1
|
Gouda H, Li Z, Ruetz M, Banerjee R. Coordination Chemistry Controls Coenzyme B 12 Synthesis by Human Adenosine Triphosphate:Cob(I)alamin Adenosyltransferase. Inorg Chem 2023; 62:12630-12633. [PMID: 37526260 PMCID: PMC10507449 DOI: 10.1021/acs.inorgchem.3c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Cobalamin (or vitamin B12)-dependent enzymes and trafficking chaperones exploit redox-linked coordination chemistry to control the cofactor reactivity during catalysis and translocation. As the cobalt oxidation state decreases from 3+ to 1+, the preferred cobalamin geometry changes from six- to four-coordinate (4-c). In this study, we reveal the sizable thermodynamic gain that accrues for human adenosine triphosphate (ATP):cob(I)alamin adenosyltransferase (or MMAB) by enforcing an unfavorable 4-c cob(II)alamin geometry. MMAB-bound cob(II)alamin is reduced to the supernucleophilic cob(I)alamin intermediate during the synthesis of 5'-deoxyadenosylcobalamin. Herein, we report the first experimentally determined reduction potential for 4-c cob(II)alamin (-325 ± 9 mV), which is 180 mV more positive than for the five-coordinate (5-c) water-liganded species. The redox potential of MMAB-bound cob(II)alamin is within the range of adrenodoxin, which we demonstrate functions as an electron donor. We also show that stabilization of 5-c cob(II)alamin by a subset of MMAB patient variants compromises the reduction by adrenodoxin, explaining the underlying pathogenic mechanism.
Collapse
Affiliation(s)
- Harsha Gouda
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| | - Zhu Li
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| | - Markus Ruetz
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
2
|
Elmendorf LD, Brunold TC. Electronic structure studies of free and enzyme-bound B 12 species by magnetic circular dichroism and complementary spectroscopic techniques. Methods Enzymol 2022; 669:333-365. [PMID: 35644179 DOI: 10.1016/bs.mie.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Electronic absorption (Abs) and circular dichroism (CD) spectroscopic techniques have been used successfully for over half a century in studies of free and enzyme-bound B12 species. More recently, magnetic circular dichroism (MCD) spectroscopy and other complementary techniques have provided an increasingly detailed understanding of the electronic structure of cobalamins. While CD spectroscopy measures the difference in the absorption of left- and right-circularly polarized light, MCD spectroscopy adds the application of a magnetic field parallel to the direction of light propagation. Transitions that are formally forbidden according to the Abs and CD selection rules, such as ligand field (or d→d) transitions, can gain MCD intensity through spin-orbit coupling. As such, MCD spectroscopy provides a uniquely sensitive probe of the different binding modes, Co oxidation states, and axial ligand environments of B12 species in enzyme active sites, and thus the distinct reactivities displayed by these species. This chapter summarizes representative MCD studies of free and enzyme-bound B12 species, including those present in adenosyltransferases, isomerases, and reductive dehalogenases. Complementary spectroscopic and computational data are also presented and discussed where appropriate.
Collapse
Affiliation(s)
- Laura D Elmendorf
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
3
|
Costa FG, Greenhalgh ED, Brunold TC, Escalante-Semerena JC. Mutational and Functional Analyses of Substrate Binding and Catalysis of the Listeria monocytogenes EutT ATP:Co(I)rrinoid Adenosyltransferase. Biochemistry 2020; 59:1124-1136. [PMID: 32125848 DOI: 10.1021/acs.biochem.0c00078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ATP:Co(I)rrinoid adenosyltransferases (ACATs) catalyze the transfer of the adenosyl moiety from co-substrate ATP to a corrinoid substrate. ACATs are grouped into three families, namely, CobA, PduO, and EutT. The EutT family of enzymes is further divided into two classes, depending on whether they require a divalent metal ion for activity (class I and class II). To date, a structure has not been elucidated for either class of the EutT family of ACATs. In this work, results of bioinformatics analyses revealed several conserved residues between the C-terminus of EutT homologues and the structurally characterized Lactobacillus reuteri PduO (LrPduO) homologue. In LrPduO, these residues are associated with ATP binding and formation of an intersubunit salt bridge. These residues were substituted, and in vivo and in vitro data support the conclusion that the equivalent residues in the metal-free (i.e., class II) Listeria monocytogenes EutT (LmEutT) enzyme affect ATP binding. Results of in vivo and in vitro analyses of LmEutT variants with substitutions at phenylalanine and tryptophan residues revealed that replacement of the phenylalanine residue at position 72 affected access to the substrate-binding site and replacement of a tryptophan residue at position 238 affected binding of the Cbl substrate to the active site. Unlike the PduO family of ACATs, a single phenylalanine residue is not responsible for displacement of the α-ligand. Together, these data suggest that while EutT enzymes share a conserved ATP-binding motif and an intersubunit salt bridge with PduO family ACATs, class II EutT family ACATs utilize an unidentified mechanism for Cbl lower-ligand displacement and reduction that is different from that of PduO and CobA family ACATs.
Collapse
Affiliation(s)
- Flavia G Costa
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth D Greenhalgh
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | |
Collapse
|
4
|
Xie Y. Electrochemical Performance of Transition Metal‐Coordinated Polypyrrole: A Mini Review. CHEM REC 2019; 19:2370-2384. [DOI: 10.1002/tcr.201800192] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/20/2019] [Accepted: 02/24/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Yibing Xie
- School of Chemistry and Chemical EngineeringSoutheast University Nanjing 211189 China
| |
Collapse
|
5
|
Stracey NG, Costa FG, Escalante-Semerena JC, Brunold TC. Spectroscopic Study of the EutT Adenosyltransferase from Listeria monocytogenes: Evidence for the Formation of a Four-Coordinate Cob(II)alamin Intermediate. Biochemistry 2018; 57:5088-5095. [PMID: 30071158 DOI: 10.1021/acs.biochem.8b00743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The EutT enzyme from Listeria monocytogenes ( LmEutT) is a member of the family of ATP:cobalt(I) corrinoid adenosyltransferase (ACAT) enzymes that catalyze the biosynthesis of adenosylcobalamin (AdoCbl) from exogenous Co(II)rrinoids and ATP. Apart from EutT-type ACATs, two evolutionary unrelated types of ACATs have been identified, termed PduO and CobA. Although the three types of ACATs are nonhomologous, they all generate a four-coordinate cob(II)alamin (4C Co(II)Cbl) species to facilitate the formation of a supernucleophilic Co(I)Cbl intermediate capable of attacking the 5'-carbon of cosubstrate ATP. Previous spectroscopic studies of the EutT ACAT from Salmonella enterica ( SeEutT) revealed that this enzyme requires a divalent metal cofactor for the conversion of 5C Co(II)Cbl to a 4C species. Interestingly, LmEutT does not require a divalent metal cofactor for catalytic activity, which exemplifies an interesting phylogenetic divergence among the EutT enzymes. To explore if this disparity in the metal cofactor requirement among EutT enzymes correlates with differences in substrate specificity or the mechanism of Co(II)Cbl reduction, we employed various spectroscopic techniques to probe the interaction of Co(II)Cbl and cob(II)inamide (Co(II)Cbi+) with LmEutT in the absence and presence of cosubstrate ATP. Our data indicate that LmEutT displays a similar substrate specificity as SeEutT and can bind both Co(II)Cbl and Co(II)Cbi+ when complexed with MgATP, though it exclusively converts Co(II)Cbl to a 4C species. Notably, LmEutT is the most effective ACAT studied to date in generating the catalytically relevant 4C Co(II)Cbl species, achieving a >98% 5C → 4C conversion yield on the addition of just over one mol equiv of cosubstrate MgATP.
Collapse
Affiliation(s)
- Nuru G Stracey
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Flavia G Costa
- Department of Microbiology , University of Georgia , Athens , Georgia 30602 , United States
| | | | - Thomas C Brunold
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
6
|
Costa FG, Escalante-Semerena JC. A New Class of EutT ATP:Co(I)rrinoid Adenosyltransferases Found in Listeria monocytogenes and Other Firmicutes Does Not Require a Metal Ion for Activity. Biochemistry 2018; 57:5076-5087. [PMID: 30071718 DOI: 10.1021/acs.biochem.8b00715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ATP:Co(I)rrinoid adenosyltransferases (ACATs) are involved in de novo adenosylcobamide (AdoCba) biosynthesis and in salvaging complete and incomplete corrinoids from the environment. The ACAT enzyme family is comprised of three classes of structurally and evolutionarily distinct proteins (i.e., CobA, PduO, and EutT). The structure of EutT is unknown, and an understanding of its mechanism is incomplete. The Salmonella enterica EutT ( SeEutT) enzyme is the best-characterized member of its class and is known to be a ferroprotein. Here, we report the identification and initial biochemical characterization of an enzyme representative of a new class of EutTs that does not require a metal ion for activity. In vivo and in vitro evidence shows that the metal-free EutT homologue from Listeria monocytogenes ( LmEutT) has ACAT activity and that, unlike other ACATs, the biologically active form of LmEutT is a tetramer. In vitro studies revealed that LmEutT was more efficient than SeEutT and displayed positive cooperativity. LmEutT adenosylated cobalamin, but not cobinamide, showed specificity for ATP and 2'-deoxyATP and released a triphosphate byproduct. Bioinformatics analyses suggest that metal-free EutT ACATs are also present in other Firmicutes.
Collapse
Affiliation(s)
- Flavia G Costa
- Department of Microbiology , University of Georgia , 212C Biological Sciences Building, 120 Cedar Street , Athens , Georgia 30602 , United States
| | - Jorge C Escalante-Semerena
- Department of Microbiology , University of Georgia , 212C Biological Sciences Building, 120 Cedar Street , Athens , Georgia 30602 , United States
| |
Collapse
|
7
|
Li Z, Kitanishi K, Twahir UT, Cracan V, Chapman D, Warncke K, Banerjee R. Cofactor Editing by the G-protein Metallochaperone Domain Regulates the Radical B 12 Enzyme IcmF. J Biol Chem 2017; 292:3977-3987. [PMID: 28130442 DOI: 10.1074/jbc.m117.775957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 11/06/2022] Open
Abstract
IcmF is a 5'-deoxyadenosylcobalamin (AdoCbl)-dependent enzyme that catalyzes the carbon skeleton rearrangement of isobutyryl-CoA to butyryl-CoA. It is a bifunctional protein resulting from the fusion of a G-protein chaperone with GTPase activity and the cofactor- and substrate-binding mutase domains with isomerase activity. IcmF is prone to inactivation during catalytic turnover, thus setting up its dependence on a cofactor repair system. Herein, we demonstrate that the GTPase activity of IcmF powers the ejection of the inactive cob(II)alamin cofactor and requires the presence of an acceptor protein, adenosyltransferase, for receiving it. Adenosyltransferase in turn converts cob(II)alamin to AdoCbl in the presence of ATP and a reductant. The repaired cofactor is then reloaded onto IcmF in a GTPase-gated step. The mechanistic details of cofactor loading and offloading from the AdoCbl-dependent IcmF are distinct from those of the better characterized and homologous methylmalonyl-CoA mutase/G-protein chaperone system.
Collapse
Affiliation(s)
- Zhu Li
- From the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600 and
| | - Kenichi Kitanishi
- From the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600 and
| | - Umar T Twahir
- the Department of Physics, Emory University, Atlanta, Georgia 30322-2430
| | - Valentin Cracan
- From the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600 and
| | - Derrell Chapman
- From the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600 and
| | - Kurt Warncke
- the Department of Physics, Emory University, Atlanta, Georgia 30322-2430
| | - Ruma Banerjee
- From the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600 and
| |
Collapse
|
8
|
Pallares IG, Moore TC, Escalante-Semerena JC, Brunold TC. Spectroscopic Studies of the EutT Adenosyltransferase from Salmonella enterica: Evidence of a Tetrahedrally Coordinated Divalent Transition Metal Cofactor with Cysteine Ligation. Biochemistry 2017; 56:364-375. [PMID: 28045498 DOI: 10.1021/acs.biochem.6b00750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The EutT enzyme from Salmonella enterica, a member of the family of ATP:cobalt(I) corrinoid adenosyltransferase (ACAT) enzymes, requires a divalent transition metal ion for catalysis, with Fe(II) yielding the highest activity. EutT contains a unique cysteine-rich HX11CCX2C(83) motif (where H and the last C occupy the 67th and 83rd positions, respectively, in the amino acid sequence) not found in other ACATs and employs an unprecedented mechanism for the formation of adenosylcobalamin. Recent kinetic and spectroscopic studies of this enzyme revealed that residues in the HX11CCX2C(83) motif are required for the tight binding of the divalent metal ion and are critical for the formation of a four-coordinate (4c) cob(II)alamin [Co(II)Cbl] intermediate in the catalytic cycle. However, it remained unknown which, if any, of the residues in the HX11CCX2C(83) motif bind the divalent metal ion. To address this issue, we have characterized Co(II)-substituted wild-type EutT (EutTWT/Co) by using electronic absorption, electron paramagnetic resonance, and magnetic circular dichroism (MCD) spectroscopies. Our results indicate that the reduced catalytic activity of EutTWT/Co relative to that of the Fe(II)-containing enzyme arises from the incomplete incorporation of Co(II) ions and, thus, a decrease in the relative population of 4c Co(II)Cbl. Our MCD data for EutTWT/Co also reveal that the Co(II) ions reside in a distorted tetrahedral coordination environment with direct cysteine sulfur ligation. Additional spectroscopic studies of EutT/Co variants possessing a single alanine substitution of either His67, His75, Cys79, Cys80, or Cys83 indicate that Cys80 coordinates to the Co(II) ion, while the additional residues are important for maintaining the structural integrity and/or high affinity of the metal binding site.
Collapse
Affiliation(s)
- Ivan G Pallares
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Theodore C Moore
- Department of Microbiology, University of Georgia , Athens, Georgia 30602, United States
| | | | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Park K, Mera PE, Escalante-Semerena JC, Brunold TC. Resonance Raman spectroscopic study of the interaction between Co(II)rrinoids and the ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri. J Biol Inorg Chem 2016; 21:669-81. [PMID: 27383231 PMCID: PMC5118822 DOI: 10.1007/s00775-016-1371-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/14/2016] [Indexed: 12/01/2022]
Abstract
The human-type ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri (LrPduO) catalyzes the adenosylation of Co(II)rrinoids to generate adenosylcobalamin (AdoCbl) or adenosylcobinamide (AdoCbi(+)). This process requires the formation of "supernucleophilic" Co(I)rrinoid intermediates in the enzyme active site which are properly positioned to abstract the adeonsyl moiety from co-substrate ATP. Previous magnetic circular dichroism (MCD) spectroscopic and X-ray crystallographic analyses revealed that LrPduO achieves the thermodynamically challenging reduction of Co(II)rrinoids by displacing the axial ligand with a non-coordinating phenylalanine residue to produce a four-coordinate species. However, relatively little is currently known about the interaction between the tetradentate equatorial ligand of Co(II)rrinoids (the corrin ring) and the enzyme active site. To address this issue, we have collected resonance Raman (rR) data of Co(II)rrinoids free in solution and bound to the LrPduO active site. The relevant resonance-enhanced vibrational features of the free Co(II)rrinoids are assigned on the basis of rR intensity calculations using density functional theory to establish a suitable framework for interpreting rR spectral changes that occur upon Co(II)rrinoid binding to the LrPduO/ATP complex in terms of structural perturbations of the corrin ring. To complement our rR data, we have also obtained MCD spectra of Co(II)rrinoids bound to LrPduO complexed with the ATP analogue UTP. Collectively, our results provide compelling evidence that in the LrPduO active site, the corrin ring of Co(II)rrinoids is firmly locked in place by several amino acid side chains so as to facilitate the dissociation of the axial ligand.
Collapse
Affiliation(s)
- Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Paola E Mera
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|