1
|
Luesch H, Ellis EK, Chen QY, Ratnayake R. Progress in the discovery and development of anticancer agents from marine cyanobacteria. Nat Prod Rep 2025; 42:208-256. [PMID: 39620500 PMCID: PMC11610234 DOI: 10.1039/d4np00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 12/11/2024]
Abstract
Covering 2010-April 2024There have been tremendous new discoveries and developments since 2010 in anticancer research based on marine cyanobacteria. Marine cyanobacteria are prolific sources of anticancer natural products, including the tubulin agents dolastatins 10 and 15 which were originally isolated from a mollusk that feeds on cyanobacteria. Decades of research have culminated in the approval of six antibody-drug conjugates (ADCs) and many ongoing clinical trials. Antibody conjugation has been enabling for several natural products, particularly cyanobacterial cytotoxins. Targeting tubulin dynamics has been a major strategy, leading to the discovery of the gatorbulin scaffold, acting on a new pharmacological site. Cyanobacterial compounds with different mechanisms of action (MOA), targeting novel or validated targets in a range of organelles, also show promise as anticancer agents. Important advances include the development of compounds with novel MOA, including apratoxin and coibamide A analogues, modulating cotranslational translocation at the level of Sec61 in the endoplasmic reticulum, largazole and santacruzamate A targeting class I histone deacetylases, and proteasome inhibitors based on carmaphycins, resembling the approved drug carfilzomib. The pipeline extends with SERCA inhibitors, mitochondrial cytotoxins and membrane-targeting agents, which have not yet advanced clinically since the biology is less understood and selectivity concerns remain to be addressed. In addition, efforts have also focused on the identification of chemosensitizing and antimetastatic agents. The review covers the state of current knowledge of marine cyanobacteria as anticancer agents with a focus on the mechanism, target identification and potential for drug development. We highlight the importance of solving the supply problem through chemical synthesis as well as illuminating the biological activity and in-depth mechanistic studies to increase the value of cyanobacterial natural products to catalyze their development.
Collapse
Affiliation(s)
- Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Emma K Ellis
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| |
Collapse
|
2
|
Sharma KK, Sharma K, Rao K, Sharma A, Rathod GK, Aaghaz S, Sehra N, Parmar R, VanVeller B, Jain R. Unnatural Amino Acids: Strategies, Designs, and Applications in Medicinal Chemistry and Drug Discovery. J Med Chem 2024; 67:19932-19965. [PMID: 39527066 PMCID: PMC11901032 DOI: 10.1021/acs.jmedchem.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Peptides can operate as therapeutic agents that sit within a privileged space between small molecules and larger biologics. Despite examples of their potential to regulate receptors and modulate disease pathways, the development of peptides with drug-like properties remains a challenge. In the quest to optimize physicochemical parameters and improve target selectivity, unnatural amino acids (UAAs) have emerged as critical tools in peptide- and peptidomimetic-based drugs. The utility of UAAs is illustrated by clinically approved drugs such as methyldopa, baclofen, and gabapentin in addition to small drug molecules, for example, bortezomib and sitagliptin. In this Perspective, we outline the strategy and deployment of UAAs in FDA-approved drugs and their targets. We further describe the modulation of the physicochemical properties in peptides using UAAs. Finally, we elucidate how these improved pharmacological parameters and the role played by UAAs impact the progress of analogs in preclinical stages with an emphasis on the role played by UAAs.
Collapse
Affiliation(s)
- Krishna K. Sharma
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
- Present address– Department of Structural Biology, Stanford University, Stanford, California 94305, United States
| | - Kamya Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Anku Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Gajanan K. Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| |
Collapse
|
3
|
Mattos D, Neves WD, Kitamura T, Pradhan R, Wan X, da Hora CC, Tranter D, Kazemi S, Yu X, Tripathy N, Paavilainen VO, McPhail KL, Oishi S, Badr CE, Ishmael JE. Diastereomers of Coibamide A Show Altered Sec61 Client Selectivity and Ligand-Dependent Activity against Patient-Derived Glioma Stem-like Cells. ACS Pharmacol Transl Sci 2024; 7:1823-1838. [PMID: 38898945 PMCID: PMC11184607 DOI: 10.1021/acsptsci.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
Coibamide A (CbA) is a cyanobacterial lariat depsipeptide that selectively inhibits multiple secreted and integral membrane proteins from entering the endoplasmic reticulum secretory pathway through binding the alpha subunit of the Sec61 translocon. As a complex peptide-based macrocycle with 13 stereogenic centers, CbA is presumed to adopt a conformationally restricted orientation in the ligand-bound state, resulting in potent antitumor and antiangiogenic bioactivity. A stereochemical structure-activity relationship for CbA was previously defined based on cytotoxicity against established cancer cell lines. However, the ability of synthetic isomers to inhibit the biosynthesis of specific Sec61 substrates was unknown. Here, we report that two less toxic diastereomers of CbA, [L-Hiv2]-CbA and [L-Hiv2, L-MeAla11]-CbA, are pharmacologically active Sec61 inhibitors. Both compounds inhibited the expression of a secreted reporter (Gaussia luciferase), VEGF-A, and a Type 1 membrane protein (VCAM1), while [L-Hiv2]-CbA also decreased the expression of ICAM1 and BiP/GRP78. Analysis of 43 different chemokines in the secretome of SF-268 glioblastoma cells revealed different inhibitory profiles for the two diastereomers. When the cytotoxic potential of CbA compounds was compared against a panel of patient-derived glioblastoma stem-like cells (GSCs), Sec61 inhibitors were remarkably toxic to five of the six GSCs tested. Each ligand showed a distinct cytotoxic potency and selectivity pattern for CbA-sensitive GSCs, with IC50 values ranging from subnanomolar to low micromolar concentrations. Together, these findings highlight the extreme sensitivity of GSCs to Sec61 modulation and the importance of ligand stereochemistry in determining the spectrum of inhibited Sec61 client proteins.
Collapse
Affiliation(s)
- Daphne
R. Mattos
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Willian das Neves
- Department
of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Takashi Kitamura
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Richa Pradhan
- Department
of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Xuemei Wan
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cintia Carla da Hora
- Department
of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Dale Tranter
- Institute
of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Soheila Kazemi
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Xinhui Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Nirmalya Tripathy
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | | | - Kerry L. McPhail
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shinya Oishi
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory
of Medicinal Chemistry, Kyoto Pharmaceutical
University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Christian E. Badr
- Department
of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Jane E. Ishmael
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
4
|
Suzuki R, Mattos DR, Kitamura T, Tsujioka R, Kobayashi K, Inuki S, Ohno H, Ishmael JE, McPhail KL, Oishi S. Design of Synthetic Surrogates for the Macrolactone Linker Motif in Coibamide A. ACS Med Chem Lett 2023; 14:1344-1350. [PMID: 37849553 PMCID: PMC10578308 DOI: 10.1021/acsmedchemlett.3c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
A marine cyanobacterial cyclic depsipeptide, coibamide A (CbA), inhibits the mammalian protein secretory pathway by blocking the Sec61 translocon, which is an emerging drug target for cancer and other chronic diseases. In our previous structure-activity relationship study of CbA, the macrolactone ester linker was replaced with alkyl/alkenyl surrogates to provide synthetically accessible macrocyclic scaffolds. To optimize the cellular bioactivity profile of CbA analogues, novel lysine mimetics having β- and ε-methyl groups have now been designed and synthesized by a stereoselective route. A significant increase in cytotoxicity was observed upon introduction of these two methyl groups, corresponding to the d-MeAla α-methyl and MeThr β-methyl of CbA. All synthetic products retained the ability to inhibit secretion of a model Sec61 substrate. Tandem evaluation of secretory function inhibition in living cells and cytotoxicity was an effective strategy to assess the impact of structural modifications to the linker for ring closure.
Collapse
Affiliation(s)
- Rikito Suzuki
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory
of Medicinal Chemistry, Kyoto Pharmaceutical
University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Daphne R. Mattos
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Takashi Kitamura
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rina Tsujioka
- Laboratory
of Medicinal Chemistry, Kyoto Pharmaceutical
University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kazuya Kobayashi
- Laboratory
of Medicinal Chemistry, Kyoto Pharmaceutical
University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Shinsuke Inuki
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jane E. Ishmael
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kerry L. McPhail
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shinya Oishi
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory
of Medicinal Chemistry, Kyoto Pharmaceutical
University, Yamashina-ku, Kyoto 607-8412, Japan
| |
Collapse
|
5
|
Scheuplein NJ, Bzdyl NM, Lohr T, Kibble EA, Hasenkopf A, Herbst C, Sarkar-Tyson M, Holzgrabe U. Analysis of Structure-Activity Relationships of Novel Inhibitors of the Macrophage Infectivity Potentiator (Mip) Proteins of Neisseria meningitidis, Neisseria gonorrhoeae, and Burkholderia pseudomallei. J Med Chem 2023; 66:8876-8895. [PMID: 37389560 DOI: 10.1021/acs.jmedchem.3c00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The macrophage infectivity potentiator (Mip) protein is a promising target for developing new drugs to combat antimicrobial resistance. New rapamycin-derived Mip inhibitors have been designed that may be able to combine two binding modes to inhibit the Mip protein of Burkholderia pseudomallei (BpMip). These novel compounds are characterized by an additional substituent in the middle chain linking the lateral pyridine to the pipecoline moiety, constituting different stereoisomers. These compounds demonstrated high affinity for the BpMip protein in the nanomolar range and high anti-enzymatic activity and ultimately resulted in significantly reduced cytotoxicity of B. pseudomallei in macrophages. They also displayed strong anti-enzymatic activity against the Mip proteins of Neisseria meningitidis and Neisseria gonorrhoeae and substantially improved the ability of macrophages to kill the bacteria. Hence, the new Mip inhibitors are promising, non-cytotoxic candidates for further testing against a broad spectrum of pathogens and infectious diseases.
Collapse
Affiliation(s)
- Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Emily A Kibble
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
- DMTC Limited, Level 1, 620 High Street, Kew, Victoria 3101, Australia
| | - Anja Hasenkopf
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carina Herbst
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Zhang J, Ouyang X, Zhang F, Li B, Chang L, Yang P, Mao W, Gou S, Zhang Y, Liu H, Yao J, Ni J. Structure-Activity Relationship Study of Antimicrobial Peptide PE2 Delivered Novel Linear Derivatives with Potential of Eradicating Biofilms and Low Incidence of Drug Resistance. J Med Chem 2023. [PMID: 37368962 DOI: 10.1021/acs.jmedchem.3c00181] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The ongoing emergence of antibiotic-resistant pathogens had been dramatically stimulating and accelerating the need for new drugs. PE2 is a kind of cyclic lipopeptide with broad-spectrum antimicrobial activity. Herein, its structure-activity relationship was systematically investigated by employing 4 cyclic analogues and 23 linear analogues for the first time. The screened linear analogues 26 and 27 bearing different fatty acyls at N-termini and a Tyr residue at the 9th position had superior potency compared to the cyclic analogues and showed equivalent antimicrobial activity compared with PE2. Notably, 26 and 27 exhibited significant ability against multidrug-resistant bacteria, favorable resistance to protease, excellent performance against biofilm, low drug resistance, and high effectiveness against the mice pneumonia model. The antibacterial mechanisms of PE2 and linear derivatives 26 and 27 were also preliminarily explored in this study. As described above, 26 and 27 are promising antimicrobial candidates for the treatment of infections associated with drug-resistant bacteria.
Collapse
Affiliation(s)
- Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu Ouyang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fangyan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Beibei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Linlin Chang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Mao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sanhu Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Materia Medica, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| |
Collapse
|
7
|
Nomura K, Hashimoto S, Takeyama R, Tamiya M, Kato T, Muraoka T, Kage M, Nii K, Kotake K, Iida S, Emura T, Tanada M, Iikura H. Broadly Applicable and Comprehensive Synthetic Method for N-Alkyl-Rich Drug-like Cyclic Peptides. J Med Chem 2022; 65:13401-13412. [DOI: 10.1021/acs.jmedchem.2c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kenichi Nomura
- Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Satoshi Hashimoto
- Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Ryuuichi Takeyama
- Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Minoru Tamiya
- Research Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Tatsuya Kato
- Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Terushige Muraoka
- Research Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Mirai Kage
- Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Keiji Nii
- Research Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Kenichiro Kotake
- Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Satomi Iida
- Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Takashi Emura
- Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
| | - Mikimasa Tanada
- Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Hitoshi Iikura
- Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| |
Collapse
|
8
|
A M Subbaiah M, Subramani L, Ramar T, Desai S, Sinha S, Mandlekar S, Kadow JF, Jenkins S, Krystal M, Subramanian M, Sridhar S, Padmanabhan S, Bhutani P, Arla R, Meanwell NA. Improving Drug Delivery While Tailoring Prodrug Activation to Modulate Cmax and Cmin by Optimization of (Carbonyl)oxyalkyl Linker-Based Prodrugs of Atazanavir. J Med Chem 2022; 65:11150-11176. [PMID: 35952307 DOI: 10.1021/acs.jmedchem.2c00632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structure-property relationships associated with a series of (carbonyl)oxyalkyl amino acid ester prodrugs of the marketed HIV-1 protease inhibitor atazanavir (1), designed to enhance the systemic drug delivery, were examined. Compared to previously reported prodrugs, optimized candidates delivered significantly enhanced plasma exposure and trough concentration (Cmin at 24 h) of 1 in rats while revealing differentiated PK paradigms based on the kinetics of prodrug activation and drug release. Prodrugs incorporating primary amine-containing amino acid promoieties offered the benefit of rapid bioactivation that translated into low circulating levels of the prodrug while delivering a high Cmax value of 1. Interestingly, the kinetic profile of prodrug cleavage could be tailored for slower activation by structural modification of the amino terminus to either a tertiary amine or a dipeptide motif, which conferred a circulating depot of the prodrug that orchestrated a sustained release of 1 along with substantially reduced Cmax and a further enhanced Cmin.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry (Prodrug Group), Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Lakshumanan Subramani
- Department of Medicinal Chemistry (Prodrug Group), Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Thangeswaran Ramar
- Department of Medicinal Chemistry (Prodrug Group), Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Salil Desai
- Department of Biopharmaceutics, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Sarmistha Sinha
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Sandhya Mandlekar
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - John F Kadow
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Murali Subramanian
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Srikanth Sridhar
- Department of Biopharmaceutics, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Shweta Padmanabhan
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Priyadeep Bhutani
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Rambabu Arla
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
9
|
Ohsawa K, Fukaya S, Doi T. Total Synthesis and Structural Determination of Cyclodepsipeptide Decatransin. Org Lett 2022; 24:5552-5556. [PMID: 35867629 DOI: 10.1021/acs.orglett.2c02085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure determination of the 30-membered cyclodepsipeptide decatransin was demonstrated on the basis of total synthesis. Both (R)- and (S)-2-hydroxy-5-methylhexanoic acid derivatives were prepared via the Evans asymmetric alkylation. N-Alkyl-enriched peptide fragments were synthesized by the Cbz strategy in the solution phase without formation of diketopiperazine and epimerization. The synthesis of putative candidates was achieved by convergent peptide coupling of three peptide fragments, followed by macrocyclization under the Mitsunobu conditions.
Collapse
Affiliation(s)
- Kosuke Ohsawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Sakiko Fukaya
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Takayuki Doi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
10
|
Shen SM, Appendino G, Guo YW. Pitfalls in the structural elucidation of small molecules. A critical analysis of a decade of structural misassignments of marine natural products. Nat Prod Rep 2022; 39:1803-1832. [PMID: 35770685 DOI: 10.1039/d2np00023g] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: July 2010 to August 2021This article summarizes more than 200 cases of misassigned marine natural products reported between July 2010 and August 2021, sorting out errors according to the structural elements. Based on a comparative analysis of the original and the revised structures, major pitfalls still plaguing the structural elucidation of small molecules were identified, emphasizing the role of total synthesis, crystallography, as well as chemical- and biosynthetic logic to complement spectroscopic data. Distinct "trends" in natural product misassignment are evident between compounds of marine and plant origin, with an overall much lower incidence of "impossible" structures within misassigned marine natural products.
Collapse
Affiliation(s)
- Shou-Mao Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Universitá degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
11
|
Kitamura T, Suzuki R, Inuki S, Ohno H, McPhail KL, Oishi S. Design of Coibamide A Mimetics with Improved Cellular Bioactivity. ACS Med Chem Lett 2022; 13:105-110. [PMID: 35059129 PMCID: PMC8762706 DOI: 10.1021/acsmedchemlett.1c00591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
Coibamide A, a cyclic depsipeptide isolated from a Panamanian marine cyanobacterium, shows potent cytotoxic activity via the inhibition of the Sec61 translocon. We designed a coibamide A mimetic in which the ester linkage between MeThr and d-MeAla in coibamide A was replaced with an alkyl linker to provide a stable macrocyclic scaffold possessing a MeLys(Me) residue. Taking advantage of a facile solid-phase synthetic approach, an structure-activity relationship (SAR) study of the newly designed macrocyclic structure was performed, with a focus on altering the pattern of N-methyl substitution and amino acid configurations. Overall, the simplified macrocyclic scaffold with an alkyl linker resulted in a significantly reduced cytotoxicity. Instead, more potent coibamide A derivatives with a β-(4-biphenylyl)alanine (Bph) group were identified after the optimization of the Tyr(Me) position in the original macrocyclic scaffold of coibamide A based on the characteristic apratoxin A substructures. The similar SAR between coibamide A and apratoxin A suggests that the binding site of the Tyr(Me) side chain at the luminal end of Sec61α may be shared.
Collapse
Affiliation(s)
- Takashi Kitamura
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rikito Suzuki
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
- Department
of Medicinal Chemistry, Kyoto Pharmaceutical
University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Shinsuke Inuki
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kerry L. McPhail
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shinya Oishi
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
- Department
of Medicinal Chemistry, Kyoto Pharmaceutical
University, Yamashina-ku, Kyoto 607-8412, Japan
| |
Collapse
|
12
|
Shi W, Lu D, Wu C, Li M, Ding Z, Li Y, Chen B, Lin X, Su W, Shao X, Xia Z, Fang L, Liu K, Li H. Coibamide A kills cancer cells through inhibiting autophagy. Biochem Biophys Res Commun 2021; 547:52-58. [PMID: 33592379 DOI: 10.1016/j.bbrc.2021.01.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Natural products are useful tools for biological mechanism research and drug discovery. Due to the excellent tumor cell growth inhibitory profile and sub-nanomolar potency, Coibamide A (CA), an N-methyl-stabilized depsipeptide isolated from marine cyanobacterium, has been considered as a promising lead compound for cancer treatment. However, the molecular anti-cancer mechanism of the action of CA remains unclear. Here, we showed that CA treatment induced caspase-independent cell death in breast cancer cells. CA treatment also led to severe lysosome defects, which was ascribed to the impaired glycosylation of lysosome membrane protein LAMP1 and LAMP2. As a consequence, the autophagosome-lysosome fusion was blocked upon CA treatment. In addition, we presented evidence that this autophagy defect partially contributed to the CA treatment-induced tumor cell death. Together, our work uncovers a novel mechanism underlying the anti-cancer action of CA, which will promote its further application for cancer therapy.
Collapse
Affiliation(s)
- Wenli Shi
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Danyi Lu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunlei Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Meiqing Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Ding
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanyan Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binghua Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian Lin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wu Su
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ximing Shao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhihui Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Lijing Fang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ke Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hongchang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Wu C, Cheng Z, Lu D, Liu K, Cheng Y, Wang P, Zhou Y, Li M, Shao X, Li H, Su W, Fang L. Novel N-Methylated Cyclodepsipeptide Prodrugs for Targeted Cancer Therapy. J Med Chem 2021; 64:991-1000. [PMID: 33417771 DOI: 10.1021/acs.jmedchem.0c01387] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coibamide A (1) is a highly N-methylated cyclodepsipeptide with low nanomolar antiproliferative activities against various cancer cell lines. In previous work, we discovered a simplified analogue, [MeAla3-MeAla6]-coibamide (1a), which exhibited the same inhibitory abilities as coibamide A. Herein, to reduce the whole-body toxicity and improve the solubility of 1a, two novel peptide-drug conjugates RGD-SS-CA (2) and RGD-VC-CA (3) were designed, synthesized, and evaluated. Composed of cyclodepsipeptide 1a, a tumor-homing RGD motif, and a conditionally labile linker, the conjugates are expected to release 1a tracelessly in specific tumor microenvironments. Compared with RGD-VC-CA (3), RGD-SS-CA (2) proved to be superior in in vitro drug release and cytotoxicity tests. Notably, intravenous injection of RGD-SS-CA (2) into mice-bearing human tumor xenografts induced significant tumor growth suppression with negligible toxicity. Therefore, as a novel prodrug of the coibamide A analogue, conjugate 2 has great potential for further exploration in cancer drug discovery.
Collapse
Affiliation(s)
- Chunlei Wu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhehong Cheng
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Danyi Lu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ke Liu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yulian Cheng
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Pengxin Wang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yimin Zhou
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Meiqing Li
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ximing Shao
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Qin F, Wang CY, Kim D, Wang HS, Zhu YK, Lee SK, Yao GY, Liang D. Nitidumpeptins A and B, Cyclohexapeptides Isolated from Zanthoxylum nitidum var. tomentosum: Structural Elucidation, Total Synthesis, and Antiproliferative Activity in Cancer Cells. J Org Chem 2021; 86:1462-1470. [DOI: 10.1021/acs.joc.0c02057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Feng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Cai Yi Wang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghwa Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Yan-Kui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Gui-Yang Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People’s Republic of China
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, Berlin 10623, Germany
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People’s Republic of China
| |
Collapse
|
15
|
Ahangarpour M, Kavianinia I, Harris PWR, Brimble MA. Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design. Chem Soc Rev 2021; 50:898-944. [PMID: 33404559 DOI: 10.1039/d0cs00354a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the global market for peptide/protein-based therapeutics is witnessing significant growth, the development of peptide drugs remains challenging due to their low oral bioavailability, poor membrane permeability, and reduced metabolic stability. However, a toolbox of chemical approaches has been explored for peptide modification to overcome these obstacles. In recent years, there has been a revival of interest in photoinduced radical thiol-ene chemistry as a powerful tool for the construction of therapeutic peptides.
Collapse
Affiliation(s)
- Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | | | | | |
Collapse
|
16
|
Ganiu MO, Nepal B, Van Houten JP, Kartika R. A decade review of triphosgene and its applications in organic reactions. Tetrahedron 2020; 76:131553. [PMID: 33883783 PMCID: PMC8054975 DOI: 10.1016/j.tet.2020.131553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This review article highlights selected advances in triphosgene-enabled organic synthetic reactions that were reported in the decade of 2010-2019. Triphosgene is a versatile reagent in organic synthesis. It serves as a convenient substitute for the toxic phosgene gas. Despite its first known preparation in the late 19th interestingly began only three decades ago. Despite the relatively short history, triphosgene has been proven to be very useful in facilitating the preparation of a vast scope of value-added compounds, such as organohalides, acid chlorides, isocyanates, carbonyl addition adducts, heterocycles, among others. Furthermore, applications of triphosgene in complex molecules synthesis, polymer synthesis, and other techniques, such as flow chemistry and solid phase synthesis, have also emerged in the literature.
Collapse
Affiliation(s)
| | | | | | - Rendy Kartika
- Department of Chemistry, 232 Choppin Hall, Louisiana State University, Baton Rouge, LA 70803 United States
| |
Collapse
|
17
|
Targeting of HER/ErbB family proteins using broad spectrum Sec61 inhibitors coibamide A and apratoxin A. Biochem Pharmacol 2020; 183:114317. [PMID: 33152346 DOI: 10.1016/j.bcp.2020.114317] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023]
Abstract
Coibamide A is a potent cancer cell toxin and one of a select group of natural products that inhibit protein entry into the secretory pathway via a direct inhibition of the Sec61 protein translocon. Many Sec61 client proteins are clinically relevant drug targets once trafficked to their final destination in or outside the cell, however the use of Sec61 inhibitors to block early biosynthesis of specific proteins is at a pre-clinical stage. In the present study we evaluated the action of coibamide A against human epidermal growth factor receptor (HER, ErbB) proteins in representative breast and lung cancer cell types. HERs were selected for this study as they represent a family of Sec61 clients that is frequently dysregulated in human cancers, including coibamide-sensitive cell types. Although coibamide A inhibits biogenesis of a broad range of Sec61 substrate proteins in a presumed substrate-nonselective manner, endogenous HER3 (ErbB-3) and EGFR (ErbB-1) proteins were more sensitive to coibamide A, and the related Sec61 inhibitor apratoxin A, than HER2 (ErbB-2). Despite this rank order of sensitivity (HER3 > EGFR > HER2), Sec61-dependent inhibition by coibamide A was sufficient to decrease cell surface expression of HER2. We report that coibamide A- or apratoxin A-mediated block of HER3 entry into the secretory pathway is unlikely to be mediated by the HER3 signal peptide alone. HER3 (G11L/S15L), that is fully resistant to the highly substrate-selective cotransin analogue CT8, was more resistant than wild-type HER3 but only at low coibamide A (3 nM) concentrations; HER3 (G11L/S15L) expression was inhibited by higher concentrations of either natural product. Time- and concentration-dependent decreases in HER protein expression induced a commensurate reduction in AKT/MAPK signaling in breast and lung cancer cell types and loss in cell viability. Coibamide A potentiated the cytotoxic efficacy of small molecule kinase inhibitors lapatinib and erlotinib in breast and lung cancer cell types, respectively. These data indicate that natural product modulators of Sec61 function have value as chemical probes to interrogate HER/ErbB signaling in treatment-resistant human cancers.
Collapse
|
18
|
Li Y, Naman CB, Alexander KL, Guan H, Gerwick WH. The Chemistry, Biochemistry and Pharmacology of Marine Natural Products from Leptolyngbya, a Chemically Endowed Genus of Cyanobacteria. Mar Drugs 2020; 18:E508. [PMID: 33036172 PMCID: PMC7600079 DOI: 10.3390/md18100508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/23/2022] Open
Abstract
Leptolyngbya, a well-known genus of cyanobacteria, is found in various ecological habitats including marine, fresh water, swamps, and rice fields. Species of this genus are associated with many ecological phenomena such as nitrogen fixation, primary productivity through photosynthesis and algal blooms. As a result, there have been a number of investigations of the ecology, natural product chemistry, and biological characteristics of members of this genus. In general, the secondary metabolites of cyanobacteria are considered to be rich sources for drug discovery and development. In this review, the secondary metabolites reported in marine Leptolyngbya with their associated biological activities or interesting biosynthetic pathways are reviewed, and new insights and perspectives on their metabolic capacities are gained.
Collapse
Affiliation(s)
- Yueying Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
| | - C. Benjamin Naman
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Kelsey L. Alexander
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| |
Collapse
|
19
|
Tranter D, Paatero AO, Kawaguchi S, Kazemi S, Serrill JD, Kellosalo J, Vogel WK, Richter U, Mattos DR, Wan X, Thornburg CC, Oishi S, McPhail KL, Ishmael JE, Paavilainen VO. Coibamide A Targets Sec61 to Prevent Biogenesis of Secretory and Membrane Proteins. ACS Chem Biol 2020; 15:2125-2136. [PMID: 32608972 PMCID: PMC7497630 DOI: 10.1021/acschembio.0c00325] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/01/2020] [Indexed: 01/19/2023]
Abstract
Coibamide A (CbA) is a marine natural product with potent antiproliferative activity against human cancer cells and a unique selectivity profile. Despite promising antitumor activity, the mechanism of cytotoxicity and specific cellular target of CbA remain unknown. Here, we develop an optimized synthetic CbA photoaffinity probe (photo-CbA) and use it to demonstrate that CbA directly targets the Sec61α subunit of the Sec61 protein translocon. CbA binding to Sec61 results in broad substrate-nonselective inhibition of ER protein import and potent cytotoxicity against specific cancer cell lines. CbA targets a lumenal cavity of Sec61 that is partially shared with known Sec61 inhibitors, yet profiling against resistance conferring Sec61α mutations identified from human HCT116 cells suggests a distinct binding mode for CbA. Specifically, despite conferring strong resistance to all previously known Sec61 inhibitors, the Sec61α mutant R66I remains sensitive to CbA. A further unbiased screen for Sec61α resistance mutations identified the CbA-resistant mutation S71P, which confirms nonidentical binding sites for CbA and apratoxin A and supports the susceptibility of the Sec61 plug region for channel inhibition. Remarkably, CbA, apratoxin A, and ipomoeassin F do not display comparable patterns of potency and selectivity in the NCI60 panel of human cancer cell lines. Our work connecting CbA activity with selective prevention of secretory and membrane protein biogenesis by inhibition of Sec61 opens up possibilities for developing new Sec61 inhibitors with improved drug-like properties that are based on the coibamide pharmacophore.
Collapse
Affiliation(s)
- Dale Tranter
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Anja O. Paatero
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Shinsaku Kawaguchi
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Soheila Kazemi
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jeffrey D. Serrill
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Juho Kellosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Walter K. Vogel
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Uwe Richter
- Molecular
and Integrative Biosciences Research Programme, Faculty of Biological
and Environmental Sciences, University of
Helsinki, Helsinki, 00014, Finland
| | - Daphne R. Mattos
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Xuemei Wan
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Christopher C. Thornburg
- Frederick
National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Shinya Oishi
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kerry L. McPhail
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jane E. Ishmael
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | | |
Collapse
|
20
|
Subbaiah MAM, Ramar T, Subramani L, Desai SD, Sinha S, Mandlekar S, Jenkins SM, Krystal MR, Subramanian M, Sridhar S, Padmanabhan S, Bhutani P, Arla R, Kadow JF, Meanwell NA. (Carbonyl)oxyalkyl linker-based amino acid prodrugs of the HIV-1 protease inhibitor atazanavir that enhance oral bioavailability and plasma trough concentration. Eur J Med Chem 2020; 207:112749. [PMID: 33065417 DOI: 10.1016/j.ejmech.2020.112749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/11/2020] [Accepted: 07/31/2020] [Indexed: 01/06/2023]
Abstract
We describe the design, synthesis and pharmacokinetic (PK) evaluation of a series of amino acid-based prodrugs of the HIV-1 protease inhibitor atazanavir (1) derivatized on the pharmacophoric secondary alcohol using a (carbonyl)oxyalkyl linker. Prodrugs of 1 incorporating simple (carbonyl)oxyalkyl-based linkers and a primary amine in the promoiety were found to exhibit low chemical stability. However, chemical stability was improved by modifying the primary amine moiety to a tertiary amine, resulting in a 2-fold enhancement of exposure in rats following oral dosing compared to dosing of the parent drug 1. Further refinement of the linker resulted in the discovery of 22 as a prodrug that delivered the parent 1 to rat plasma with a 5-fold higher AUC and 67-fold higher C24 when compared to oral administration of the parent drug. The PK profile of 22 indicated that plasma levels of this prodrug were higher than that of the parent, providing a more sustained release of 1 in vivo.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry (Prodrug Group), Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India.
| | - Thangeswaran Ramar
- Department of Medicinal Chemistry (Prodrug Group), Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Lakshumanan Subramani
- Department of Medicinal Chemistry (Prodrug Group), Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Salil D Desai
- Department of Biopharmaceutics, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Sarmistha Sinha
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Sandhya Mandlekar
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Susan M Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Mark R Krystal
- Department of Virology, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, United States
| | - Murali Subramanian
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Srikanth Sridhar
- Department of Biopharmaceutics, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Shweta Padmanabhan
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Priyadeep Bhutani
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - Rambabu Arla
- Department of Pharmaceutical Candidate Optimization, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, 560099, India
| | - John F Kadow
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Development, PO Box 4000, Princeton, NJ, 08543-4000, United States
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Development, PO Box 4000, Princeton, NJ, 08543-4000, United States
| |
Collapse
|
21
|
Matulja D, Wittine K, Malatesti N, Laclef S, Turks M, Markovic MK, Ambrožić G, Marković D. Marine Natural Products with High Anticancer Activities. Curr Med Chem 2020; 27:1243-1307. [PMID: 31931690 DOI: 10.2174/0929867327666200113154115] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
This review covers recent literature from 2012-2019 concerning 170 marine natural products and their semisynthetic analogues with strong anticancer biological activities. Reports that shed light on cellular and molecular mechanisms and biological functions of these compounds, thus advancing the understanding in cancer biology are also included. Biosynthetic studies and total syntheses, which have provided access to derivatives and have contributed to the proper structure or stereochemistry elucidation or revision are mentioned. The natural compounds isolated from marine organisms are divided into nine groups, namely: alkaloids, sterols and steroids, glycosides, terpenes and terpenoids, macrolides, polypeptides, quinones, phenols and polyphenols, and miscellaneous products. An emphasis is placed on several drugs originating from marine natural products that have already been marketed or are currently in clinical trials.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Karlo Wittine
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Sylvain Laclef
- Laboratoire de Glycochimie, des Antimicrobiens et des Agro-ressources (LG2A), CNRS FRE 3517, 33 rue Saint-Leu, 80039 Amiens, France
| | - Maris Turks
- Faculty of Material Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1007, Latvia
| | - Maria Kolympadi Markovic
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Gabriela Ambrožić
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
22
|
Tan LT, Phyo MY. Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets. Molecules 2020; 25:E2197. [PMID: 32397127 PMCID: PMC7249205 DOI: 10.3390/molecules25092197] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prokaryotic filamentous marine cyanobacteria are photosynthetic microbes that are found in diverse marine habitats, ranging from epiphytic to endolithic communities. Their successful colonization in nature is largely attributed to genetic diversity as well as the production of ecologically important natural products. These cyanobacterial natural products are also a source of potential drug leads for the development of therapeutic agents used in the treatment of diseases, such as cancer, parasitic infections and inflammation. Major sources of these biomedically important natural compounds are found predominately from marine cyanobacterial orders Oscillatoriales, Nostocales, Chroococcales and Synechococcales. Moreover, technological advances in genomic and metabolomics approaches, such as mass spectrometry and NMR spectroscopy, revealed that marine cyanobacteria are a treasure trove of structurally unique natural products. The high potency of a number of natural products are due to their specific interference with validated drug targets, such as proteasomes, proteases, histone deacetylases, microtubules, actin filaments and membrane receptors/channels. In this review, the chemistry and biology of selected potent cyanobacterial compounds as well as their synthetic analogues are presented based on their molecular targets. These molecules are discussed to reflect current research trends in drug discovery from marine cyanobacterial natural products.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore;
| | | |
Collapse
|
23
|
Li Y, Yu HB, Zhang Y, Leao T, Glukhov E, Pierce ML, Zhang C, Kim H, Mao HH, Fang F, Cottrell GW, Murray TF, Gerwick L, Guan H, Gerwick WH. Pagoamide A, a Cyclic Depsipeptide Isolated from a Cultured Marine Chlorophyte, Derbesia sp., Using MS/MS-Based Molecular Networking. JOURNAL OF NATURAL PRODUCTS 2020; 83:617-625. [PMID: 31916778 PMCID: PMC7210564 DOI: 10.1021/acs.jnatprod.9b01019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A thiazole-containing cyclic depsipeptide with 11 amino acid residues, named pagoamide A (1), was isolated from laboratory cultures of a marine Chlorophyte, Derbesia sp. This green algal sample was collected from America Samoa, and pagoamide A was isolated using guidance by MS/MS-based molecular networking. Cultures were grown in a light- and temperature-controlled environment and harvested after several months of growth. The planar structure of pagoamide A (1) was characterized by detailed 1D and 2D NMR experiments along with MS and UV analysis. The absolute configurations of its amino acid residues were determined by advanced Marfey's analysis following chemical hydrolysis and hydrazinolysis reactions. Two of the residues in pagoamide A (1), phenylalanine and serine, each occurred twice in the molecule, once in the d- and once in the l-configuration. The biosynthetic origin of pagoamide A (1) was considered in light of other natural products investigations with coenocytic green algae.
Collapse
Affiliation(s)
- Yueying Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
- University of California, San Diego, La Jolla, California 92093, United States
| | - Hao-Bing Yu
- University of California, San Diego, La Jolla, California 92093, United States
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, People’s Republic of China
| | - Yi Zhang
- University of California, San Diego, La Jolla, California 92093, United States
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People’s Republic of China
| | - Tiago Leao
- University of California, San Diego, La Jolla, California 92093, United States
| | - Evgenia Glukhov
- University of California, San Diego, La Jolla, California 92093, United States
| | - Marsha L. Pierce
- Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska 68178, United States
| | - Chen Zhang
- University of California, San Diego, La Jolla, California 92093, United States
- Department of Computer Sciences and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Hyunwoo Kim
- University of California, San Diego, La Jolla, California 92093, United States
| | - Huanru Henry Mao
- Department of Computer Sciences and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Fang Fang
- University of California, San Diego, La Jolla, California 92093, United States
| | - Garrison W. Cottrell
- Department of Computer Sciences and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Thomas F. Murray
- Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska 68178, United States
| | - Lena Gerwick
- University of California, San Diego, La Jolla, California 92093, United States
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People’s Republic of China
| | - William H. Gerwick
- University of California, San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
24
|
Luesch H, Paavilainen VO. Natural products as modulators of eukaryotic protein secretion. Nat Prod Rep 2020; 37:717-736. [PMID: 32067014 DOI: 10.1039/c9np00066f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: up to the end of 2019Diverse natural product small molecules have allowed critical insights into processes that govern eukaryotic cells' ability to secrete cytosolically synthesized secretory proteins into their surroundings or to insert newly synthesized integral membrane proteins into the lipid bilayer of the endoplasmic reticulum. In addition, many components of the endoplasmic reticulum, required for protein homeostasis or other processes such as lipid metabolism or maintenance of calcium homeostasis, are being investigated for their potential in modulating human disease conditions such as cancer, neurodegenerative conditions and diabetes. In this review, we cover recent findings up to the end of 2019 on natural products that influence protein secretion or impact ER protein homeostasis, and serve as powerful chemical tools to understand protein flux through the mammalian secretory pathway and as leads for the discovery of new therapeutics.
Collapse
Affiliation(s)
- Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, P.O. Box 100485, Gainesville, Florida 32610, USA.
| | | |
Collapse
|
25
|
Jing X, Jin K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med Res Rev 2019; 40:753-810. [PMID: 31599007 DOI: 10.1002/med.21639] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
As a versatile therapeutic modality, peptides attract much attention because of their great binding affinity, low toxicity, and the capability of targeting traditionally "undruggable" protein surfaces. However, the deficiency of cell permeability and metabolic stability always limits the success of in vitro bioactive peptides as drug candidates. Peptide macrocyclization is one of the most established strategies to overcome these limitations. Over the past decades, more than 40 cyclic peptide drugs have been clinically approved, the vast majority of which are derived from natural products. The de novo discovered cyclic peptides on the basis of rational design and in vitro evolution, have also enabled the binding with targets for which nature provides no solutions. The current review summarizes different classes of cyclic peptides with diverse biological activities, and presents an overview of various approaches to develop cyclic peptide-based drug candidates, drawing upon series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kang Jin
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
26
|
Barzkar N, Tamadoni Jahromi S, Poorsaheli HB, Vianello F. Metabolites from Marine Microorganisms, Micro, and Macroalgae: Immense Scope for Pharmacology. Mar Drugs 2019; 17:E464. [PMID: 31398953 PMCID: PMC6723029 DOI: 10.3390/md17080464] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/21/2022] Open
Abstract
Marine organisms produce a large array of natural products with relevance in drug discovery. These compounds have biological activities such as antioxidant, antibacterial, antitumor, antivirus, anticoagulant, anti-inflammatory, antihypertensive, antidiabetic, and so forth. Consequently, several of the metabolites have made it to the advanced stages of clinical trials, and a few of them are commercially available. In this review, novel information on natural products isolated from marine microorganisms, microalgae, and macroalgae are presented. Given due research impetus, these marine metabolites might emerge as a new wave of promising drugs.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 74576, Iran.
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 93165, Iran.
| | - Hadi Bolooki Poorsaheli
- Road, Housing & Urban Development Research Center (BHRC), Persian Gulf Branch, Bandar Abbas 93144, Iran
- Department of Engineering, Islamic Azad University, Bandar Abbas 1696, Iran
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| |
Collapse
|
27
|
McAlpine JB, Chen SN, Kutateladze A, MacMillan JB, Appendino G, Barison A, Beniddir MA, Biavatti MW, Bluml S, Boufridi A, Butler MS, Capon RJ, Choi YH, Coppage D, Crews P, Crimmins MT, Csete M, Dewapriya P, Egan JM, Garson MJ, Genta-Jouve G, Gerwick WH, Gross H, Harper MK, Hermanto P, Hook JM, Hunter L, Jeannerat D, Ji NY, Johnson TA, Kingston DGI, Koshino H, Lee HW, Lewin G, Li J, Linington RG, Liu M, McPhail KL, Molinski TF, Moore BS, Nam JW, Neupane RP, Niemitz M, Nuzillard JM, Oberlies NH, Ocampos FMM, Pan G, Quinn RJ, Reddy DS, Renault JH, Rivera-Chávez J, Robien W, Saunders CM, Schmidt TJ, Seger C, Shen B, Steinbeck C, Stuppner H, Sturm S, Taglialatela-Scafati O, Tantillo DJ, Verpoorte R, Wang BG, Williams CM, Williams PG, Wist J, Yue JM, Zhang C, Xu Z, Simmler C, Lankin DC, Bisson J, Pauli GF. The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Nat Prod Rep 2019; 36:35-107. [PMID: 30003207 PMCID: PMC6350634 DOI: 10.1039/c7np00064b] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 12/20/2022]
Abstract
Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.
Collapse
Affiliation(s)
- James B McAlpine
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Shao-Nong Chen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Andrei Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - John B MacMillan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Giovanni Appendino
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Universita` del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | | | - Mehdi A Beniddir
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Maique W Biavatti
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Stefan Bluml
- University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Asmaa Boufridi
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Young H Choi
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - David Coppage
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Michael T Crimmins
- Kenan and Caudill Laboratories of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marie Csete
- University of Southern California, Huntington Medical Research Institutes, 99 N. El Molino Ave., Pasadena, CA 91101, USA
| | - Pradeep Dewapriya
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Joseph M Egan
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Mary J Garson
- School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Grégory Genta-Jouve
- C-TAC, UMR 8638 CNRS, Faculté de Pharmacie de Paris, Paris-Descartes University, Sorbonne, Paris Cité, 4, Aveue de l'Observatoire, 75006 Paris, France
| | - William H Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Harald Gross
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Precilia Hermanto
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luke Hunter
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Damien Jeannerat
- University of Geneva, Department of Organic Chemistry, 30 quai E. Ansermet, CH 1211 Geneva 4, Switzerland
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China
| | - Tyler A Johnson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - David G I Kingston
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Guy Lewin
- Équipe "Pharmacognosie-Chimie des Substances Naturelles" BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Jie Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Tadeusz F Molinski
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Bradley S Moore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA and Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Joo-Won Nam
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ram P Neupane
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Matthias Niemitz
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Jean-Marc Nuzillard
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Nicholas H Oberlies
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | | | - Guohui Pan
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - D Sai Reddy
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Jean-Hugues Renault
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - José Rivera-Chávez
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Wolfgang Robien
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Carla M Saunders
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Thomas J Schmidt
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Christoph Seger
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Ben Shen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Christoph Steinbeck
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Hermann Stuppner
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Sonja Sturm
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Orazio Taglialatela-Scafati
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Dean J Tantillo
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Robert Verpoorte
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bin-Gui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China and Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Craig M Williams
- School of Chemistry and Molecular Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Philip G Williams
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Julien Wist
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Jian-Min Yue
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Chen Zhang
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Zhengren Xu
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. , and
| | - Charlotte Simmler
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - David C Lankin
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Jonathan Bisson
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| | - Guido F Pauli
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA. ,
| |
Collapse
|
28
|
Yao G, Wang W, Ao L, Cheng Z, Wu C, Pan Z, Liu K, Li H, Su W, Fang L. Improved Total Synthesis and Biological Evaluation of Coibamide A Analogues. J Med Chem 2018; 61:8908-8916. [PMID: 30247036 DOI: 10.1021/acs.jmedchem.8b01141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To enable the large-scale synthesis of coibamide A, we developed an improved synthetic strategy for this class of cyclodepsipeptide. The versatility of the synthetic procedure was demonstrated by the preparation of a series of designed coibamide A analogues, which enabled the preliminary structure-activity relationship (SAR) studies for this compound. Although most modifications of coibamide A resulted in decrease or loss of the antiproliferativity, we found that versatile substitution at position 3 was well tolerated. Remarkably, a simplified analogue, [MeAla3-MeAla6]-coibamide (1f), not only showed nearly the same inhibition as coibamide A against the tested cancer cells but also significantly inhibited tumor growth in vivo. The improved synthetic strategy and the relevant trends of SAR disclosed in this study will be valuable for further optimization of the overall profile of coibamide A.
Collapse
Affiliation(s)
- Guiyang Yao
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong 518055 , China
| | - Wei Wang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong 518055 , China
| | - Lijiao Ao
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong 518055 , China.,Shenzhen College of Advanced Technology , University of Chinese Academy of Sciences , Shenzhen , Guangdong 518055 , China
| | - Zhehong Cheng
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong 518055 , China.,Shenzhen College of Advanced Technology , University of Chinese Academy of Sciences , Shenzhen , Guangdong 518055 , China
| | - Chunlei Wu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong 518055 , China
| | - Zhengyin Pan
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong 518055 , China
| | - Ke Liu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong 518055 , China
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong 518055 , China
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong 518055 , China
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , Guangdong 518055 , China
| |
Collapse
|
29
|
Anantoju KK, Maringanti TC, Syed Mohd. B. Total synthesis of modified pentapeptide, caldoramide. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Fu D, Rao X, Xu J, Tanabe G, Muraoka O, Wu X, Xie W. First total synthesis of cyclic pentadepsipeptides Hikiamides A–C. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Sharma A, Kumar A, Abdel Monaim SAH, Jad YE, El-Faham A, de la Torre BG, Albericio F. N-methylation in amino acids and peptides: Scope and limitations. Biopolymers 2018. [PMID: 29528112 DOI: 10.1002/bip.23110] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Active pharmaceutical ingredients (APIs) can be divided into two types, namely chemical and biological entities. Traditionally, the former has been associated with the so-called small molecules. The revival of peptides in pharmaceutical industry results from their importance in many biological roles. However, low metabolic stability and the lack of oral availability of most peptides is the main drawback for peptide to fulfill that paradigmatic situation. In this regard, efforts are being channeled into addressing this issue by introducing restrictions into the flexible peptide backbone, mainly through N-methyl amino acids (NMAAs) or development of small cyclic peptides. In many cases, both the above restrictions are combined with the aim to enhance oral availability. The synthesis of NMAAs is complex and their introduction into the peptide chain brings additional synthetic challenges and also sometimes leads to side-reactions. Here we discuss the most efficient methods for the synthesis of NMAAs (either in solution or in solid phase) and also their introduction into peptide sequences. Special attention is also given to the detection of side reactions and the most efficient way to prevent them.
Collapse
Affiliation(s)
- Anamika Sharma
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Ashish Kumar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Shimaa A H Abdel Monaim
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Yahya E Jad
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, Alexandria, 21321, Egypt
| | - Beatriz G de la Torre
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,KRISP, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Fernando Albericio
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, Barcelona, 08028, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, Barcelona, 08028, Spain
| |
Collapse
|
32
|
Hur J, Jang J, Sim J, Son WS, Ahn HC, Kim TS, Shin YH, Lim C, Lee S, An H, Kim SH, Oh DC, Jo EK, Jang J, Lee J, Suh YG. Conformation-Enabled Total Syntheses of Ohmyungsamycins A and B and Structural Revision of Ohmyungsamycin B. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Joonseong Hur
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Jaebong Jang
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Jaehoon Sim
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- College of Pharmacy; CHA University; 120 Haeryong-ro Pocheon Gyeonggi-do 11160 Republic of Korea
| | - Woo Sung Son
- College of Pharmacy; CHA University; 120 Haeryong-ro Pocheon Gyeonggi-do 11160 Republic of Korea
| | - Hee-Chul Ahn
- Department of Pharmacy; Dongguk University; Dongguk-ro 32 Ilsandong-gu, Goyang Geonggi-do 10326 Republic of Korea
| | - Tae Sung Kim
- Department of Microbiology; Chungnam National University School of Medicine; Munhwa-ro 266 Jungku Daejeon 35015 Republic of Korea
| | - Yern-Hyerk Shin
- Natural Products Research Institute; College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Changjin Lim
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- College of Pharmacy; CHA University; 120 Haeryong-ro Pocheon Gyeonggi-do 11160 Republic of Korea
| | - Seungbeom Lee
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Hongchan An
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy; CHA University; 120 Haeryong-ro Pocheon Gyeonggi-do 11160 Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute; College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology; Chungnam National University School of Medicine; Munhwa-ro 266 Jungku Daejeon 35015 Republic of Korea
| | - Jichan Jang
- Division of Applied Life Science; Research Institute of Life Science; Gyeongsang National University; Jinju 52828 Republic of Korea
| | - Jeeyeon Lee
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Republic of Korea
- College of Pharmacy; CHA University; 120 Haeryong-ro Pocheon Gyeonggi-do 11160 Republic of Korea
| |
Collapse
|
33
|
Hur J, Jang J, Sim J, Son WS, Ahn HC, Kim TS, Shin YH, Lim C, Lee S, An H, Kim SH, Oh DC, Jo EK, Jang J, Lee J, Suh YG. Conformation-Enabled Total Syntheses of Ohmyungsamycins A and B and Structural Revision of Ohmyungsamycin B. Angew Chem Int Ed Engl 2018; 57:3069-3073. [PMID: 29380472 DOI: 10.1002/anie.201711286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/28/2017] [Indexed: 01/06/2023]
Abstract
The first total syntheses of the bioactive cyclodepsipeptides ohmyungsamycin A and B are described. Key features of our synthesis include the concise preparation of a linear cyclization precursor that consists of N-methyl amides and non-proteinogenic amino acids, and its macrolactamization from a bent conformation. The proposed structure of ohmyungsamycin B was revised based on its synthesis. The cyclic core of the ohmyungsamycins was shown to be responsible for the excellent antituberculosis activity, and ohmyungsamycin variants with truncated chains were evaluated for their biological activity.
Collapse
Affiliation(s)
- Joonseong Hur
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jaebong Jang
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jaehoon Sim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Woo Sung Son
- College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Hee-Chul Ahn
- Department of Pharmacy, Dongguk University, Dongguk-ro 32, Ilsandong-gu, Goyang, Geonggi-do, 10326, Republic of Korea
| | - Tae Sung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Munhwa-ro 266, Jungku, Daejeon, 35015, Republic of Korea
| | - Yern-Hyerk Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Changjin Lim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Seungbeom Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hongchan An
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Munhwa-ro 266, Jungku, Daejeon, 35015, Republic of Korea
| | - Jichan Jang
- Division of Applied Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jeeyeon Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| |
Collapse
|
34
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
35
|
Pan Z, Wu C, Wang W, Cheng Z, Yao G, Liu K, Li H, Fang L, Su W. Total Synthesis and Stereochemical Assignment of Gymnopeptides A and B. Org Lett 2017; 19:4420-4423. [PMID: 28799768 DOI: 10.1021/acs.orglett.7b01742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gymnopeptides A and B are unprecedented highly N-methylated cyclic β-hairpin octadecapeptides with striking antiproliferative activities isolated from the mushroom Gymnopus fusipes. Using Fmoc-based solid-phase peptide synthesis, followed by macrolactamization of the resulting linear peptides, the first total synthesis of gymnopeptides A and B was successfully achieved in this study. The coupling methods used for the solid-phase synthesis and the cyclization were optimized, and the configuration of the Ser1/Thr1 residue in gymnopeptide A/B was determined to be l.
Collapse
Affiliation(s)
- Zhengyin Pan
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen, Guangdong 518055, P. R. China
| | - Chunlei Wu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen, Guangdong 518055, P. R. China
| | - Wei Wang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen, Guangdong 518055, P. R. China
| | - Zhehong Cheng
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen, Guangdong 518055, P. R. China
| | - Guiyang Yao
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen, Guangdong 518055, P. R. China
| | - Ke Liu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen, Guangdong 518055, P. R. China
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen, Guangdong 518055, P. R. China
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen, Guangdong 518055, P. R. China
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
36
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
37
|
New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade. Mar Drugs 2017; 15:md15050132. [PMID: 28475149 PMCID: PMC5450538 DOI: 10.3390/md15050132] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/28/2022] Open
Abstract
Marine cyanobacteria are significant sources of structurally diverse marine natural products with broad biological activities. In the past 10 years, excellent progress has been made in the discovery of marine cyanobacteria-derived peptides with diverse chemical structures. Most of these peptides exhibit strong pharmacological activities, such as neurotoxicity and cytotoxicity. In the present review, we summarized peptides isolated from marine cyanobacteria since 2007.
Collapse
|
38
|
Abstract
Total synthesis of nannocystin Ax has been accomplished concisely. The key elements in this total synthesis feature Kobayashi's remote asymmetric induction with vinylketene silyl N,O-acetal, Roush's asymmetric crotylboration of aldehyde, Mitsunobu's esterification and macrocyclization via Stille cross-coupling.
Collapse
Affiliation(s)
- Yan-Hui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Rong Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
39
|
Wu C, Pan Z, Yao G, Wang W, Fang L, Su W. Synthesis and structure–activity relationship studies of teixobactin analogues. RSC Adv 2017. [DOI: 10.1039/c6ra26567g] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new series of teixobactin analogues were prepared using a convenient synthetic strategy and their antibacterial activities were evaluated.
Collapse
Affiliation(s)
- Chunlei Wu
- Guangdong Key Laboratory of Nanomedicine
- Institute of Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Zhengyin Pan
- Guangdong Key Laboratory of Nanomedicine
- Institute of Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Guiyang Yao
- Guangdong Key Laboratory of Nanomedicine
- Institute of Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Wei Wang
- Guangdong Key Laboratory of Nanomedicine
- Institute of Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine
- Institute of Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine
- Institute of Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen 518055
| |
Collapse
|
40
|
Kaneda M, Sueyoshi K, Teruya T, Ohno H, Fujii N, Oishi S. Total synthesis of odoamide, a novel cyclic depsipeptide, from an Okinawan marine cyanobacterium. Org Biomol Chem 2016; 14:9093-9104. [DOI: 10.1039/c6ob01583b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Odoamide, a highly potent cytotoxic cyclic depsipeptide was synthesized.
Collapse
Affiliation(s)
- Masato Kaneda
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Sakyo-ku
- Japan
| | | | | | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Sakyo-ku
- Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Sakyo-ku
- Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Sakyo-ku
- Japan
| |
Collapse
|
41
|
Snyder KM, Sikorska J, Ye T, Fang L, Su W, Carter RG, McPhail KL, Cheong PHY. Towards theory driven structure elucidation of complex natural products: mandelalides and coibamide A. Org Biomol Chem 2016; 14:5826-31. [DOI: 10.1039/c6ob00707d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effectiveness of computational tools in determining relative configurations of complex molecules is investigated, using natural products mandelalides A–D and coibamide A, towards a generalized recipe for the scientific community at large.
Collapse
Affiliation(s)
| | - Justyna Sikorska
- Department of Pharmaceutical Sciences
- Oregon State University
- Corvallis
- USA
| | - Tao Ye
- Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine
- Institute of Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine
- Institute of Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen
| | - Rich G. Carter
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences
- Oregon State University
- Corvallis
- USA
| | | |
Collapse
|
42
|
Serrill JD, Wan X, Hau AM, Jang HS, Coleman DJ, Indra AK, Alani AWG, McPhail KL, Ishmael JE. Coibamide A, a natural lariat depsipeptide, inhibits VEGFA/VEGFR2 expression and suppresses tumor growth in glioblastoma xenografts. Invest New Drugs 2015; 34:24-40. [PMID: 26563191 DOI: 10.1007/s10637-015-0303-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/05/2015] [Indexed: 11/24/2022]
Abstract
Coibamide A is a cytotoxic lariat depsipeptide isolated from a rare cyanobacterium found within the marine reserve of Coiba National Park, Panama. Earlier testing of coibamide A in the National Cancer Institute in vitro 60 human tumor cell line panel (NCI-60) revealed potent anti-proliferative activity and a unique selectivity profile, potentially reflecting a new target or mechanism of action. In the present study we evaluated the antitumor activity of coibamide A in several functional cell-based assays and in vivo. U87-MG and SF-295 glioblastoma cells showed reduced migratory and invasive capacity and underwent G1 cell cycle arrest as, likely indirect, consequences of treatment. Coibamide A inhibited extracellular VEGFA secreted from U87-MG glioblastoma and MDA-MB-231 breast cancer cells with low nM potency, attenuated proliferation and migration of normal human umbilical vein endothelial cells (HUVECs) and selectively decreased expression of vascular endothelial growth factor receptor 2 (VEGFR2). We report that coibamide A retains potent antitumor properties in a nude mouse xenograft model of glioblastoma; established subcutaneous U87-MG tumors failed to grow for up to 28 days in response to 0.3 mg/Kg doses of coibamide A. However, the natural product was also associated with varied patterns of weight loss and thus targeted delivery and/or medicinal chemistry approaches will almost certainly be required to improve the toxicity profile of this unusual macrocycle. Finally, similarities between coibamide A- and apratoxin A-induced changes in cell morphology, decreases in VEGFR2 expression and macroautophagy signaling in HUVECs raise the possibility that both cyanobacterial natural products share a common mechanism of action.
Collapse
Affiliation(s)
- Jeffrey D Serrill
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Xuemei Wan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Andrew M Hau
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Hyo Sang Jang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Daniel J Coleman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Jane E Ishmael
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|