1
|
Barlow SR, Halcovitch NR, Akien GR, Coote SC, Evans NH. Cubane-1,3-dicarboxamides as structural isosteres for isophthalamides in hydrogen bond templated interlocked molecules. Chem Commun (Camb) 2024; 60:11532-11535. [PMID: 39310982 DOI: 10.1039/d4cc01859a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The synthesis and characterization of the first examples of cubane containing interlocked molecules are reported. Catenanes and rotaxanes have been prepared by hydrogen bond templation with cubane-1,3-dicarboxamides replacing isophthalamide motifs.
Collapse
Affiliation(s)
- Sean R Barlow
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | | | - Geoffrey R Akien
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Susannah C Coote
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Nicholas H Evans
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
2
|
Liu Z. Life should be redefined: Any molecule with the ability to self-replicate should be considered life. F1000Res 2024; 13:736. [PMID: 39399163 PMCID: PMC11467646 DOI: 10.12688/f1000research.151912.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Understanding the nature of life and its propensity for reproduction has long been a question that humans aspire to answer. Reproduction, a defining characteristic of life, fundamentally involves the replication of genetic material, be it DNA or RNA. The driving force behind this replication process has always intrigued scientists. In recent years, theories involving selfish genes, the RNA world, and entropic forces have been proposed by some scholars. These theories seem to suggest that life, as we know it, exists solely in Earth's environment and is based on a single type of genetic material, either DNA or RNA. However, if we broaden our definition of life to include any replicable molecules, we might be able to transcend traditional thought. This could potentially enhance our understanding of the impetus behind DNA replication and provide deeper insights into the essence of life.
Collapse
Affiliation(s)
- Zheng Liu
- College of Laboratory Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
3
|
Ams MR, McAuliffe JR, Semenick RS, Zeller M. Self-Replication Without Hydrogen-Bonds: An Exobiotic Design. Chemistry 2024; 30:e202401446. [PMID: 38958604 DOI: 10.1002/chem.202401446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Life on Earth uses DNA as the central template for self-replication, genetic encoding, and information transfer. However, there are no physical laws precluding life's existence elsewhere in space, and alternative life forms may not need DNA. In the search for exobiology, knowing what to look for as a biosignature remains a challenge - especially if it is not from the obvious list of biologic building blocks. Clues from chemicals recently discovered on Mars and in the Taurus Molecular Cloud 1 (TMC-1), show that intriguing organic compounds exist beyond Earth, which could provide a starting point for unconventional exobiotic designs. Here we present a new potential self-replicating system with structural similarities to recently discovered compounds on Mars and TMC-1. Rather than using DNA's hydrogen-bonding motif for reliable base-paring, our design employs sulfur-nitrogen interactions to selectively template unique benzothiadiazole units in sequence. We synthesized and studied two versions of this system, one reversible and the other irreversible, and found experimental evidence of self-replication in d-chloroform solvent. These results are part of a larger pursuit in our lab for developing a basis for a potential exobiological system using starting blocks closely related to these cosmic compounds.
Collapse
Affiliation(s)
- Mark R Ams
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM, 87801, USA
| | - Joseph R McAuliffe
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville, PA, 16335, USA
| | - Raina S Semenick
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville, PA, 16335, USA
| | - Matt Zeller
- X-ray Crystallography, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
4
|
Komáromy D, Monzón DM, Marić I, Monreal Santiago G, Ottelé J, Altay M, Schaeffer G, Otto S. Generalist versus Specialist Self-Replicators. Chemistry 2024; 30:e202303837. [PMID: 38294075 DOI: 10.1002/chem.202303837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Darwinian evolution, including the selection of the fittest species under given environmental conditions, is a major milestone in the development of synthetic living systems. In this regard, generalist or specialist behavior (the ability to replicate in a broader or narrower, more specific food environment) are of importance. Here we demonstrate generalist and specialist behavior in dynamic combinatorial libraries composed of a peptide-based and an oligo(ethylene glycol) based building block. Three different sets of macrocyclic replicators could be distinguished based on their supramolecular organization: two prepared from a single building block as well as one prepared from an equimolar mixture of them. Peptide-containing hexamer replicators were found to be generalists, i. e. they could replicate in a broad range of food niches, whereas the octamer peptide-based replicator and hexameric ethyleneoxide-based replicator were proven to be specialists, i. e. they only replicate in very specific food niches that correspond to their composition. However, sequence specificity cannot be demonstrated for either of the generalist replicators. The generalist versus specialist nature of these replicators was linked to their supramolecular organization. Assembly modes that accommodate structurally different building blocks lead to generalist replicators, while assembly modes that are more restrictive yield specialist replicators.
Collapse
Affiliation(s)
- Dávid Komáromy
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Diego M Monzón
- Instituto de Bio-Orgánica "Antonio González" (IUBO-AG), Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, 38206, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Ivana Marić
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Guillermo Monreal Santiago
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jim Ottelé
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Meniz Altay
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Gaël Schaeffer
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Sijbren Otto
- University of Groningen, Centre for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
5
|
Lago-Silva M, Fernández-Míguez M, Rodríguez R, Quiñoá E, Freire F. Stimuli-responsive synthetic helical polymers. Chem Soc Rev 2024; 53:793-852. [PMID: 38105704 DOI: 10.1039/d3cs00952a] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Synthetic dynamic helical polymers (supramolecular and covalent) and foldamers share the helix as a structural motif. Although the materials are different, these systems also share many structural properties, such as helix induction or conformational communication mechanisms. The introduction of stimuli responsive building blocks or monomer repeating units in these materials triggers conformational or structural changes, due to the presence/absence of the external stimulus, which are transmitted to the helix resulting in different effects, such as assymetry amplification, helix inversion or even changes in the helical scaffold (elongation, J/H helical aggregates). In this review, we show through selected examples how different stimuli (e.g., temperature, solvents, cations, anions, redox, chiral additives, pH or light) can alter the helical structures of dynamic helical polymers (covalent and supramolecular) and foldamers acting on the conformational composition or molecular structure of their components, which is also transmitted to the macromolecular helical structure.
Collapse
Affiliation(s)
- María Lago-Silva
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rafael Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Morris DTJ, Clayden J. Screw sense and screw sensibility: communicating information by conformational switching in helical oligomers. Chem Soc Rev 2023; 52:2480-2496. [PMID: 36928473 PMCID: PMC10068589 DOI: 10.1039/d2cs00982j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 03/18/2023]
Abstract
Biological systems have evolved a number of different strategies to communicate information on the molecular scale. Among these, the propagation of conformational change is among the most important, being the means by which G-protein coupled receptors (GPCRs) use extracellular signals to modulate intracellular processes, and the way that opsin proteins translate light signals into nerve impulses. The developing field of foldamer chemistry has allowed chemists to employ conformationally well-defined synthetic structures likewise to mediate information transfer, making use of mechanisms that are not found in biological contexts. In this review, we discuss the use of switchable screw-sense preference as a communication mechanism. We discuss the requirements for functional communication devices, and show how dynamic helical foldamers derived from the achiral monomers such as α-aminoisobutyric acid (Aib) and meso-cyclohexane-1,2-diamine fulfil them by communicating information in the form of switchable screw-sense preference. We describe the various stimuli that can be used to switch screw sense, and explore the way that propagation of the resulting conformational preference in a well-defined helical molecule allows screw sense to control chemical events remote from a source of information. We describe the operation of these conformational switches in the membrane phase, and outline the progress that has been made towards using conformational switching to communicate between the exterior and interior of a phospholipid vesicle.
Collapse
Affiliation(s)
- David T J Morris
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
7
|
Xia X, Zhang S, He X, Zheng F, Lu Q. Molecular necklace strategy for enhancing modulus and toughness of colorless transparent polyimides for cover window application. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Sevim İ. Design of Subreplicating Systems from an Existing Self-Replicating Diels-Alder Reaction System by Isosteric Replacement. J Org Chem 2021; 86:14964-14973. [PMID: 34633828 DOI: 10.1021/acs.joc.1c01695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The key feature of non-enzymatic self-replicating systems is the formation of catalytically active ternary complexes in which product templates direct precursors into spatial proximity to allow the formation of new covalent bonds. It is possible to create new replicating species by simply evaluating the ternary active complex of an existing replicating system and applying proper isosteric replacements. In this study, we have evaluated the formerly reported self-replicating Diels-Alder reaction having 61 and 33% selectivity for two diastereomeric replicators. An isosteric replacement on the spacer part connecting recognition and reactive sites of the maleimide component was applied by considering the symmetry of catalytically active ternary complexes, and it was shown that self-replication was conserved. Analysis of the new system showed 77 and 21% diastereoselectivity for the two new replicating species. Seeding experiments indicated autocatalytic activity of both replicators. In other words, both replicators compete with each other by catalyzing their own formation from the same reagent source. Another modification was applied by aiming selective blocking of the autocatalytic cycle of the competing diastereomer. The new system showed a diastereoselectivity of about 94% for the favored replicator. The kinetic data of both systems were analyzed by modeling with SimFit simulations.
Collapse
Affiliation(s)
- İlhan Sevim
- Lehrstuhl für Organische Chemie I, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| |
Collapse
|
9
|
Sandoval-Torrientes R, Carr T, De Bo G. A Mechanochromic Hydrogen-Bonded Rotaxane. Macromol Rapid Commun 2020; 42:e2000447. [PMID: 33043523 DOI: 10.1002/marc.202000447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Indexed: 01/08/2023]
Abstract
Tensile forces influence a variety of important biological processes and force sensors are required to study these processes in vivo. Current force sensors are often tailor-made for a specific application, or activate at much higher forces than those observed at the cellular or tissue level. A versatile force sensor, with tunable mechanical and optical properties, activated at low pN forces will be ideal. In this communication, a new mechanoresponsive fluorescent hydrogen-bonded rotaxane, built around a maleimide dye, is reported. Its force-sensing properties are demonstrated in a polyacrylamide gel, a synthetic model of living tissue.
Collapse
Affiliation(s)
| | - ThomasR Carr
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Guillaume De Bo
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
10
|
Sevim İ, Pankau WM, von Kiedrowski G. Re-Evaluation of a Fulvene-Based Self-Replicating Diels-Alder Reaction System. Chemistry 2020; 26:9032-9035. [PMID: 32638430 DOI: 10.1002/chem.201905594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/04/2020] [Indexed: 11/06/2022]
Abstract
We re-evaluate our claim of a high diastereoselectivity in the self-relicating Diels-Alder reaction between maleimide 1 and fulvene 3. It was shown that the system has a diastereoselectivity of 1.8:1 for NN-4:NX-4, which is contrary to the 16:1 ratio claimed by Dieckmann et al. The analysis of 1 H NMR monitoring of the reaction revealed that both replicators show sigmoidal growth which is typical for auto-catalytic systems.
Collapse
Affiliation(s)
- İlhan Sevim
- Lehrstuhl für Organische Chemie I, Bioorganische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Wolf Matthias Pankau
- Lehrstuhl für Organische Chemie I, Bioorganische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Günter von Kiedrowski
- Lehrstuhl für Organische Chemie I, Bioorganische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| |
Collapse
|
11
|
Young MJ, Akien GR, Evans NH. An amide hydrogen bond templated [1]rotaxane displaying a peptide motif - demonstrating an expedient route to synthetic mimics of lasso peptides. Org Biomol Chem 2020; 18:5203-5209. [PMID: 32597913 DOI: 10.1039/d0ob01190h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rapid synthesis of an amide hydrogen bond templated [1]rotaxane is reported - demonstrating a potential pathway to synthetic analogues of lasso peptides. The structures of the [1]rotaxane and its unthreaded isomer have been characterized by NMR spectroscopy and modelled using DFT calculations.
Collapse
Affiliation(s)
- Matthew J Young
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Geoffrey R Akien
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Nicholas H Evans
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
12
|
Robertson CC, Kosikova T, Philp D. Encoding Multiple Reactivity Modes within a Single Synthetic Replicator. J Am Chem Soc 2020; 142:11139-11152. [PMID: 32414236 DOI: 10.1021/jacs.0c03527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Establishing programmable and self-sustaining replication networks in pools of chemical reagents is a key challenge in systems chemistry. Self-replicating templates are formed from two constituent components with complementary recognition and reactive sites via a slow bimolecular pathway and a fast template-directed pathway. Here, we re-engineer one of the components of a synthetic replicator to encode an additional recognition function, permitting the assembly of a binary complex between the components that mediates replicator formation through a template-independent pathway, which achieves maximum rate acceleration at early time points in the replication process. The complementarity between recognition sites creates a key conformational equilibrium between the catalytically inert product, formed via the template-independent pathway, and the catalytically active replicator that mediates the template-directed pathway. Consequently, the rapid formation of the catalytically inert isomer kick-starts replication through the template-directed pathway. Through kinetic analyses, we demonstrate that the presence of the two recognition-mediated reactivity modes results in enhanced template formation in comparison to that of systems capable of exploiting only a single recognition-mediated pathway. Finally, kinetic simulations reveal that the conformational equilibrium and both the relative and absolute efficiencies of the recognition-mediated pathways affect the extent to which self-replicating systems can benefit from this additional template-independent reactivity mode. These results allow us to formulate the rules that govern the coupling of replication processes to alternative recognition-mediated reactivity modes. The interplay between template-directed and template-independent pathways for replicator formation has significant relevance to ongoing efforts to design programmable and adaptable replicator networks.
Collapse
Affiliation(s)
- Craig C Robertson
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| | - Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Douglas Philp
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
13
|
Tian C, Fielden SDP, Whitehead GFS, Vitorica-Yrezabal IJ, Leigh DA. Weak functional group interactions revealed through metal-free active template rotaxane synthesis. Nat Commun 2020; 11:744. [PMID: 32029725 PMCID: PMC7005292 DOI: 10.1038/s41467-020-14576-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/08/2020] [Indexed: 11/24/2022] Open
Abstract
Modest functional group interactions can play important roles in molecular recognition, catalysis and self-assembly. However, weakly associated binding motifs are often difficult to characterize. Here, we report on the metal-free active template synthesis of [2]rotaxanes in one step, up to 95% yield and >100:1 rotaxane:axle selectivity, from primary amines, crown ethers and a range of C=O, C=S, S(=O)2 and P=O electrophiles. In addition to being a simple and effective route to a broad range of rotaxanes, the strategy enables 1:1 interactions of crown ethers with various functional groups to be characterized in solution and the solid state, several of which are too weak - or are disfavored compared to other binding modes - to be observed in typical host-guest complexes. The approach may be broadly applicable to the kinetic stabilization and characterization of other weak functional group interactions.
Collapse
Affiliation(s)
- Chong Tian
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | | | | | | | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
14
|
Template-Free Synthesis of a Phenanthroline-Containing [2]Rotaxane: A Reversible pH-Controllable Molecular Switch. Symmetry (Basel) 2019. [DOI: 10.3390/sym11091137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The synthesis of symmetric and asymmetric rotaxanes consisting of neutral axle and ring components without ionic templates is necessary for applications in molecular sensors and molecular switches. A phenanthroline-containing symmetric [2]rotaxane was newly synthesized by inducing hydrogen bonding and π-interaction using a template-free threading-followed-by-stoppering method. The obtained rotaxane serves as a reversible pH-controllable molecular switch.
Collapse
|
15
|
Huck J, Kosikova T, Philp D. Compositional Persistence in a Multicyclic Network of Synthetic Replicators. J Am Chem Soc 2019; 141:13905-13913. [PMID: 31403776 DOI: 10.1021/jacs.9b06697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The emergence of collections of simple chemical entities that create self-sustaining reaction networks, embedding replication and catalysis, is cited as a potential mechanism for the appearance on the early Earth of systems that satisfy minimal definitions of life. In this work, a functional reaction network that creates and maintains a set of privileged replicator structures through auto- and cross-catalyzed reaction cycles is created from the pairwise combinations of four reagents. We show that the addition of individual preformed templates to this network, representing instructions to synthesize a specific replicator, induces changes in the output composition of the system that represent a network-level response. Further, we establish through sets of serial transfer experiments that the catalytic connections that exist between the four replicators in this network and the system-level behavior thereby encoded impose limits on the compositional variability that can be induced by repeated exposure to instructional inputs, in the form of preformed templates, to the system. The origin of this persistence is traced through kinetic simulations to the properties and inter-relationships between the critical ternary complexes formed by the auto- and crosscatalytic templates. These results demonstrate that in an environment where there is no continuous selection pressure the network connectivity, described by the catalytic relationships and system-level interactions between the replicators, is persistent, thereby limiting the ability of this network to adapt and evolve.
Collapse
Affiliation(s)
- Jürgen Huck
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , Fife KY16 9ST , U.K
| | - Tamara Kosikova
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , Fife KY16 9ST , U.K
| | - Douglas Philp
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , Fife KY16 9ST , U.K
| |
Collapse
|
16
|
Le Vay K, Weise LI, Libicher K, Mascarenhas J, Mutschler H. Templated Self‐Replication in Biomimetic Systems. ACTA ACUST UNITED AC 2019; 3:e1800313. [DOI: 10.1002/adbi.201800313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/06/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Kristian Le Vay
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Laura Isabel Weise
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Kai Libicher
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Judita Mascarenhas
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial Microbiology Marburg Germany
| | - Hannes Mutschler
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| |
Collapse
|
17
|
Evans NH. Recent Advances in the Synthesis and Application of Hydrogen Bond Templated Rotaxanes and Catenanes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900081] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Lewis JEM. Self-templated synthesis of amide catenanes and formation of a catenane coordination polymer. Org Biomol Chem 2019; 17:2442-2447. [PMID: 30742192 DOI: 10.1039/c9ob00107g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A self-templation strategy was used to synthesise isophthalamide [2]catenanes of various sizes in up to 51% yield without the need for metal ions as templates or mediators of covalent bond formation. Using this strategy a bis-monodentate catenane was prepared incorporating exohedral pyridine units. Upon complexation of this ligand with AgOTf a one-dimensional coordination polymer was obtained in the solid state in which both macrocycles of the catenane are involved in binding to the metal nodes, resulting in a rare example of a coordination assembly in which mechanical bonds are incorporated into the structure backbone.
Collapse
Affiliation(s)
- James E M Lewis
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
19
|
Kosikova T, Philp D. Two Synthetic Replicators Compete To Process a Dynamic Reagent Pool. J Am Chem Soc 2019; 141:3059-3072. [PMID: 30668914 DOI: 10.1021/jacs.8b12077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complementary building blocks, comprising a set of four aromatic aldehydes and a set of four nucleophiles-three anilines and one hydroxylamine-combine through condensation reactions to afford a dynamic covalent library (DCL) consisting of the eight starting materials and 16 condensation products. One of the aldehydes and, consequently, all of the DCL members derived from this compound bear an amidopyridine recognition site. Exposure of this DCL to two maleimides, Mp and Mm, each equipped with a carboxylic acid recognition site, results in the formation of a series of products through irreversible 1,3-dipolar cycloaddition reactions with the four nitrones present in the DCL. However, only the two cycloadducts in the product pool that incorporate both recognition sites, Tp and Tm, are self-replicators that can harness the DCL as feedstock for their own formation, facilitating their own synthesis via autocatalytic and cross-catalytic pathways. The ability of these replicators to direct their own formation from the components present in the dynamic reagent pool in response to the input of instructions in the form of preformed replicators is demonstrated through a series of quantitative 19F{1H} NMR spectroscopy experiments. Simulations establish the critical relationships between the kinetic and thermodynamic parameters of the replicators, the initial reagent concentrations, and the presence or absence of the DCL and their influence on the competition between Tp and Tm. Thus, we establish the rules that govern the behavior of the competing replicators under conditions where their formation is coupled tightly to the processing of a DCL.
Collapse
Affiliation(s)
- Tamara Kosikova
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , KY16 9ST Fife , United Kingdom
| | - Douglas Philp
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , KY16 9ST Fife , United Kingdom
| |
Collapse
|
20
|
Robertson CC, Mackenzie HW, Kosikova T, Philp D. An Environmentally Responsive Reciprocal Replicating Network. J Am Chem Soc 2018; 140:6832-6841. [DOI: 10.1021/jacs.7b13576] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Craig C. Robertson
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh St Andrews, Fife KY16 9ST, United Kingdom
| | - Harold W. Mackenzie
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh St Andrews, Fife KY16 9ST, United Kingdom
| | - Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh St Andrews, Fife KY16 9ST, United Kingdom
| | - Douglas Philp
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
21
|
Kosikova T, Philp D. Exploring the emergence of complexity using synthetic replicators. Chem Soc Rev 2018; 46:7274-7305. [PMID: 29099123 DOI: 10.1039/c7cs00123a] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A significant number of synthetic systems capable of replicating themselves or entities that are complementary to themselves have appeared in the last 30 years. Building on an understanding of the operation of synthetic replicators in isolation, this field has progressed to examples where catalytic relationships between replicators within the same network and the extant reaction conditions play a role in driving phenomena at the level of the whole system. Systems chemistry has played a pivotal role in the attempts to understand the origin of biological complexity by exploiting the power of synthetic chemistry, in conjunction with the molecular recognition toolkit pioneered by the field of supramolecular chemistry, thereby permitting the bottom-up engineering of increasingly complex reaction networks from simple building blocks. This review describes the advances facilitated by the systems chemistry approach in relating the expression of complex and emergent behaviour in networks of replicators with the connectivity and catalytic relationships inherent within them. These systems, examined within well-stirred batch reactors, represent conceptual and practical frameworks that can then be translated to conditions that permit replicating systems to overcome the fundamental limits imposed on selection processes in networks operating under closed conditions. This shift away from traditional spatially homogeneous reactors towards dynamic and non-equilibrium conditions, such as those provided by reaction-diffusion reaction formats, constitutes a key change that mimics environments within cellular systems, which possess obvious compartmentalisation and inhomogeneity.
Collapse
Affiliation(s)
- Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.
| | | |
Collapse
|
22
|
|
23
|
Sadownik JW, Kosikova T, Philp D. Generating System-Level Responses from a Network of Simple Synthetic Replicators. J Am Chem Soc 2017; 139:17565-17573. [PMID: 29087701 DOI: 10.1021/jacs.7b09735] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The creation of reaction networks capable of exhibiting responses that are properties of entire systems represents a significant challenge for the chemical sciences. The system-level behavior of a reaction network is linked intrinsically to its topology and the functional connections between its nodes. A simple network of chemical reactions constructed from four reagents, in which each reagent reacts with exactly two others, can exhibit up-regulation of two products even when only a single chemical reaction is addressed catalytically. We implement a system with this topology using two maleimides and two nitrones of different sizes-either short or long and each bearing complementary recognition sites-that react pairwise through 1,3-dipolar cycloaddition reactions to create a network of four length-segregated replicating templates. Comprehensive 1H NMR spectroscopy experiments unravel the network topology, confirming that, in isolation, three out of four templates self-replicate, with the shortest template exhibiting the highest efficiency. The strongest template effects within the network are the mutually cross-catalytic relationships between the two templates of intermediate size. The network topology is such that the addition of different preformed templates as instructions to a mixture of all starting materials elicits system-level behavior. Instruction with a single template up-regulates the formation of two templates in a predictable manner. These results demonstrate that the rules governing system-level behavior can be unraveled through the application of wholly synthetic networks with well-defined chemistries and interactions.
Collapse
Affiliation(s)
- Jan W Sadownik
- School of Chemistry and EaStCHEM, University of St Andrews , North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| | - Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews , North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| | - Douglas Philp
- School of Chemistry and EaStCHEM, University of St Andrews , North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
24
|
Komáromy D, Tezcan M, Schaeffer G, Marić I, Otto S. Effector-Triggered Self-Replication in Coupled Subsystems. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dávid Komáromy
- Centre for Systems Chemistry; Stratingh Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Meniz Tezcan
- Centre for Systems Chemistry; Stratingh Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gaël Schaeffer
- Centre for Systems Chemistry; Stratingh Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ivana Marić
- Centre for Systems Chemistry; Stratingh Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry; Stratingh Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
25
|
Komáromy D, Tezcan M, Schaeffer G, Marić I, Otto S. Effector-Triggered Self-Replication in Coupled Subsystems. Angew Chem Int Ed Engl 2017; 56:14658-14662. [DOI: 10.1002/anie.201707191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Dávid Komáromy
- Centre for Systems Chemistry; Stratingh Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Meniz Tezcan
- Centre for Systems Chemistry; Stratingh Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gaël Schaeffer
- Centre for Systems Chemistry; Stratingh Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ivana Marić
- Centre for Systems Chemistry; Stratingh Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry; Stratingh Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
26
|
Kosikova T, Philp D. A Critical Cross-Catalytic Relationship Determines the Outcome of Competition in a Replicator Network. J Am Chem Soc 2017; 139:12579-12590. [DOI: 10.1021/jacs.7b06270] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| | - Douglas Philp
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
27
|
De Bo G, Dolphijn G, McTernan CT, Leigh DA. [2]Rotaxane Formation by Transition State Stabilization. J Am Chem Soc 2017. [DOI: 10.1021/jacs.7b05640] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Guillaume De Bo
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Guillaume Dolphijn
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
28
|
Gao C, Luan ZL, Zhang Q, Yang S, Rao SJ, Qu DH, Tian H. Triggering a [2]Rotaxane Molecular Shuttle by a Photochemical Bond-Cleavage Strategy. Org Lett 2017; 19:1618-1621. [PMID: 28304173 DOI: 10.1021/acs.orglett.7b00393] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The successful triggering of ring-shuttling motion between two stations in a [2]rotaxane is demonstrated by employing a photochemical bond-cleavage strategy. A photolabile bulk barrier is covalently introduced into two identical stations of the thread to prevent dynamic shuttling of the macrocycle, resulting in a "gated" state. Irradiation of UV light (λ = 365 nm) results in the complete removal of the bulk barrier and the balanced shuttling motion of the macrocycle, indicating an "open" state of the rotaxane. In addition, the process from the "open" rotaxane to the "gated" rotaxane was executed by a chemical-rebonding method.
Collapse
Affiliation(s)
- Chuan Gao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| | - Zhou-Lin Luan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| | - Shun Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| | - Si-Jia Rao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
29
|
Maugeri L, Jamieson EMG, Cordes DB, Slawin AMZ, Philp D. pH controlled assembly of a self-complementary halogen-bonded dimer. Chem Sci 2017; 8:938-945. [PMID: 28572903 PMCID: PMC5452264 DOI: 10.1039/c6sc03696a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/17/2016] [Indexed: 12/13/2022] Open
Abstract
Phenols and their corresponding phenoxide anions can form halogen bonds with neutral iodotriazoles. The strength of these interactions depends critically on the protonation state of the oxygen atom - the interaction of the phenoxide anion is more than an order of magnitude stronger than the corresponding phenol. The assembly of a molecule bearing both an iodotriazole and a phenoxide anion into a self-complementary dimer, stabilised by two halogen bonds between the phenoxide anions and the neutral iodotriazoles has been demonstrated. The corresponding phenol shows no halogen bond mediated assembly either in the solid or in the solution state. This assembly process can be actuated simply by a change in protonation state - treatment of the phenol with one equivalent of base results in deprotonation and assembly of the dimer. The structure of the homodimer formed by the phenoxide-bearing iodotriazole has been determined in the solid state and 19F NMR spectroscopy demonstrates that the assembled dimer persists in solution and that it has significant stability. 19F NMR spectroscopy has also been used to demonstrate that the assembly process is completely reversible.
Collapse
Affiliation(s)
- Leonardo Maugeri
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , Fife KY16 9ST , UK . ; ; Tel: +44 1334 467264
| | - Ellen M G Jamieson
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , Fife KY16 9ST , UK . ; ; Tel: +44 1334 467264
| | - David B Cordes
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , Fife KY16 9ST , UK . ; ; Tel: +44 1334 467264
| | - Alexandra M Z Slawin
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , Fife KY16 9ST , UK . ; ; Tel: +44 1334 467264
| | - Douglas Philp
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh , St Andrews , Fife KY16 9ST , UK . ; ; Tel: +44 1334 467264
| |
Collapse
|
30
|
Fletcher BE, Peach MJG, Evans NH. Rapidly accessible “click” rotaxanes utilizing a single amide hydrogen bond templating motif. Org Biomol Chem 2017; 15:2797-2803. [DOI: 10.1039/c7ob00284j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rapid synthesis (in yields of up to 47%) and co-conformational study of hydrogen bond templated rotaxanes are presented.
Collapse
|
31
|
Neal EA, Goldup SM. A Kinetic Self-Sorting Approach to Heterocircuit [3]Rotaxanes. Angew Chem Int Ed Engl 2016; 55:12488-93. [PMID: 27600208 PMCID: PMC5113769 DOI: 10.1002/anie.201606640] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/24/2022]
Abstract
In this proof-of-concept study, an active-template coupling is used to demonstrate a novel kinetic self-sorting process. This process iteratively increases the yield of the target heterocircuit [3]rotaxane product at the expense of other threaded species.
Collapse
Affiliation(s)
- Edward A Neal
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Stephen M Goldup
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| |
Collapse
|
32
|
Neal EA, Goldup SM. A Kinetic Self-Sorting Approach to Heterocircuit [3]Rotaxanes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Edward A. Neal
- School of Biological and Chemical Sciences; Queen Mary University of London; UK
| | - Stephen M. Goldup
- School of Chemistry; University of Southampton; Highfield Southampton SO17 1BJ UK
| |
Collapse
|
33
|
Bottero I, Huck J, Kosikova T, Philp D. A Synthetic Replicator Drives a Propagating Reaction-Diffusion Front. J Am Chem Soc 2016; 138:6723-6. [PMID: 27177046 DOI: 10.1021/jacs.6b03372] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple synthetic autocatalytic replicator is capable of establishing and driving the propagation of a reaction-diffusion front within a 50 μL syringe. This replicator templates its own synthesis through a 1,3-dipolar cycloaddition reaction between a nitrone component, equipped with a 9-ethynylanthracene optical tag, and a maleimide. Kinetic studies using NMR and UV-vis spectroscopies confirm that the replicator forms efficiently and with high diastereoselectivity, and this replication process brings about a dramatic change in optical properties of the sample-a change in the color of the fluorescence in the sample from yellow to blue. The addition of a small amount of the preformed replicator at a specific location within a microsyringe, filled with the reaction building blocks, results in the initiation and propagation of a reaction-diffusion front. The realization of a replicator capable of initiating a reaction-diffusion front provides a platform for the examination of interconnected replicating networks under out-of-equilibrium conditions involving diffusion processes.
Collapse
Affiliation(s)
- Ilaria Bottero
- School of Chemistry and EaStCHEM, University of St Andrews , North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Jürgen Huck
- School of Chemistry and EaStCHEM, University of St Andrews , North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews , North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Douglas Philp
- School of Chemistry and EaStCHEM, University of St Andrews , North Haugh, St Andrews, Fife KY16 9ST, U.K
| |
Collapse
|
34
|
Vidonne A, Kosikova T, Philp D. Exploiting recognition-mediated assembly and reactivity in [2]rotaxane formation. Chem Sci 2016; 7:2592-2603. [PMID: 28660031 PMCID: PMC5477148 DOI: 10.1039/c5sc04805b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/15/2016] [Indexed: 01/26/2023] Open
Abstract
A small molecular reaction network exploits recognition-mediated reactive processes in order to drive the assembly and formation of both a self-replicating linear template (thread) and a [2]rotaxane, in which the linear template is encircled by a diamide macrocycle. Complementary recognition sites, placed at strategic positions on the reactive building blocks, drive these assembly and replication processes. Template-instructed experiments show that the thread is capable of efficient self-replication and that no cross-catalytic relationships exist between the thread and the [2]rotaxane. The rate of [2]rotaxane formation is insensitive to the addition of a preformed template, however, [2]rotaxane formation does show enhanced diastereoselectivity, most likely originating from its recognition-mediated formation through a ternary reactive complex.
Collapse
Affiliation(s)
- Annick Vidonne
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh St Andrews , Fife KY16 9ST , UK . ; ; Tel: +44 (0)1334 467264
| | - Tamara Kosikova
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh St Andrews , Fife KY16 9ST , UK . ; ; Tel: +44 (0)1334 467264
| | - Douglas Philp
- School of Chemistry and EaStCHEM , University of St Andrews , North Haugh St Andrews , Fife KY16 9ST , UK . ; ; Tel: +44 (0)1334 467264
| |
Collapse
|