1
|
Zhang H, Li Y, Zhang YF, Qiao XJ, Sun LY, Li J, Wang YY, Han YF. Solvato-Controlled Assembly and Structural Transformation of Emissive Poly-NHC-Based Organometallic Cages and Their Applications in Amino Acid Sensing and Fluorescence Imaging. Chemistry 2023; 29:e202300209. [PMID: 36762405 DOI: 10.1002/chem.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Stimuli-induced structural transformation of supramolecular cages has drawn increasing attention because of their sensitive feature to external variations as model systems to simulate biological processes. However, combining structural transformation and useful functions has remained a difficult task. This study reports the solvato-controlled self-assembly of two unique topologies with different emission characteristics, a water-soluble Ag8 L4 cage (A) and an Ag4 L2 cage (B), produced from the same sulfonate-pendant tetraphenylethene (TPE) bridged tetrakis-(1,2,4-triazolium) ligand. Both cages show interesting solvent-responsive reversible structural transformation, and the change of fluorescence signals can efficiently track the process. Additionally, water-soluble cage A exhibits unique properties in thermochromism, thiol amino acid sensing, and subcellular imaging in aqueous media.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yi-Fan Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiu-Juan Qiao
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Li-Ying Sun
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
2
|
Shi Y, Sang P, Yin G, Gao R, Liang X, Brzozowski R, Odom T, Eswara P, Zheng Y, Li X, Cai J. Aggregation-Induced Emissive and Circularly Polarized Homogeneous Sulfono-γ-AApeptide Foldamers. ADVANCED OPTICAL MATERIALS 2020; 8:1902122. [PMID: 33072491 PMCID: PMC7567131 DOI: 10.1002/adom.201902122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/22/2020] [Indexed: 05/13/2023]
Abstract
Through our continuous effort in developing a new class of foldamers, we have both designed and synthesized homogenous sulfono-γ-AApeptides using tetraphenylethylene (TPE) moieties attached to the backbone as luminogenic sidechains. Based on previous crystal structures, we have found that these foldamers adopted a left-handed 414-helix. Due to the constraint of the helical scaffold, the rotation of the TPE moieties were restricted, leading to fluorescent emissive properties with high quantum yields not only at the aggregate state but also in solution. Investigation of the relationship between the structure and fluorescence behavior reveals that emission was induced by the combined effect of the aggregation-induced emission (AIE) and the rotated restriction from the backbone. Furthermore, as the packing mode of the luminogens could be precisely adjusted by the helical backbone, these foldamers were found to be circularly polarizable with relatively large luminescence dissymmetry factor (g lum). Interestingly, possessing cationic amphipathic structures similar to that of host-defense peptides (HDPs), these sulfono-γ-AApeptides were able to inhibit the growth of Gram-positive bacteria methicillin-resistant S. aureus (MRSA) through membrane interactions.
Collapse
Affiliation(s)
- Yan Shi
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Peng Sang
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Guangqiang Yin
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xiao Liang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Robert Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Timothy Odom
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Prahathees Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Youxuan Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
3
|
Sun Y, Chen C, Liu J, Stang PJ. Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination. Chem Soc Rev 2020; 49:3889-3919. [PMID: 32412574 PMCID: PMC7846457 DOI: 10.1039/d0cs00038h] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coordination-driven suprastructures have attracted much interest due to their unique properties. Among these structures, platinum-based architectures have been broadly studied due to their facile preparation. The resultant two- or three-dimensional (2D or 3D) systems have many advantages over their precursors, such as improved emission tuning, sensitivity as sensors, and capture and release of guests, and they have been applied in biomedical diagnosis as well as in catalysis. Herein, we review the recent results related to platinum-based coordination-driven self-assembly (CDSA), and the text is organized to emphasizes both the synthesis of new metallacycles and metallacages and their various applications.
Collapse
Affiliation(s)
- Yan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.
| | | | | | | |
Collapse
|
4
|
Shi Y, Yin G, Yan Z, Sang P, Wang M, Brzozowski R, Eswara P, Wojtas L, Zheng Y, Li X, Cai J. Helical Sulfono-γ-AApeptides with Aggregation-Induced Emission and Circularly Polarized Luminescence. J Am Chem Soc 2019; 141:12697-12706. [PMID: 31335135 PMCID: PMC10484567 DOI: 10.1021/jacs.9b05329] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aggregation-induced emission (AIE) was intensively studied because of packing of small molecules and polymers; however, mid-molecular-weight (1000-3000) molecular scaffold containing a precise number of AIE luminogens is rare. Herein, we report the investigation of three tetraphenylethylene (TPE)-modified sulfono-γ-AApeptides in which multiple TPE moieties are conjugated to the chiral right-handed helical peptidomimetic backbone as functional side chains. The crystal structure of the TPE-α/sulfono-γ-AA peptide 1 demonstrates that because of the rigid helical scaffold of the TPE-α/sulfono-γ-AA peptides, the intramolecular rotations of the TPE with short linker are restricted, therefore leading to the boosted fluorescent emission in solution. Peptides 2 and 3 exhibit aggregation-induced emission enhancement (AIEE), possibly because of the combination of both AIE and rotation restriction. Moreover, because of their preoriented assembly induced by the right-handed helical scaffold, these emissive chiral luminogens show effective circularly polarized luminescence signals with high dissymmetry factor glum. Finally, the amphiphilic nature of TPE-α/sulfono-γ-AA peptides could enable them to penetrate the bacterial membranes and exhibit strong fluorescence. Their antimicrobial activity and labeling-free character could further augment their potential applications in both materials and biomedical sciences.
Collapse
Affiliation(s)
- Yan Shi
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Guangqiang Yin
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Zhiping Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Peng Sang
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Robert Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Prahathees Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Youxuan Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
5
|
Zaccaria F, Zuccaccia C, Cipullo R, Macchioni A. Extraction of Reliable Molecular Information from Diffusion NMR Spectroscopy: Hydrodynamic Volume or Molecular Mass? Chemistry 2019; 25:9930-9937. [PMID: 30998838 DOI: 10.1002/chem.201900812] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 01/31/2023]
Abstract
Measuring accurate translational self-diffusion coefficients (Dt ) by NMR techniques with modern spectrometers has become rather routine. In contrast, the derivation of reliable molecular information therefrom still remains a nontrivial task. In this paper, two established approaches to estimating molecular size in terms of hydrodynamic volume (VH ) or molecular weight (M) are compared. Ad hoc designed experiments allowed the critical aspects of their application to be explored by translating relatively complex theoretical principles into practical take-home messages. For instance, comparing the Dt values of three isosteric Cp2 MCl2 complexes (Cp=cyclopentadienyl, M=Ti, Zr, Hf), having significantly different molecular mass, provided an empirical demonstration that VH is the critical molecular property affecting Dt . This central concept served to clarify the assumptions behind the derivation of Dt =ƒ(M) power laws from the Stokes-Einstein equation. Some pitfalls in establishing log (Dt ) versus log (M) linear correlations for a set of species have been highlighted by further investigations of selected examples. The effectiveness of the Stokes-Einstein equation itself in describing the aggregation or polymerization of differently shaped species has been explored by comparing, for example, a ball-shaped silsesquioxane cage with its cigar-like dimeric form, or styrene with polystyrene macromolecules.
Collapse
Affiliation(s)
- Francesco Zaccaria
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCC, Università di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Cristiano Zuccaccia
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCC, Università di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Roberta Cipullo
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126, Napoli, Italy
| | - Alceo Macchioni
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCC, Università di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| |
Collapse
|
6
|
Yin GQ, Wang H, Wang XQ, Song B, Chen LJ, Wang L, Hao XQ, Yang HB, Li X. Self-assembly of emissive supramolecular rosettes with increasing complexity using multitopic terpyridine ligands. Nat Commun 2018; 9:567. [PMID: 29422628 PMCID: PMC5805703 DOI: 10.1038/s41467-018-02959-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/10/2018] [Indexed: 01/16/2023] Open
Abstract
Coordination-driven self-assembly has emerged as a powerful bottom-up approach to construct various supramolecular architectures with increasing complexity and functionality. Tetraphenylethylene (TPE) has been incorporated into metallo-supramolecules to build luminescent materials based on aggregation-induced emission. We herein report three generations of ligands with full conjugation of TPE with 2,2':6',2″-terpyridine (TPY) to construct emissive materials. Due to the bulky size of TPY substituents, the intramolecular rotations of ligands are partially restricted even in dilute solution, thus leading to emission in both solution and aggregation states. Furthermore, TPE-TPY ligands are assembled with Cd(II) to introduce additional restriction of intramolecular rotation and immobilize fluorophores into rosette-like metallo-supramolecules ranging from generation 1-3 (G1-G3). More importantly, the fluorescent behavior of TPE-TPY ligands is preserved in these rosettes, which display tunable emissive properties with respect to different generations, particularly, pure white-light emission for G2.
Collapse
Affiliation(s)
- Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Zhuang Chang Gong Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
- Department of Chemistry, University of South Florida, Tampa, 33620, USA
| | - Heng Wang
- Department of Chemistry, University of South Florida, Tampa, 33620, USA
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Zhuang Chang Gong Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Bo Song
- Department of Chemistry, University of South Florida, Tampa, 33620, USA
| | - Li-Jun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Zhuang Chang Gong Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Lei Wang
- Department of Chemistry, University of South Florida, Tampa, 33620, USA
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Zhuang Chang Gong Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, 33620, USA.
| |
Collapse
|
7
|
Singh N, Singh J, Kim D, Kim DH, Kim EH, Lah MS, Chi KW. Coordination-Driven Self-Assembly of Heterotrimetallic Barrel and Bimetallic Cages Using a Cobalt Sandwich-Based Tetratopic Donor. Inorg Chem 2018; 57:3521-3528. [DOI: 10.1021/acs.inorgchem.7b02653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nem Singh
- Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Jatinder Singh
- Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Ulsan National Institute of Science & Technology, Ulsan 44919, Republic of Korea
| | - Dong Hwan Kim
- Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Eun-Hee Kim
- Republic of Korea Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk 28119, Republic of Korea
| | - Myoung Soo Lah
- Department of Chemistry, Ulsan National Institute of Science & Technology, Ulsan 44919, Republic of Korea
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
8
|
Flexible ligated ruthenium(II) self-assemblies sensitizes glioma tumor initiating cells in vitro. Oncotarget 2017; 8:60188-60200. [PMID: 28947963 PMCID: PMC5601131 DOI: 10.18632/oncotarget.19028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/18/2017] [Indexed: 11/25/2022] Open
Abstract
The tumorigenic potentials of residual cancer stem-like cells within tumors represent limitations of current cancer therapies. Here, the authors describe the effects of synthesized flexible, ligated, supramolecular self-assembled chair type tetranuclear ruthenium (II) metallacycles (2–5) on glioblastoma and glioma stem like cells. These self-assemblies were observed to be selectively toxic to glioma cells and CD133-positive glioma stem like cells population. Of the self-assembled compounds tested, metallacycle 4 more efficiently induced glioma stem like cells death within a brain cancer cell population and simultaneously inhibited the formation of free-floating gliospheres by reducing the sphere size. Detailed cell death studies revealed that treatment with metallacycle 4 reduced mitochondrial membrane potentials (an indicator of apoptosis) of glioma stem like cells. These results shows the elimination of cancer stem-like cells using an appropriate ligand binding adaptor offers a potential means of developing metal-based compounds for the treatment of chemo-resistant tumors.
Collapse
|
9
|
Vacek J, Caskey DC, Horinek D, Shoemaker RK, Stang PJ, Michl J. Correction to “Pyridine Ligand Rotation in Self-Assembled Trigonal Prisms. Evidence for Intracage Solvent Vapor Bubbles”. J Am Chem Soc 2016; 138:6688. [DOI: 10.1021/jacs.6b04606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|