link in the understanding the mechanism of the DNA repair process catalyzed by hOGG1.
Collapse
Affiliation(s)
- M V Lukina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia.
| | | | | | | | | |
Collapse
|
11
|
Kreppel A, Blank ID, Ochsenfeld C. Base-Independent DNA Base-Excision Repair of 8-Oxoguanine. J Am Chem Soc 2018; 140:4522-4526. [PMID: 29578340 DOI: 10.1021/jacs.7b11254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Living organisms protect their genome from gene mutation by excising damaged DNA bases. Here, 8-oxoguanine (8OG) is one of the most abundant DNA lesions. In bacteria the base excision is catalyzed by the enzyme formamidopyrimidine-DNA- glycosylase (Fpg), for which two different orientations of 8OG binding into the active site of Fpg have been proposed: syn- and anti-conformation. Here, we present a new ribose-protonated repair mechanism for 8OG that is base-independent and can excise 8OG in both conformations. Using high-level QM/MM calculations with up to 588/573 atoms in the QM sphere, the activation barrier is computed in excellent agreement with the experimentally measured value. Since the excised base itself is not directly involved in the mechanism, this implies that lesion discrimination does not occur within the active site of the enzyme.
Collapse
Affiliation(s)
- Andrea Kreppel
- Chair of Theoretical Chemistry , and Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry , University of Munich (LMU) , Butenandtstraße 5-13 , Munich , D-81377 , Germany
| | - Iris D Blank
- Chair of Theoretical Chemistry , and Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry , University of Munich (LMU) , Butenandtstraße 5-13 , Munich , D-81377 , Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry , and Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry , University of Munich (LMU) , Butenandtstraße 5-13 , Munich , D-81377 , Germany
| |
Collapse
|
12
|
Shang J, Li Z, Liu L, Xi D, Wang H. Label-Free Sensing of Human 8-Oxoguanine DNA Glycosylase Activity with a Nanopore. ACS Sens 2018; 3:512-518. [PMID: 29363311 DOI: 10.1021/acssensors.7b00954] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human 8-oxoguanine DNA glycosylase (hOGG1) plays a significant role in maintaining the genomic integrity of living organisms for its capability of repairing DNA lesions. Accurate detection of hOGG1 activity would greatly facilitate the screening and early diagnosis of diseases. In this work, we report a nanopore-based sensing strategy to probe the hOGG1 activity by employing the enzyme-catalytic cleavage reaction of DNA substrate. The hOGG1 specifically catalyzed the removal of the 8-hydroxyguanine (8-oxoG) and cleaved the DNA substrates immobilized on magnetic beads, thereby releasing the output DNA which would quantitatively produce the signature current events when subjected to α-hemolysin (α-HL) nanopore test. The approach enables the sensitive detection of hOGG1 activity without the need of any labeling or signal amplification route. Furthermore, the method can be applied to assay the inhibition of hOGG1 and evaluate the activity of endogenous hOGG1 in crude cell extracts. Importantly, since DNAs with specific sequences are the catalytic substrates of a wide variety of enzymes, the proposed strategy should be universally applicable for probing the activities of different types of enzymes with nanopore sensors.
Collapse
Affiliation(s)
- Jizhen Shang
- Shandong
Provincial Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
- Institute
of Medicine and Materials Application Technologies, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhi Li
- Shandong
Provincial Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Liping Liu
- Shandong
Provincial Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Dongmei Xi
- Shandong
Provincial Key Laboratory of Detection Technology for Tumor Makers,
College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Hua Wang
- Institute
of Medicine and Materials Application Technologies, College of Chemistry
and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
13
|
Sowlati-Hashjin S, Wetmore SD. Structural Insight into the Discrimination between 8-Oxoguanine Glycosidic Conformers by DNA Repair Enzymes: A Molecular Dynamics Study of Human Oxoguanine Glycosylase 1 and Formamidopyrimidine-DNA Glycosylase. Biochemistry 2018; 57:1144-1154. [PMID: 29320630 DOI: 10.1021/acs.biochem.7b01292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
hOgg1 and FPG are the primary DNA repair enzymes responsible for removing the major guanine (G) oxidative product, namely, 7,8-dihydro-8-oxoguanine (OG), in humans and bacteria, respectively. While natural G adopts the anti conformation and forms a Watson-Crick pair with cytosine (C), OG can also adopt the syn conformation and form a Hoogsteen pair with adenine (A). hOgg1 removes OG paired with C but is inactive toward the OG:A pair. In contrast, FPG removes OG from OG:C pairs and also exhibits appreciable (although diminished) activity toward OG:A pairs. As a first step toward understanding this difference in activity, we have employed molecular dynamics simulations to examine how the anti and syn conformers of OG are accommodated in the hOgg1 and FPG active sites. When anti-OG is bound, hOgg1 active site residues are properly aligned to initiate catalytic base departure, while geometrical parameters required for the catalytic reaction are not conserved for syn-OG. On the other hand, the FPG catalytic residues are suitably aligned for both OG conformers, with anti-OG being more favorably bound. Thus, our data suggests that the differential ability of hOgg1 and FPG to accommodate the anti- and syn-OG glycosidic conformations is an important factor that contributes to the relative experimental excision rates. Nevertheless, the positions of the nucleophiles with respect to the lesion in the active sites suggest that the reactant complex is poised to initiate catalysis through a similar mechanism for both repair enzymes and supports a recently proposed mechanism in which sugar-ring opening precedes nucleoside deglycosylation.
Collapse
Affiliation(s)
- Shahin Sowlati-Hashjin
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
14
|
Lenz SAP, Wetmore SD. QM/MM Study of the Reaction Catalyzed by Alkyladenine DNA Glycosylase: Examination of the Substrate Specificity of a DNA Repair Enzyme. J Phys Chem B 2017; 121:11096-11108. [PMID: 29148771 DOI: 10.1021/acs.jpcb.7b09646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human alkyladenine DNA glycosylase (AAG) functions as part of the base excision repair pathway to excise structurally diverse oxidized and alkylated DNA purines. Specifically, AAG uses a water molecule activated by a general base and a nonspecific active site lined with aromatic residues to cleave the N-glycosidic bond. Despite broad substrate specificity, AAG does not target the natural purines (adenine (A) and guanine (G)). Using the ONIOM(QM:MM) methodology, we provide fundamental atomic level details of AAG bound to DNA-containing a neutral substrate (hypoxanthine (Hx)), a nonsubstrate (G), or a cationic substrate (7-methylguanine (7MeG)) and probe changes in the reaction pathway that occur when AAG targets different nucleotides. We reveal that subtle differences in protein-DNA contacts upon binding different substrates within the flexible AAG active site can significantly affect the deglycosylation reaction. Notably, we predict that AAG excises Hx in a concerted mechanism that is facilitated through correct alignment of the (E125) general base due to hydrogen bonding with a neighboring aromatic amino acid (Y127). Hx departure is further stabilized by π-π interactions with aromatic amino acids and hydrogen bonds with active site water. Despite possessing a similar structure to Hx, G is not excised since the additional exocyclic amino group leads to misalignment of the general base due to disruption of the key E125-Y127 hydrogen bond, the catalytically unfavorable placement of water within the active site, and weakened π-contacts between aromatic amino acids and the nucleobase. In contrast, cationic 7MeG does not occupy the same position within the AAG active site as G due to steric clashes with the additional N7 methyl group, which results in the correct alignment of the general base and permits nucleobase excision as observed for neutral Hx. Overall, our structural data rationalizes the observed substrate specificity of AAG and contributes to our fundamental understanding of enzymes with flexible active sites and broad substrate specificities.
Collapse
Affiliation(s)
- Stefan A P Lenz
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
15
|
Šebera J, Hattori Y, Sato D, Reha D, Nencka R, Kohno T, Kojima C, Tanaka Y, Sychrovský V. The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine. Nucleic Acids Res 2017; 45:5231-5242. [PMID: 28334993 PMCID: PMC5435939 DOI: 10.1093/nar/gkx157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
The excision of 8-oxoguanine (oxoG) by the human 8-oxoguanine DNA glycosylase 1 (hOGG1) base-excision repair enzyme was studied by using the QM/MM (M06-2X/6-31G(d,p):OPLS2005) calculation method and nuclear magnetic resonance (NMR) spectroscopy. The calculated glycosylase reaction included excision of the oxoG base, formation of Lys249-ribose enzyme–substrate covalent adduct and formation of a Schiff base. The formation of a Schiff base with ΔG# = 17.7 kcal/mol was the rate-limiting step of the reaction. The excision of the oxoG base with ΔG# = 16.1 kcal/mol proceeded via substitution of the C1΄-N9 N-glycosidic bond with an H-N9 bond where the negative charge on the oxoG base and the positive charge on the ribose were compensated in a concerted manner by NH3+(Lys249) and CO2−(Asp268), respectively. The effect of Asp268 on the oxoG excision was demonstrated with 1H NMR for WT hOGG1 and the hOGG1(D268N) mutant: the excision of oxoG was notably suppressed when Asp268 was mutated to Asn. The loss of the base-excision function was rationalized with QM/MM calculations and Asp268 was confirmed as the electrostatic stabilizer of ribose oxocarbenium through the initial base-excision step of DNA repair. The NMR experiments and QM/MM calculations consistently illustrated the base-excision reaction operated by hOGG1.
Collapse
Affiliation(s)
- Jakub Šebera
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Praha, Czech Republic
| | - Yoshikazu Hattori
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama-Boji 180, Yamashiro-cho, Tokushima 770 8514, Japan
| | - Daichi Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980 8578, Japan
| | - David Reha
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Zámek 136, 373 33 Nové Hrady, Czech Republic
| | - Radim Nencka
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Praha, Czech Republic
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104 0045, Japan
| | - Chojiro Kojima
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240 8501, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama-Boji 180, Yamashiro-cho, Tokushima 770 8514, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980 8578, Japan
| | - Vladimír Sychrovský
- The Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Praha, Czech Republic.,Department of Electrotechnology, Electrical Engineering Czech Technical University, Technická 2, 166 27 Praha, Czech Republic
| |
Collapse
|
16
|
Popov AV, Endutkin AV, Vorobjev YN, Zharkov DO. Molecular dynamics simulation of the opposite-base preference and interactions in the active site of formamidopyrimidine-DNA glycosylase. BMC STRUCTURAL BIOLOGY 2017; 17:5. [PMID: 28482831 PMCID: PMC5422863 DOI: 10.1186/s12900-017-0075-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/20/2017] [Indexed: 01/20/2023]
Abstract
Background Formamidopyrimidine-DNA glycosylase (Fpg) removes abundant pre-mutagenic 8-oxoguanine (oxoG) bases from DNA through nucleophilic attack of its N-terminal proline at C1′ of the damaged nucleotide. Since oxoG efficiently pairs with both C and A, Fpg must excise oxoG from pairs with C but not with A, otherwise a mutation occurs. The crystal structures of several Fpg–DNA complexes have been solved, yet no structure with A opposite the lesion is available. Results Here we use molecular dynamic simulation to model interactions in the pre-catalytic complex of Lactococcus lactis Fpg with DNA containing oxoG opposite C or A, the latter in either syn or anti conformation. The catalytic dyad, Pro1–Glu2, was modeled in all four possible protonation states. Only one transition was observed in the experimental reaction rate pH dependence plots, and Glu2 kept the same set of interactions regardless of its protonation state, suggesting that it does not limit the reaction rate. The adenine base opposite oxoG was highly distorting for the adjacent nucleotides: in the more stable syn models it formed non-canonical bonds with out-of-register nucleotides in both the damaged and the complementary strand, whereas in the anti models the adenine either formed non-canonical bonds or was expelled into the major groove. The side chains of Arg109 and Phe111 that Fpg inserts into DNA to maintain its kinked conformation tended to withdraw from their positions if A was opposite to the lesion. The region showing the largest differences in the dynamics between oxoG:C and oxoG:A substrates was unexpectedly remote from the active site, located near the linker joining the two domains of Fpg. This region was also highly conserved among 124 analyzed Fpg sequences. Three sites trapping water molecules through multiple bonds were identified on the protein–DNA interface, apparently helping to maintain enzyme-induced DNA distortion and participating in oxoG recognition. Conclusion Overall, the discrimination against A opposite to the lesion seems to be due to incorrect DNA distortion around the lesion-containing base pair and, possibly, to gross movement of protein domains connected by the linker. Electronic supplementary material The online version of this article (doi:10.1186/s12900-017-0075-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander V Popov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia
| | - Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia.,Novosibrsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Yuri N Vorobjev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia. .,Novosibrsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia. .,Novosibrsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| |
Collapse
|
17
|
Lenz SAP, Kohout JD, Wetmore SD. Hydrolytic Glycosidic Bond Cleavage in RNA Nucleosides: Effects of the 2'-Hydroxy Group and Acid-Base Catalysis. J Phys Chem B 2016; 120:12795-12806. [PMID: 27933981 DOI: 10.1021/acs.jpcb.6b09620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite the inherent stability of glycosidic linkages in nucleic acids that connect the nucleobases to sugar-phosphate backbones, cleavage of these bonds is often essential for organism survival. The current study uses DFT (B3LYP) to provide a fundamental understanding of the hydrolytic deglycosylation of the natural RNA nucleosides (A, C, G, and U), offers a comparison to DNA hydrolysis, and examines the effects of acid, base, or simultaneous acid-base catalysis on RNA deglycosylation. By initially examining HCOO-···H2O mediated deglycosylation, the barriers for RNA hydrolysis were determined to be 30-38 kJ mol-1 higher than the corresponding DNA barriers, indicating that the 2'-OH group stabilizes the glycosidic bond. Although the presence of HCOO- as the base (i.e., to activate the water nucleophile) reduces the barrier for uncatalyzed RNA hydrolysis (i.e., unactivated H2O nucleophile) by ∼15-20 kJ mol-1, the extreme of base catalysis as modeled using a fully deprotonated water molecule (i.e., OH- nucleophile) decreases the uncatalyzed barriers by up to 65 kJ mol-1. Acid catalysis was subsequently examined by selectively protonating the hydrogen-bond acceptor sites of the RNA nucleobases, which results in an up to ∼80 kJ mol-1 barrier reduction relative to the corresponding uncatalyzed pathway. Interestingly, the nucleobase proton acceptor sites that result in the greatest barrier reductions match sites typically targeted in enzyme-catalyzed reactions. Nevertheless, simultaneous acid and base catalysis is the most beneficial way to enhance the reactivity of the glycosidic bonds in RNA, with the individual effects of each catalytic approach being weakened, additive, or synergistic depending on the strength of the base (i.e., degree of water nucleophile activation), the nucleobase, and the hydrogen-bonding acceptor site on the nucleobase. Together, the current contribution provides a greater understanding of the reactivity of the glycosidic bond in natural RNA nucleosides, and has fundamental implications for the function of RNA-targeting enzymes.
Collapse
Affiliation(s)
- Stefan A P Lenz
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Johnathan D Kohout
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
18
|
Sousa SF, Ribeiro AJM, Neves RPP, Brás NF, Cerqueira NMFSA, Fernandes PA, Ramos MJ. Application of quantum mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1281] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sérgio Filipe Sousa
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - António J. M. Ribeiro
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Rui P. P. Neves
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Natércia F. Brás
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Nuno M. F. S. A. Cerqueira
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Pedro A. Fernandes
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| | - Maria João Ramos
- Departamento de Química e Bioquímica, Faculdade de Ciências UCIBIO, REQUIMTE, Universidade do Porto Porto Portugal
| |
Collapse
|
19
|
Dračínský M, Šála M, Klepetářová B, Šebera J, Fukal J, Holečková V, Tanaka Y, Nencka R, Sychrovský V. Benchmark Theoretical and Experimental Study on 15N NMR Shifts of Oxidatively Damaged Guanine. J Phys Chem B 2016; 120:915-25. [DOI: 10.1021/acs.jpcb.5b11428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Martin Dračínský
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Michal Šála
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Blanka Klepetářová
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Jakub Šebera
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
- Institute
of Physics, Academy of Sciences of the Czech Republic, v.v.i, Na Slovance
2, CZ-182 21 Prague
8, Czech Republic
| | - Jiří Fukal
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Veronika Holečková
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Yoshiyuki Tanaka
- Faculty
of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashirocho, Tokushima, Tokushima 980-8578, Japan
| | - Radim Nencka
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| | - Vladimír Sychrovský
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Flemingovo náměstí 2, 16610 Praha, Czech Republic
| |
Collapse
|
20
|
Lenz SAP, Wetmore SD. Evaluating the Substrate Selectivity of Alkyladenine DNA Glycosylase: The Synergistic Interplay of Active Site Flexibility and Water Reorganization. Biochemistry 2016; 55:798-808. [PMID: 26765542 DOI: 10.1021/acs.biochem.5b01179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human alkyladenine DNA glycosylase (AAG) functions as part of the base excision repair (BER) pathway by cleaving the N-glycosidic bond that connects nucleobases to the sugar-phosphate backbone in DNA. AAG targets a range of structurally diverse purine lesions using nonspecific DNA-protein π-π interactions. Nevertheless, the enzyme discriminates against the natural purines and is inhibited by pyrimidine lesions. This study uses molecular dynamics simulations and seven different neutral or charged substrates, inhibitors, or canonical purines to probe how the bound nucleotide affects the conformation of the AAG active site, and the role of active site residues in dictating substrate selectivity. The neutral substrates form a common DNA-protein hydrogen bond, which results in a consistent active site conformation that maximizes π-π interactions between the aromatic residues and the nucleobase required for catalysis. Nevertheless, subtle differences in DNA-enzyme contacts for different neutral substrates explain observed differential catalytic efficiencies. In contrast, the exocyclic amino groups of the natural purines clash with active site residues, which leads to catalytically incompetent DNA-enzyme complexes due to significant reorganization of active site water. Specifically, water resides between the A nucleobase and the active site aromatic amino acids required for catalysis, while a shift in the position of the general base (E125) repositions (potentially nucleophilic) water away from G. Despite sharing common amino groups, the methyl substituents in cationic purine lesions (3MeA and 7MeG) exhibit repulsion with active site residues, which repositions the damaged bases in the active site in a manner that promotes their excision. Overall, we provide a structural explanation for the diverse yet discriminatory substrate selectivity of AAG and rationalize key kinetic data available for the enzyme. Specifically, our results highlight the complex interplay of many different DNA-protein interactions used by AAG to facilitate BER, as well as the crucial role of the general base and water (nucleophile) positioning. The insights gained from our work will aid the understanding of the function of other enzymes that use flexible active sites to exhibit diverse substrate specificity.
Collapse
Affiliation(s)
- Stefan A P Lenz
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
21
|
Lenz SAP, Kellie JL, Wetmore SD. Glycosidic Bond Cleavage in DNA Nucleosides: Effect of Nucleobase Damage and Activation on the Mechanism and Barrier. J Phys Chem B 2015; 119:15601-12. [PMID: 26618397 DOI: 10.1021/acs.jpcb.5b10337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan A. P. Lenz
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Jennifer L. Kellie
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|