1
|
Klinkby N, Rasmussen AP, Lauridsen AGS, Andersen LH. Absorption and Excited-State Coherences of Cryogenically Cold Retinal Protonated Schiff Base in Vacuo. Chemphyschem 2025; 26:e202400878. [PMID: 39570028 DOI: 10.1002/cphc.202400878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
Retinal protonated Schiff base (RPSB), found in its all-trans conformer in Bacteriorhodopsin, undergoes barrier-controlled isomerization upon photoabsorption through polyene chain torsion. The effects of the protein environment on the active vibrations during photoabsorption and their redistribution are still not understood. This paper reports on femtosecond time-resolved action-absorption measurements of cryogenically cooled gas-phase all-trans RPSB, which exhibit two coherent vibrational oscillations, 167(14) cm- 1 ${^{ - 1} }$ and 117(1) cm- 1 ${^{ - 1} }$ , of the first excited state with dephasing times of∼ 1 ${{\rm{ \sim }}1}$ ps. The absence of the high-frequency vibration in solution and the low-frequency vibration in the protein indicates that these vibrations are sensitive to environments. An action-absorption spectrum of cryogenically cold all-trans RPSB, reveals a∼ 310 ${{\rm{ \sim }}310}$ cm- 1 ${^{ - 1} }$ active vibration when using a hole-burning technique and 1500 cm- 1 ${^{ - 1} }$ C=C stretching modes.
Collapse
Affiliation(s)
- Nikolaj Klinkby
- Department of Physics and Astronomy, Aarhus University, 8000, Aarhus C, Denmark
| | - Anne P Rasmussen
- Department of Physics and Astronomy, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Lars H Andersen
- Department of Physics and Astronomy, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
2
|
Mai E, Malakar P, Batignani G, Martinati M, Ruhman S, Scopigno T. Orchestrating Nuclear Dynamics in a Permanganate Doped Crystal with Chirped Pump-Probe Spectroscopy. J Phys Chem Lett 2024; 15:6634-6646. [PMID: 38888442 DOI: 10.1021/acs.jpclett.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pump-probe spectroscopy is a powerful tool to investigate light-induced dynamical processes in molecules and solids. Targeting vibrational excitations occurring on the time scales of nuclear motions is challenging, as pulse durations shorter than a vibrational period are needed to initiate the dynamics, and complex experimental schemes are required to isolate weak signatures arising from wavepacket motion in different electronic states. Here, we demonstrate how introducing a temporal delay between the spectral components of femtosecond beams, namely a chirp resulting in the increase of their duration, can counterintuitively boost the desired signals by 2 orders of magnitude. Measuring the time-domain vibrational response of permanganate ions embedded in a KClO4 matrix, we identify an intricate dependence of the vibrational response on pulse chirps and probed wavelength that can be exploited to unveil weak signatures of the doping ions─otherwise dominated by the nonresonant matrix─or to obtain vibrational excitations pertaining only to the excited state, suppressing ground-state contributions.
Collapse
Affiliation(s)
- Emanuele Mai
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma I-00161, Italy
| | - Partha Malakar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Giovanni Batignani
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma I-00161, Italy
| | - Miles Martinati
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
| | - Sanford Ruhman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tullio Scopigno
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Graphene Laboratories, Istituto Italiano di Tecnologia, Genova I-16163, Italy
| |
Collapse
|
3
|
Malakar P, Gholami S, Aarabi M, Rivalta I, Sheves M, Garavelli M, Ruhman S. Retinal photoisomerization versus counterion protonation in light and dark-adapted bacteriorhodopsin and its primary photoproduct. Nat Commun 2024; 15:2136. [PMID: 38459010 PMCID: PMC10923925 DOI: 10.1038/s41467-024-46061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024] Open
Abstract
Discovered over 50 years ago, bacteriorhodopsin is the first recognized and most widely studied microbial retinal protein. Serving as a light-activated proton pump, it represents the archetypal ion-pumping system. Here we compare the photochemical dynamics of bacteriorhodopsin light and dark-adapted forms with that of the first metastable photocycle intermediate known as "K". We observe that following thermal double isomerization of retinal in the dark from bio-active all-trans 15-anti to 13-cis, 15-syn, photochemistry proceeds even faster than the ~0.5 ps decay of the former, exhibiting ballistic wave packet curve crossing to the ground state. In contrast, photoexcitation of K containing a 13-cis, 15-anti chromophore leads to markedly multi-exponential excited state decay including much slower stages. QM/MM calculations, aimed to interpret these results, highlight the crucial role of protonation, showing that the classic quadrupole counterion model poorly reproduces spectral data and dynamics. Single protonation of ASP212 rectifies discrepancies and predicts triple ground state structural heterogeneity aligning with experimental observations. These findings prompt a reevaluation of counter ion protonation in bacteriorhodopsin and contribute to the broader understanding of its photochemical dynamics.
Collapse
Affiliation(s)
- Partha Malakar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Samira Gholami
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Mohammad Aarabi
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Ivan Rivalta
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364, Lyon, France
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Marco Garavelli
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy.
| | - Sanford Ruhman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
4
|
Zhang Q, Li J, Wen J, Li W, Chen X, Zhang Y, Sun J, Yan X, Hu M, Wu G, Yuan K, Guo H, Yang X. Simultaneous capturing phonon and electron dynamics in MXenes. Nat Commun 2022; 13:7900. [PMID: 36550116 PMCID: PMC9780317 DOI: 10.1038/s41467-022-35605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Plasmonic MXenes are of particular interest, because of their unique electron and phonon structures and multiple surface plasmon effects, which are different from traditional plasmonic materials. However, to date, how electronic energy damp to lattice vibrations (phonons) in MXenes has not been unraveled. Here, we employed ultrafast broadband impulsive vibrational spectroscopy to identify the energy damping channels in MXenes (Ti3C2Tx and Mo2CTx). Distinctive from the well-known damping pathways, our results demonstrate a different energy damping channel, in which the Ti3C2Tx plasmonic electron energy transfers to coherent phonons by nonthermal electron mediation after Landau damping, without involving electron-electron scattering. Moreover, electrons are observed to strongly couple with A1g mode (~60 fs, 85-100%) and weakly couple with Eg mode (1-2 ps, 0-15%). Our results provide new insight into the electron-phonon interaction in MXenes, which allows the design of materials enabling efficient manipulation of electron transport and energy conversion.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Jiebo Li
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P.R. China.
| | - Jiao Wen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Wei Li
- GuSu Laboratory of Materials, Suzhou, 215123, Jiangsu, China
| | - Xin Chen
- GuSu Laboratory of Materials, Suzhou, 215123, Jiangsu, China
| | - Yifan Zhang
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Jingyong Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Xin Yan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, P. R. China
| | - Mingjun Hu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P.R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China.
- Hefei National Laboratory, Hefei, 230088, China.
| | - Hongbo Guo
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P.R. China.
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P.R. China
- Hefei National Laboratory, Hefei, 230088, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
5
|
Absolute excited state molecular geometries revealed by resonance Raman signals. Nat Commun 2022; 13:7770. [PMID: 36522323 PMCID: PMC9755279 DOI: 10.1038/s41467-022-35099-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Ultrafast reactions activated by light absorption are governed by multidimensional excited-state (ES) potential energy surfaces (PESs), which describe how the molecular potential varies with the nuclear coordinates. ES PESs ad-hoc displaced with respect to the ground state can drive subtle structural rearrangements, accompanying molecular biological activity and regulating physical/chemical properties. Such displacements are encoded in the Franck-Condon overlap integrals, which in turn determine the resonant Raman response. Conventional spectroscopic approaches only access their absolute value, and hence cannot determine the sense of ES displacements. Here, we introduce a two-color broadband impulsive Raman experimental scheme, to directly measure complex Raman excitation profiles along desired normal modes. The key to achieve this task is in the signal linear dependence on the Frank-Condon overlaps, brought about by non-degenerate resonant probe and off-resonant pump pulses, which ultimately enables time-domain sensitivity to the phase of the stimulated vibrational coherences. Our results provide the tool to determine the magnitude and the sensed direction of ES displacements, unambiguously relating them to the ground state eigenvectors reference frame.
Collapse
|
6
|
Walter M, Schubert L, Heberle J, Schlesinger R, Losi A. Time-resolved photoacoustics of channelrhodopsins: early energetics and light-driven volume changes. Photochem Photobiol Sci 2022; 22:477-486. [PMID: 36273368 DOI: 10.1007/s43630-022-00327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
AbstractIn biological photoreceptors, the energy stored in early transient species is a key feature to drive the photocycle or a chain of reactions. Time-resolved photoacoustics (PA) can explore the energy landscape of transient species formed within few ns after photoexcitation, as well as volumetric changes (ΔV) of these intermediates with respect to the parental state. In this work, PA identified these important parameters for several channelrhodopsins, namely CaChR1 from Chlamydomonas augustae and CrChR2 from Chlamydomonas reinhardtii and various variants. PA has access to the sub-ns formation of the early photoproduct P1 and to its relaxation, provided that this latter process occurs within a few μs. We found that ΔVP1 for CaChR1 is ca. 12 mL/mol, while it is much smaller for CrChR2 (4.7 mL/mol) and for H. salinarum bacteriorhodopsin (HsBR, ΔVK = 2.8 mL/mol). PA experiments on variants strongly indicate that part of this large ΔVP1 value for CaChR1 is caused by the protonation dynamics of the Schiff base counterion complex involving E169 and D299. PA data further show that the energy level of P1 is higher in CrChR2 (ca. 96 kJ/mol) than in CaChr1 (ca. 46 kJ/mol), comparable to the energy level of the K state of HsBR (60 kJ/mol). Instrumental to gain these molecular values from the raw PA data was the estimation of the quantum yield (Φ) for P1 formation via transient spectroscopy; for both channelrhodopsins, ΦP2 was evaluated as ca. 0.4.
Graphical Abstract
Collapse
Affiliation(s)
- Maria Walter
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Luiz Schubert
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Ramona Schlesinger
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area Delle Scienze 7/A, 43124, Parma, Italy.
| |
Collapse
|
7
|
Hong Y, Schlosser F, Kim W, Würthner F, Kim D. Ultrafast Symmetry-Breaking Charge Separation in a Perylene Bisimide Dimer Enabled by Vibronic Coupling and Breakdown of Adiabaticity. J Am Chem Soc 2022; 144:15539-15548. [PMID: 35951363 DOI: 10.1021/jacs.2c03916] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perylene bisimides (PBIs) have received great attention in their applicability to optoelectronics. Especially, symmetry-breaking charge separation (SB-CS) in PBIs has been investigated to mimic the efficient light capturing and charge generation in natural light-harvesting systems. However, unlike ultrafast CS dynamics in donor-acceptor heterojunction materials, ultrafast SB-CS in a stacked homodimer has still been challenging due to excimer formation in the absence of rigidifying surroundings such as a special pair in the natural systems. Herein, we present the detailed mechanism of ultrafast photoinduced SB-CS occurring in a 1,7-bis(N-pyrrolidinyl) PBI dimer within a cyclophane. Through narrow-band and broad-band transient absorption spectroscopy, we demonstrate that ultrafast SB-CS in the dimer is enabled by the combination of (1) vibrationally coherent charge-transfer resonance-enhanced excimer formation and (2) breakdown of adiabaticity (formation of SB-CS diabats) in the excimer state via structural and solvent fluctuation. Quantum chemical calculations also underpin that the participation of strong electron-donating substituents in overall vibrational modes plays a crucial role in triggering the ultrafast SB-CS. Therefore, our work provides an alternative route to facilitate ultrafast SB-CS in PBIs and thereby establishes a novel strategy for the design of optoelectronic materials.
Collapse
Affiliation(s)
- Yongseok Hong
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Felix Schlosser
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universitat Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Woojae Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universitat Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea.,Division of Energy Materials, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
8
|
Mitra S, Ainavarapu SRK, Dasgupta J. Long-Range Charge Delocalization Mediates the Ultrafast Ligand-to-Metal Charge Transfer Dynamics at the Cu 2+-Active Site in Azurin. J Phys Chem B 2022; 126:5390-5399. [PMID: 35797135 DOI: 10.1021/acs.jpcb.2c01427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The blue color metalloprotein in azurin has traditionally been attributed to the intense cysteine-to-Cu2+ ligand-to-metal charge transfer transition centered at 628 nm. Although resonance Raman measurements of the Cu2+ active site have implied that the LMCT transition electronically couples to the protein scaffold well beyond its primary metal-ligand coordination shell, the structural extent of this electronic coupling and visualization of the protein-mediated charge transfer dynamics have remained elusive. Here, using femtosecond broadband transient absorption and impulsive Raman spectroscopy, we provide direct evidence for a rapid relaxation between two distinct charge transfer states, having different spatial delocalization, within ∼300 fs followed by recombination of charges in subpicosecond time scales. We invoke the formation of a protein-centered radical cation, possibly Trp48 or a Phe residue, within 100 fs substantiating the long-range electronic coupling for the first time beyond the traditional copper active site. The Raman spectra of the excited CT state show the presence of protein-centric vibrations along with the vibrational modes assigned to the copper active site. Our results demonstrate a large delocalization length scale of the initially populated CT state, thereby highlighting the possibility of exploiting azurin photochemistry for energy conversion techniques.
Collapse
Affiliation(s)
- Soumyajit Mitra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
9
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
10
|
Krueger TD, Fang C. Elucidating Inner Workings of Naturally Sourced Organic Optoelectronic Materials with Ultrafast Spectroscopy. Chemistry 2021; 27:17736-17750. [PMID: 34545971 DOI: 10.1002/chem.202102766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 01/18/2023]
Abstract
Recent advances in sustainable optoelectronics including photovoltaics, light-emitting diodes, transistors, and semiconductors have been enabled by π-conjugated organic molecules. A fundamental understanding of light-matter interactions involving these materials can be realized by time-resolved electronic and vibrational spectroscopies. In this Minireview, the photoinduced mechanisms including charge/energy transfer, electronic (de)localization, and excited-state proton transfer are correlated with functional properties encompassing optical absorption, fluorescence quantum yield, conductivity, and photostability. Four naturally derived molecules (xylindein, dimethylxylindein, alizarin, indigo) with ultrafast spectral insights showcase efficient energy dissipation involving H-bonding networks and proton motions, which yield high photostability. Rational design principles derived from such investigations could increase the efficiency for light harvesting, triplet formation, and photosensitivity for improved and versatile optoelectronic performance.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| |
Collapse
|
11
|
Zhang M, Wang M, Guo Y, Shi Y, Wang J, Chen Y, Zhao C, Zhou Y, Xiao Y, Zhang H, Zhao G. Unveiling the nonadiabatic photoisomerization mechanism of hemicyanines for UV photoprotection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119949. [PMID: 34023551 DOI: 10.1016/j.saa.2021.119949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
In this work, the nonadiabatic energy relaxation mechanism of hemicyanines for UV photoprotection were investigated by using the density functional theory (DFT) and time-dependent density functional theory (TDDFT) method for the first time. The absorption spectra and potential energy surfaces (PESs) of four hemicyanines with different positions of substituents were presented. The maximum absorption peaks of the four hemicyanines are located in the UVA region. In addition, all these hemicyanine molecules also have light absorption in both the UVB and UVC regions. At the same time, we found that the trans-cis photoisomerization PESs of all these hemicyanines have a significant conical intersection (CI) point between the first excited state and the ground state. Herein, it was first demonstrated that the UV energy absorbed by the hemicyanines could be dissipated nonadiabatically through the CI point by using the trans-cis photoisomerization dynamics mechanism. This work proves that hemicyanines have the possibility to be applied for UV photoabsorbers, and provides important basis for designing new type of hemicyanines for UV photoprotection.
Collapse
Affiliation(s)
- Mingshui Zhang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang Province 163318, China
| | - Mengqi Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yurong Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yanan Shi
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Jun Wang
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang Province 163318, China.
| | - Yibing Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Chenyang Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yi Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yongze Xiao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Haoyue Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
12
|
Batignani G, Sansone C, Ferrante C, Fumero G, Mukamel S, Scopigno T. Excited-State Energy Surfaces in Molecules Revealed by Impulsive Stimulated Raman Excitation Profiles. J Phys Chem Lett 2021; 12:9239-9247. [PMID: 34533307 PMCID: PMC8488957 DOI: 10.1021/acs.jpclett.1c02209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/16/2021] [Indexed: 05/14/2023]
Abstract
Photophysical and photochemical processes are ruled by the interplay between transient vibrational and electronic degrees of freedom, which are ultimately determined by the multidimensional potential energy surfaces (PESs). Differences between ground and excited PESs are encoded in the relative intensities of resonant Raman bands, but they are experimentally challenging to access, requiring measurements at multiple wavelengths under identical conditions. Herein, we perform a two-color impulsive vibrational scattering experiment to launch nuclear wavepacket motions by an impulsive pump and record their coupling with a targeted excited-state potential by resonant Raman processes with a delayed probe, generating in a single measurement background-free vibrational spectra across the entire sample absorption. Building on the interference between the multiple pathways resonant with the excited-state manifold that generate the Raman signal, we show how to experimentally tune their relative phase by varying the probe chirp, decoding nuclear displacements along different normal modes and revealing the multidimensional PESs. Our results are validated against time-dependent density functional theory.
Collapse
Affiliation(s)
- Giovanni Batignani
- Dipartimento
di Fisica, Universitá di Roma “La
Sapienza”, Roma I-00185, Italy
- Istituto
Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma I-00161, Italy
| | - Carlotta Sansone
- Dipartimento
di Fisica, Universitá di Roma “La
Sapienza”, Roma I-00185, Italy
| | - Carino Ferrante
- Dipartimento
di Fisica, Universitá di Roma “La
Sapienza”, Roma I-00185, Italy
- Istituto
Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma I-00161, Italy
| | - Giuseppe Fumero
- Dipartimento
di Fisica, Universitá di Roma “La
Sapienza”, Roma I-00185, Italy
| | - Shaul Mukamel
- Department
of Chemistry, University of California, Irvine, California 92623, United States
| | - Tullio Scopigno
- Dipartimento
di Fisica, Universitá di Roma “La
Sapienza”, Roma I-00185, Italy
- Istituto
Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma I-00161, Italy
| |
Collapse
|
13
|
Hontani Y, Broser M, Luck M, Weißenborn J, Kloz M, Hegemann P, Kennis JTM. Dual Photoisomerization on Distinct Potential Energy Surfaces in a UV-Absorbing Rhodopsin. J Am Chem Soc 2020; 142:11464-11473. [PMID: 32475117 PMCID: PMC7315636 DOI: 10.1021/jacs.0c03229] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
UV-absorbing rhodopsins are essential
for UV vision and sensing
in all kingdoms of life. Unlike the well-known visible-absorbing rhodopsins,
which bind a protonated retinal Schiff base for light absorption,
UV-absorbing rhodopsins bind an unprotonated retinal Schiff base.
Thus far, the photoreaction dynamics and mechanisms of UV-absorbing
rhodopsins have remained essentially unknown. Here, we report the
complete excited- and ground-state dynamics of the UV form of histidine
kinase rhodopsin 1 (HKR1) from eukaryotic algae, using femtosecond
stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy,
covering time scales from femtoseconds to milliseconds. We found that
energy-level ordering is inverted with respect to visible-absorbing
rhodopsins, with an optically forbidden low-lying S1 excited
state that has Ag– symmetry and a higher-lying UV-absorbing
S2 state of Bu+ symmetry. UV-photoexcitation
to the S2 state elicits a unique dual-isomerization reaction:
first, C13=C14 cis–trans isomerization occurs during S2–S1 evolution
in <100 fs. This very fast reaction features the remarkable property
that the newly formed isomer appears in the excited state rather than
in the ground state. Second, C15=N16 anti–syn isomerization occurs on the S1–S0 evolution to the ground state in 4.8 ps. We detected two
ground-state unprotonated retinal photoproducts, 13-trans/15-anti (all-trans) and 13-cis/15-syn, after relaxation to the ground
state. These isomers become protonated in 58 μs and 3.2 ms,
respectively, resulting in formation of the blue-absorbing form of
HKR1. Our results constitute a benchmark of UV-induced photochemistry
of animal and microbial rhodopsins.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands
| | - Matthias Broser
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Meike Luck
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Jörn Weißenborn
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands
| | - Miroslav Kloz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands.,ELI-Beamlines, Institute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - John T M Kennis
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
14
|
Fang C, Tang L. Mapping Structural Dynamics of Proteins with Femtosecond Stimulated Raman Spectroscopy. Annu Rev Phys Chem 2020; 71:239-265. [PMID: 32075503 DOI: 10.1146/annurev-physchem-071119-040154] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structure-function relationships of biomolecules have captured the interest and imagination of the scientific community and general public since the field of structural biology emerged to enable the molecular understanding of life processes. Proteins that play numerous functional roles in cellular processes have remained in the forefront of research, inspiring new characterization techniques. In this review, we present key theoretical concepts and recent experimental strategies using femtosecond stimulated Raman spectroscopy (FSRS) to map the structural dynamics of proteins, highlighting the flexible chromophores on ultrafast timescales. In particular, wavelength-tunable FSRS exploits dynamic resonance conditions to track transient-species-dependent vibrational motions, enabling rational design to alter functions. Various ways of capturing excited-state chromophore structural snapshots in the time and/or frequency domains are discussed. Continuous development of experimental methodologies, synergistic correlation with theoretical modeling, and the expansion to other nonequilibrium, photoswitchable, and controllable protein systems will greatly advance the chemical, physical, and biological sciences.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA;
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA;
| |
Collapse
|
15
|
Ultrafast Backbone Protonation in Channelrhodopsin-1 Captured by Polarization Resolved Fs Vis-pump-IR-Probe Spectroscopy and Computational Methods. Molecules 2020; 25:molecules25040848. [PMID: 32075128 PMCID: PMC7070883 DOI: 10.3390/molecules25040848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Channelrhodopsins (ChR) are light-gated ion-channels heavily used in optogenetics. Upon light excitation an ultrafast all-trans to 13-cis isomerization of the retinal chromophore takes place. It is still uncertain by what means this reaction leads to further protein changes and channel conductivity. Channelrhodopsin-1 in Chlamydomonas augustae exhibits a 100 fs photoisomerization and a protonated counterion complex. By polarization resolved ultrafast spectroscopy in the mid-IR we show that the initial reaction of the retinal is accompanied by changes in the protein backbone and ultrafast protonation changes at the counterion complex comprising Asp299 and Glu169. In combination with homology modelling and quantum mechanics/molecular mechanics (QM/MM) geometry optimization we assign the protonation dynamics to ultrafast deprotonation of Glu169, and transient protonation of the Glu169 backbone, followed by a proton transfer from the backbone to the carboxylate group of Asp299 on a timescale of tens of picoseconds. The second proton transfer is not related to retinal dynamics and reflects pure protein changes in the first photoproduct. We assume these protein dynamics to be the first steps in a cascade of protein-wide changes resulting in channel conductivity.
Collapse
|
16
|
Batignani G, Ferrante C, Fumero G, Scopigno T. Broadband Impulsive Stimulated Raman Scattering Based on a Chirped Detection. J Phys Chem Lett 2019; 10:7789-7796. [PMID: 31765160 DOI: 10.1021/acs.jpclett.9b03061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In impulsive stimulated Raman scattering, vibrational oscillations, coherently stimulated by a femtosecond Raman pulse, are monitored in real time and read out as intensity modulations in the transmission of a temporally delayed probe pulse. Critically, in order to retrieve broadband Raman spectra, a fine sampling of the time delays between the Raman and probe pulses is required, making conventional ISRS ineffective for probing irreversible phenomena and/or weak scatterers typically demanding long acquisition times, with signal-to-noise ratios that crucially depend on the pulse fluences and overlap stabilities. To overcome such limitations, here we introduce the chirped-based impulsive stimulated raman scattering (CISRS) technique. Specifically, we show how introducing a chirp in the probe pulse can be exploited for recording the Raman information without the need to scan over the Raman-probe pulse delay. We then experimentally demonstrate with a few examples how to use the introduced scheme to measure Raman spectra.
Collapse
Affiliation(s)
- Giovanni Batignani
- Dipartimento di Fisica , Universitá di Roma "La Sapienza" , Roma I-00185 , Italy
| | - Carino Ferrante
- Dipartimento di Fisica , Universitá di Roma "La Sapienza" , Roma I-00185 , Italy
- Istituto Italiano di Tecnologia , Center for Life Nano Science @Sapienza , Roma I-00161 , Italy
| | - Giuseppe Fumero
- Dipartimento di Fisica , Universitá di Roma "La Sapienza" , Roma I-00185 , Italy
| | - Tullio Scopigno
- Dipartimento di Fisica , Universitá di Roma "La Sapienza" , Roma I-00185 , Italy
- Istituto Italiano di Tecnologia , Center for Life Nano Science @Sapienza , Roma I-00161 , Italy
| |
Collapse
|
17
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
18
|
Atomistic Insight into the Role of Threonine 127 in the Functional Mechanism of Channelrhodopsin-2. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Channelrhodopsins (ChRs) belong to the unique class of light-gated ion channels. The structure of channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) has been resolved, but the mechanistic link between light-induced isomerization of the chromophore retinal and channel gating remains elusive. Replacements of residues C128 and D156 (DC gate) resulted in drastic effects in channel closure. T127 is localized close to the retinal Schiff base and links the DC gate to the Schiff base. The homologous residue in bacteriorhodopsin (T89) has been shown to be crucial for the visible absorption maximum and dark–light adaptation, suggesting an interaction with the retinylidene chromophore, but the replacement had little effect on photocycle kinetics and proton pumping activity. Here, we show that the T127A and T127S variants of CrChR2 leave the visible absorption maximum unaffected. We inferred from hybrid quantum mechanics/molecular mechanics (QM/MM) calculations and resonance Raman spectroscopy that the hydroxylic side chain of T127 is hydrogen-bonded to E123 and the latter is hydrogen-bonded to the retinal Schiff base. The C=N–H vibration of the Schiff base in the T127A variant was 1674 cm−1, the highest among all rhodopsins reported to date. We also found heterogeneity in the Schiff base ground state vibrational properties due to different rotamer conformations of E123. The photoreaction of T127A is characterized by a long-lived P2380 state during which the Schiff base is deprotonated. The conservative replacement of T127S hardly affected the photocycle kinetics. Thus, we inferred that the hydroxyl group at position 127 is part of the proton transfer pathway from D156 to the Schiff base during rise of the P3530 intermediate. This finding provides molecular reasons for the evolutionary conservation of the chemically homologous residues threonine, serine, and cysteine at this position in all channelrhodopsins known so far.
Collapse
|
19
|
Fujisawa T, Kiyota H, Kikukawa T, Unno M. Low-Temperature Raman Spectroscopy of Halorhodopsin from Natronomonas pharaonis: Structural Discrimination of Blue-Shifted and Red-Shifted Photoproducts. Biochemistry 2019; 58:4159-4167. [PMID: 31538771 DOI: 10.1021/acs.biochem.9b00643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
From the low-temperature absorption and Raman measurements of halorhodopsin from Natronomonas pharaonis (pHR), we observed that the two photoproducts were generated after exciting pHR at 80 K by green light. One photoproduct was the red-shifted K intermediate (pHRK) as the primary photointermediate for Cl- pumping, and the other was the blue-shifted one (pHRhypso), which was not involved in the Cl- pumping and thermally relaxed to the original unphotolyzed state by increasing temperature. The formation of these two kinds of photoproducts was previously reported for halorhodopsin from Halobacterium sarinarum [ Zimanyi et al. Biochemistry 1989 , 28 , 1656 ]. We found that the same took place in pHR, and we revealed the chromophore structures of the two photointermediates from their Raman spectra for the first time. pHRhypso had the distorted all-trans chromophore, while pHRK contained the distorted 13-cis form. The present results revealed that the structural analyses of pHRK carried out so far at ∼80 K potentially included a significant contribution from pHRhypso. pHRhypso was efficiently formed via the photoexcitation of pHRK, indicating that pHRhypso was likely a side product after photoexcitation of pHRK. The formation of pHRhypso suggested that the active site became tight in pHRK due to the slight movement of Cl-, and the back photoisomerization then produced the distorted all-trans chromophore in pHRhypso.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| | - Hayato Kiyota
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science , Hokkaido University , Sapporo 060-0810 , Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education , Hokkaido University , Sapporo 060-0810 , Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| |
Collapse
|
20
|
Agathangelou D, Orozco-Gonzalez Y, Del Carmen Marín M, Roy PP, Brazard J, Kandori H, Jung KH, Léonard J, Buckup T, Ferré N, Olivucci M, Haacke S. Effect of point mutations on the ultrafast photo-isomerization of Anabaena sensory rhodopsin. Faraday Discuss 2019; 207:55-75. [PMID: 29388996 DOI: 10.1039/c7fd00200a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anabaena sensory rhodopsin (ASR) is a particular microbial retinal protein for which light-adaptation leads to the ability to bind both the all-trans, 15-anti (AT) and the 13-cis, 15-syn (13C) isomers of the protonated Schiff base of retinal (PSBR). In the context of obtaining insight into the mechanisms by which retinal proteins catalyse the PSBR photo-isomerization reaction, ASR is a model system allowing to study, within the same protein, the protein-PSBR interactions for two different PSBR conformers at the same time. A detailed analysis of the vibrational spectra of AT and 13C, and their photo-products in wild-type ASR obtained through femtosecond (pump-) four-wave-mixing is reported for the first time, and compared to bacterio- and channelrhodopsin. As part of an extensive study of ASR mutants with blue-shifted absorption spectra, we present here a detailed computational analysis of the origin of the mutation-induced blue-shift of the absorption spectra, and identify electrostatic interactions as dominating steric effects that would entail a red-shift. The excited state lifetimes and isomerization reaction times (IRT) for the three mutants V112N, W76F, and L83Q are studied experimentally by femtosecond broadband transient absorption spectroscopy. Interestingly, in all three mutants, isomerization is accelerated for AT with respect to wild-type ASR, and this the more, the shorter the wavelength of maximum absorption. On the contrary, the 13C photo-reaction is slightly slowed down, leading to an inversion of the ESLs of AT and 13C, with respect to wt-ASR, in the blue-most absorbing mutant L83Q. Possible mechanisms for these mutation effects, and their steric and electrostatic origins are discussed.
Collapse
Affiliation(s)
- D Agathangelou
- University of Strasbourg, CNRS, Inst. de Physique et Chimie des Matériaux de Strasbourg, 67034 Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hernández FJ, Bonafé FP, Aradi B, Frauenheim T, Sánchez CG. Simulation of Impulsive Vibrational Spectroscopy. J Phys Chem A 2019; 123:2065-2072. [DOI: 10.1021/acs.jpca.9b00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Federico J. Hernández
- Universidad Nacional de Córdoba. Facultad de Ciencias Quı́micas, Departamento de Quı́mica Teórica y Computacional, Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Franco P. Bonafé
- Universidad Nacional de Córdoba. Facultad de Ciencias Quı́micas, Departamento de Quı́mica Teórica y Computacional, Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universität Bremen, Bremen 28359, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, Universität Bremen, Bremen 28359, Germany
| | - Cristián G. Sánchez
- Universidad Nacional de Córdoba. Facultad de Ciencias Quı́micas, Departamento de Quı́mica Teórica y Computacional, Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| |
Collapse
|
22
|
Tahara S, Singh M, Kuramochi H, Shihoya W, Inoue K, Nureki O, Béjà O, Mizutani Y, Kandori H, Tahara T. Ultrafast Dynamics of Heliorhodopsins. J Phys Chem B 2019; 123:2507-2512. [DOI: 10.1021/acs.jpcb.9b00887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shinya Tahara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Oded Béjà
- Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
23
|
Kraack JP, Motzkus M, Buckup T. Excited State Vibrational Spectra of All- trans Retinal Derivatives in Solution Revealed By Pump-DFWM Experiments. J Phys Chem B 2018; 122:12271-12281. [PMID: 30507189 DOI: 10.1021/acs.jpcb.8b08495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ultrafast structural changes during the photoinduced isomerization of the retinal-protonated Schiff base (RPSB) is still a poorly understood aspect in the retinal's photochemistry. In this work, we apply pump-degenerate four-wave mixing (pump-DFWM) to all- trans retinal (ATR) and retinal Schiff bases (RSB) to resolve coherent high- and low-frequency vibrational signatures from excited electronic states. We show that the vibrational spectra of excited singlet states in these samples exhibit pronounced differences compared to the relaxed ground state. Pump-DFWM results indicate three major features for ATR and RSB. (i) Excited state vibrational spectra of ATR and RSB consist predominately of low-frequency modes in the energetic range 100-500 cm-1. (ii) Excited state vibrational spectra show distinct differences for excitation in specific regions of electronic transitions of excited state absorption and emission. (iii) Low-frequency modes in ATR and RSB are inducible during the entire lifetime of the excited electronic states. This latter effect points to a transient molecular structure that, following initial relaxation between different excited electronic states, does not change anymore over the lifetime of the finally populated excited electronic state.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| | - Marcus Motzkus
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut , Ruprecht-Karls Universität Heidelberg , D-69210 Heidelberg , Germany
| |
Collapse
|
24
|
Roy PP, Kato Y, Abe-Yoshizumi R, Pieri E, Ferré N, Kandori H, Buckup T. Mapping the ultrafast vibrational dynamics of all-trans and 13-cis retinal isomerization in Anabaena Sensory Rhodopsin. Phys Chem Chem Phys 2018; 20:30159-30173. [PMID: 30484447 DOI: 10.1039/c8cp05469j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discrepancies in the isomerization dynamics and quantum yields of the trans and cis retinal protonated Schiff base is a well-known issue in the context of retinal photochemistry. Anabaena Sensory Rhodopsin (ASR) is a microbial retinal protein that comprises a retinal chromophore in two ground state (GS) conformations: all-trans, 15-anti (AT) and 13-cis, 15-syn (13C). In this study, we applied impulsive vibrational spectroscopic techniques (DFWM, pump-DFWM and pump-IVS) to ASR to shed more light on how the structural changes take place in the excited state within the same protein environment. Our findings point to distinct features in the ground state structural conformations as well as to drastically different evolutions in the excited state manifold. The ground state vibrational spectra show stronger Raman activity of the C14-H out-of-plane wag (at about 805 cm-1) for the 13C isomer than that for the AT isomer, which hints at a pre-distortion of 13C in the ground state. Evolution of the Raman frequency after interaction with the actinic pulse shows a blue-shift for the C[double bond, length as m-dash]C stretching and CH3 rocking mode for both isomers. For AT, however, the blue-shift is not instantaneous as observed for the 13C isomer, rather it takes more than 200 fs to reach the maximum frequency shift. This frequency blue-shift is rationalized by a decrease in the effective conjugation length during the isomerization reaction, which further confirms a slower formation of the twisted state for the AT isomer and corroborates the presence of a barrier in the excited state trajectory previously predicted by quantum chemical calculations.
Collapse
Affiliation(s)
- Partha Pratim Roy
- Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, D-69210, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Hontani Y, Ganapathy S, Frehan S, Kloz M, de Grip WJ, Kennis JTM. Strong pH-Dependent Near-Infrared Fluorescence in a Microbial Rhodopsin Reconstituted with a Red-Shifting Retinal Analogue. J Phys Chem Lett 2018; 9:6469-6474. [PMID: 30376338 PMCID: PMC6240888 DOI: 10.1021/acs.jpclett.8b02780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Near-infrared (NIR)-driven rhodopsins are of great interest in optogenetics and other optobiotechnological developments such as artificial photosynthesis and deep-tissue voltage imaging. Here we report that the proton pump proteorhodopsin (PR) containing a NIR-active retinal analogue (PR:MMAR) exhibits intense NIR fluorescence at a quantum yield of 3.3%. This is 130 times higher than native PR ( Lenz , M. O. ; Biophys J. 2006 , 91 , 255 - 262 ) and 3-8 times higher than the QuasAr and PROPS voltage sensors ( Kralj , J. ; Science 2011 , 333 , 345 - 348 ; Hochbaum , D. R. ; Nat. Methods 2014 , 11 , 825 - 833 ). The NIR fluorescence strongly depends on the pH in the range of 6-8.5, suggesting potential application of MMAR-binding proteins as ultrasensitive NIR-driven pH and/or voltage sensors. Femtosecond transient absorption spectroscopy showed that upon near-IR excitation, PR:MMAR features an unusually long fluorescence lifetime of 310 ps and the absence of isomerized photoproducts, consistent with the high fluorescence quantum yield. Stimulated Raman analysis indicates that the NIR-absorbing species develops upon protonation of a conserved aspartate, which promotes charge delocalization and bond length leveling due to an additional methylamino group in MMAR, in essence providing a secondary protonated Schiff base. This results in much smaller bond length alteration along the conjugated backbone, thereby conferring significant single-bond character to the C13═C14 bond and structural deformation of the chromophore, which interferes with photoinduced isomerization and extends the lifetime for fluorescence. Hence, our studies allow for a molecular understanding of the relation between absorption/emission wavelength, isomerization, and fluorescence in PR:MMAR. As acidification enhances the resonance state, this explains the strong pH dependence of the NIR emission.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Srividya Ganapathy
- Department
of Biophysical Organic Chemistry, Leiden Institute of
Chemistry, Gorlaeus Laboratories, Leiden University, Leiden 2300 RA, The Netherlands
| | - Sean Frehan
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Miroslav Kloz
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
- ELI-Beamlines,
Institute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
| | - Willem J. de Grip
- Department
of Biophysical Organic Chemistry, Leiden Institute of
Chemistry, Gorlaeus Laboratories, Leiden University, Leiden 2300 RA, The Netherlands
- Department
of Biochemistry, Radboud University Medical
Center, Nijmegen 6500 HB, The Netherlands
| | - John T. M. Kennis
- Department
of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
26
|
Bonafé FP, Hernández FJ, Aradi B, Frauenheim T, Sánchez CG. Fully Atomistic Real-Time Simulations of Transient Absorption Spectroscopy. J Phys Chem Lett 2018; 9:4355-4359. [PMID: 30024765 DOI: 10.1021/acs.jpclett.8b01659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We have implemented an electron-nuclear real-time propagation scheme for the calculation of transient absorption spectra. When this technique is applied to the study of ultrafast dynamics of Soret-excited zinc(II) tetraphenylporphyrin in the subpicosecond time scale, quantum beats in the transient absorption caused by impulsively excited molecular vibrations are observed. The launching mechanism of such vibrations can be regarded as a displacive excitation of the zinc-pyrrole and pyrrole C-C bonds.
Collapse
Affiliation(s)
- Franco P Bonafé
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , Córdoba , Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba , INFIQC (CONICET - Universidad Nacional de Córdoba) , Córdoba , Argentina
| | - Federico J Hernández
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , Córdoba , Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba , INFIQC (CONICET - Universidad Nacional de Córdoba) , Córdoba , Argentina
| | - Bálint Aradi
- Bremen Center for Computational Materials Science , Universität Bremen , Bremen , Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science , Universität Bremen , Bremen , Germany
| | - Cristián G Sánchez
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , Córdoba , Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba , INFIQC (CONICET - Universidad Nacional de Córdoba) , Córdoba , Argentina
| |
Collapse
|
27
|
Probing femtosecond lattice displacement upon photo-carrier generation in lead halide perovskite. Nat Commun 2018; 9:1971. [PMID: 29773798 PMCID: PMC5958143 DOI: 10.1038/s41467-018-04367-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/22/2018] [Indexed: 11/09/2022] Open
Abstract
Electronic properties and lattice vibrations are expected to be strongly correlated in metal-halide perovskites, due to the soft fluctuating nature of their crystal lattice. Thus, unveiling electron-phonon coupling dynamics upon ultrafast photoexcitation is necessary for understanding the optoelectronic behavior of the semiconductor. Here, we use impulsive vibrational spectroscopy to reveal vibrational modes of methylammonium lead-bromide perovskite under electronically resonant and non-resonant conditions. We identify two excited state coherent phonons at 89 and 106 cm-1, whose phases reveal a shift of the potential energy minimum upon ultrafast photocarrier generation. This indicates the transition to a new geometry, reached after approximately 90 fs, and fully equilibrated within the phonons lifetime of about 1 ps. Our results unambiguously prove that these modes drive the crystalline distortion occurring upon photo-excitation, demonstrating the presence of polaronic effects.
Collapse
|
28
|
Ellis SR, Hoffman DP, Park M, Mathies RA. Difference Bands in Time-Resolved Femtosecond Stimulated Raman Spectra of Photoexcited Intermolecular Electron Transfer from Chloronaphthalene to Tetracyanoethylene. J Phys Chem A 2018; 122:3594-3605. [PMID: 29558802 DOI: 10.1021/acs.jpca.8b00318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The time-resolved femtosecond stimulated Raman spectra (FSRS) of a charge transfer (CT) excited noncovalent complex tetracyanoethylene:1-chloronaphthalene (TCNE:ClN) in dichloromethane (DCM) is reported with 40 fs time resolution. In the frequency domain, five FSRS peaks are observed with frequencies of 534, 858, 1069, 1392, and 1926 cm-1. The most intense peaks at 534 and 1392 cm-1 correspond to fundamentals while the features at 858, 1069, and 1926 cm-1 are attributed to a difference frequency, an overtone and a combination frequency of the fundamentals, respectively. The frequency of the 1392 cm-1 fundamental corresponding to the central C═C stretch of TCNE•- is red-shifted from the frequency of the steady state radical due to the close proximity and electron affinity of the countercation. The observation of a FSRS band at a difference frequency is analyzed. This analysis lends evidence for alternative nonlinear pathways of inverse Raman gain scattering (IRGS) or vertical-FSRS (VFSRS) which may contribute to the time-evolving FSRS spectrum on-resonance. Impulsive stimulated Raman measurements of the complex show coherent oscillations of the stimulated emission with frequencies of 153, 278, and 534 cm-1. The 278 cm-1 mode corresponds to Cl bending of the dichloromethane solvent. The center frequency of the 278 cm-1 mode is modulated by a frequency of ∼30 cm-1 which is attributed to the effect of librational motion of the dichloromethane solvent as it reorganizes around the nascent contact ion pair. The 153 ± 15 cm-1 mode corresponds to an out-of-plane bending motion of TCNE. This motion modulates the intermolecular separation of the contact ion pair and thereby the overlap of the frontier orbitals which is crucial for rapid charge recombination in 5.9 ± 0.2 ps. High time-frequency resolution vibrational spectra provide unique molecular details regarding charge localization and recombination.
Collapse
Affiliation(s)
- Scott R Ellis
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - David P Hoffman
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - Myeongkee Park
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| | - Richard A Mathies
- Department of Chemistry , University of California Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
29
|
Penfold TJ, Gindensperger E, Daniel C, Marian CM. Spin-Vibronic Mechanism for Intersystem Crossing. Chem Rev 2018; 118:6975-7025. [DOI: 10.1021/acs.chemrev.7b00617] [Citation(s) in RCA: 401] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Thomas J. Penfold
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne NE1 7RU, United Kingdom
| | - Etienne Gindensperger
- Laboratoire de Chimie Quantique, Institut de Chimie UMR-7177, CNRS - Université de Strasbourg, 1 Rue Blaise Pascal 67008 Strasbourg, France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique, Institut de Chimie UMR-7177, CNRS - Université de Strasbourg, 1 Rue Blaise Pascal 67008 Strasbourg, France
| | - Christel M. Marian
- Institut für Theoretische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
30
|
Guo Y, Wolff FE, Schapiro I, Elstner M, Marazzi M. Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2. Phys Chem Chem Phys 2018; 20:27501-27509. [DOI: 10.1039/c8cp05210g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans-to-cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Franziska E. Wolff
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research
- Institute of Chemistry
- Hebrew University of Jerusalem
- Jerusalem
- Israel
| | - Marcus Elstner
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Marco Marazzi
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| |
Collapse
|
31
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
32
|
Qi DL, Duan HG, Sun ZR, Miller RJD, Thorwart M. Tracking an electronic wave packet in the vicinity of a conical intersection. J Chem Phys 2017; 147:074101. [DOI: 10.1063/1.4989462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Da-Long Qi
- State Key Laboratory of Precision Spectroscopy, School of Physics and Material Science, East China Normal University, 3663 North Zhongshan Road, 200062 Shanghai, China
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hong-Guang Duan
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Zhen-Rong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Material Science, East China Normal University, 3663 North Zhongshan Road, 200062 Shanghai, China
| | - R. J. Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
33
|
Abstract
Channelrhodopsin (ChR) is a key protein of the optogenetic toolkit. C1C2, a functional chimeric protein of Chlamydomonas reinhardtii ChR1 and ChR2, is the only ChR whose crystal structure has been solved, and thus uniquely suitable for structure-based analysis. We report C1C2 photoreaction dynamics with ultrafast transient absorption and multi-pulse spectroscopy combined with target analysis and structure-based hybrid quantum mechanics/molecular mechanics calculations. Two relaxation pathways exist on the excited (S1) state through two conical intersections CI1 and CI2, that are reached via clockwise and counter-clockwise rotations: (i) the C13=C14 isomerization path with 450 fs via CI1 and (ii) a relaxation path to the initial ground state with 2.0 ps and 11 ps via CI2, depending on the hydrogen-bonding network, hence indicating active-site structural heterogeneity. The presence of the additional conical intersection CI2 rationalizes the relatively low quantum yield of photoisomerization (30 ± 3%), reported here. Furthermore, we show the photoreaction dynamics from picoseconds to seconds, characterizing the complete photocycle of C1C2.
Collapse
|
34
|
Urmann D, Lorenz C, Linker SM, Braun M, Wachtveitl J, Bamann C. Photochemical Properties of the Red-shifted Channelrhodopsin Chrimson. Photochem Photobiol 2017; 93:782-795. [DOI: 10.1111/php.12741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/02/2017] [Indexed: 01/03/2023]
Affiliation(s)
- David Urmann
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Charlotte Lorenz
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| | - Stephanie M. Linker
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry; Johann Wolfgang Goethe University Frankfurt; Frankfurt am Main Germany
| | - Christian Bamann
- Department of Biophysical Chemistry; Max Planck Institute of Biophysics; Frankfurt am Main Germany
| |
Collapse
|
35
|
Monacelli L, Batignani G, Fumero G, Ferrante C, Mukamel S, Scopigno T. Manipulating Impulsive Stimulated Raman Spectroscopy with a Chirped Probe Pulse. J Phys Chem Lett 2017; 8:966-974. [PMID: 28177628 DOI: 10.1021/acs.jpclett.6b03027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photophysical and photochemical processes are often dominated by molecular vibrations in various electronic states. Dissecting the corresponding, often overlapping, spectroscopic signals from different electronic states is a challenge hampering their interpretation. Here we address impulsive stimulated Raman spectroscopy (ISRS), a powerful technique able to coherently stimulate and record Raman-active modes using broadband pulses. Using a quantum-mechanical treatment of the ISRS process, we show the mode-specific way the various spectral components of the broadband probe contribute to the signal generated at a given wavelength. We experimentally demonstrate how to manipulate the signal by varying the probe chirp and the phase-matching across the sample, thereby affecting the relative phase between the various contributions to the signal. These novel control knobs allow us to selectively enhance desired vibrational features and distinguish spectral components arising from different excited states.
Collapse
Affiliation(s)
- Lorenzo Monacelli
- Dipartimento di Fisica, Universitá di Roma "La Sapienza" , Roma I-00185, Italy
| | - Giovanni Batignani
- Dipartimento di Fisica, Universitá di Roma "La Sapienza" , Roma I-00185, Italy
- Dipartimento di Scienze Fisiche e Chimiche, Universitá degli Studi dell'Aquila , L'Aquila I-67100, Italy
| | - Giuseppe Fumero
- Dipartimento di Fisica, Universitá di Roma "La Sapienza" , Roma I-00185, Italy
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Universitá di Roma "La Sapienza" , Roma I-00185, Italy
| | - Carino Ferrante
- Dipartimento di Fisica, Universitá di Roma "La Sapienza" , Roma I-00185, Italy
| | - Shaul Mukamel
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Tullio Scopigno
- Dipartimento di Fisica, Universitá di Roma "La Sapienza" , Roma I-00185, Italy
- Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza , Roma I-00161, Italy
| |
Collapse
|
36
|
Roy K, Kayal S, Ariese F, Beeby A, Umapathy S. Mode specific excited state dynamics study of bis(phenylethynyl)benzene from ultrafast Raman loss spectroscopy. J Chem Phys 2017; 146:064303. [DOI: 10.1063/1.4975174] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Khokan Roy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Surajit Kayal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Freek Ariese
- On leave from LaserLaB, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Andrew Beeby
- Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
- On leave from LaserLaB, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands
- Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, United Kingdom
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
37
|
Abstract
Stimulated Raman scattering (SRS) describes a family of techniques first discovered and developed in the 1960s. Whereas the nascent history of the technique is parallel to that of laser light sources, recent advances have spurred a resurgence in its use and development that has spanned across scientific fields and spatial scales. SRS is a nonlinear technique that probes the same vibrational modes of molecules that are seen in spontaneous Raman scattering. While spontaneous Raman scattering is an incoherent technique, SRS is a coherent process, and this fact provides several advantages over conventional Raman techniques, among which are much stronger signals and the ability to time-resolve the vibrational motions. Technological improvements in pulse generation and detection strategies have allowed SRS to probe increasingly smaller volumes and shorter time scales. This has enabled SRS research to move from its original domain, of probing bulk media, to imaging biological tissues and single cells at the micro scale, and, ultimately, to characterizing samples with subdiffraction resolution at the nanoscale. In this Review, we give an overview of the history of the technique, outline its basic properties, and present historical and current uses at multiple length scales to underline the utility of SRS to the molecular sciences.
Collapse
Affiliation(s)
- Richard C Prince
- Department of Biomedical Engineering, University of California, Irvine , 1436 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis , B-18, 139 Smith Hall, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Eric O Potma
- Department of Chemistry, University of California, Irvine , 1107 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
38
|
Kottke T, Lórenz-Fonfría VA, Heberle J. The Grateful Infrared: Sequential Protein Structural Changes Resolved by Infrared Difference Spectroscopy. J Phys Chem B 2016; 121:335-350. [PMID: 28100053 DOI: 10.1021/acs.jpcb.6b09222] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The catalytic activity of proteins is a function of structural changes. Very often these are as minute as protonation changes, hydrogen bonding changes, and amino acid side chain reorientations. To resolve these, a methodology is afforded that not only provides the molecular sensitivity but allows for tracing the sequence of these hierarchical reactions at the same time. This feature article showcases results from time-resolved IR spectroscopy on channelrhodopsin (ChR), light-oxygen-voltage (LOV) domain protein, and cryptochrome (CRY). All three proteins are activated by blue light, but their biological role is drastically different. Channelrhodopsin is a transmembrane retinylidene protein which represents the first light-activated ion channel of its kind and which is involved in primitive vision (phototaxis) of algae. LOV and CRY are flavin-binding proteins acting as photoreceptors in a variety of signal transduction mechanisms in all kingdoms of life. Beyond their biological relevance, these proteins are employed in exciting optogenetic applications. We show here how IR difference absorption resolves crucial structural changes of the protein after photonic activation of the chromophore. Time-resolved techniques are introduced that cover the time range from nanoseconds to minutes along with some technical considerations. Finally, we provide an outlook toward novel experimental approaches that are currently developed in our laboratories or are just in our minds ("Gedankenexperimente"). We believe that some of them have the potential to provide new science.
Collapse
Affiliation(s)
- Tilman Kottke
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University , Universitätsstraße 25, 33615 Bielefeld, Germany
| | | | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin , Arnimalle 14, 14195 Berlin, Germany
| |
Collapse
|
39
|
Feldman TB, Smitienko OA, Shelaev IV, Gostev FE, Nekrasova OV, Dolgikh DA, Nadtochenko VA, Kirpichnikov MP, Ostrovsky MA. Femtosecond spectroscopic study of photochromic reactions of bacteriorhodopsin and visual rhodopsin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 164:296-305. [PMID: 27723489 DOI: 10.1016/j.jphotobiol.2016.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022]
Abstract
Photochromic ultrafast reactions of bacteriorhodopsin (H. salinarum) and bovine rhodopsin were conducted with a femtosecond two-pump probe pulse setup with the time resolution of 20-25fs. The dynamics of the forward and reverse photochemical reactions for both retinal-containing proteins was compared. It is demonstrated that when retinal-containing proteins are excited by femtosecond pulses, dynamics pattern of the vibrational coherent wave packets in the course of the reaction is different for bacteriorhodopsin and visual rhodopsin. As shown in these studies, the low-frequencies that form a wave packets experimentally observed in the dynamics of primary products formation as a result of retinal photoisomerization have different intensities and are clearer for bovine rhodopsin. Photo-reversible reactions for both retinal proteins were performed from the stage of the relatively stable photointermediates that appear within 3-5ps after the light pulse impact. It is demonstrated that the efficiency of the reverse phototransition K-form→bacteriorhodopsin is almost five-fold higher than that of the Batho-intermediate→visual rhodopsin phototransition. The results obtained indicate that in the course of evolution the intramolecular mechanism of the chromophore-protein interaction in visual rhodopsin becomes more perfect and specific. The decrease in the probability of the reverse chromophore photoisomerization (all-trans→11-cis retinal) in primary photo-induced rhodopsin products causes an increase in the efficiency of the photoreception process.
Collapse
Affiliation(s)
- Tatiana B Feldman
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia.
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| | - Ivan V Shelaev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Fedor E Gostev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Dmitriy A Dolgikh
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Victor A Nadtochenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia; Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia; Institute of Problems of Chemical Physics, Russian Academy of Sciences, Academician Semenov avenue 1, Chernogolovka, Moscow region 142432, Russia
| | - Mikhail P Kirpichnikov
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Mikhail A Ostrovsky
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| |
Collapse
|
40
|
Iyer ESS, Misra R, Maity A, Liubashevski O, Sudo Y, Sheves M, Ruhman S. Temperature Independence of Ultrafast Photoisomerization in Thermophilic Rhodopsin: Assessment versus Other Microbial Proton Pumps. J Am Chem Soc 2016; 138:12401-7. [DOI: 10.1021/jacs.6b05002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Ramprasad Misra
- Department
of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Arnab Maity
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Oleg Liubashevski
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Yuki Sudo
- Division
of Pharmaceutical sciences, Okayama University, Kita-Ku, Okayama 700-0082, Japan
| | - Mordechai Sheves
- Department
of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sanford Ruhman
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
41
|
Farag MH, Jansen TLC, Knoester J. Probing the Interstate Coupling near a Conical Intersection by Optical Spectroscopy. J Phys Chem Lett 2016; 7:3328-3334. [PMID: 27509384 DOI: 10.1021/acs.jpclett.6b01463] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Conical intersections are points where adiabatic potential energy surfaces cross. The interstate coupling between the potential energy surfaces plays a crucial role in many processes associated with conical intersections. Still no method exists to measure this coupling driving the chemical reactions between the potential energy surfaces involved. In this Letter, using a generic model for photoisomerization, we propose a novel experimental approach to estimate the coupling that mixes the electronic states near a conical intersection. The approach is based on analyzing the vibrational wavepacket of the reactant in the adiabatic ground and excited electronic states. The nuclear wavepacket dynamics are extracted from linear absorption and two-dimensional electronic spectroscopy. Comparing the frequencies of the coupling mode in the adiabatic ground and excited states from models with and without coupling between the potential energy surfaces suggests an experimental tool to determine the interstate coupling.
Collapse
Affiliation(s)
- Marwa H Farag
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jasper Knoester
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
42
|
Stensitzki T, Yang Y, Muders V, Schlesinger R, Heberle J, Heyne K. Femtosecond infrared spectroscopy of channelrhodopsin-1 chromophore isomerization. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:043208. [PMID: 27191011 PMCID: PMC4851625 DOI: 10.1063/1.4948338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
Vibrational dynamics of the retinal all-trans to 13-cis photoisomerization in channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) was investigated by femtosecond visible pump mid-IR probe spectroscopy. After photoexcitation, the transient infrared absorption of C-C stretching modes was detected. The formation of the 13-cis photoproduct marker band at 1193 cm(-1) was observed within the time resolution of 0.3 ps. We estimated the photoisomerization yield to (60 ± 6) %. We found additional time constants of (0.55 ± 0.05) ps and (6 ± 1) ps, assigned to cooling, and cooling processes with a back-reaction pathway. An additional bleaching band demonstrates the ground-state heterogeneity of retinal.
Collapse
Affiliation(s)
- T Stensitzki
- Department of Physics, Institute of Experimental Physics , Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - Y Yang
- Department of Physics, Institute of Experimental Physics , Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - V Muders
- Genetic Biophysics, Department of Physics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - R Schlesinger
- Genetic Biophysics, Department of Physics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - J Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - K Heyne
- Department of Physics, Institute of Experimental Physics , Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|