1
|
Shubert-Zuleta SA, Segui Barragan V, Berry MW, Russum R, Milliron DJ. How Depletion Layers Govern the Dynamic Plasmonic Response of In-Doped CdO Nanocrystals. ACS NANO 2024; 18:16776-16789. [PMID: 38885184 DOI: 10.1021/acsnano.4c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Doped metal oxide nanocrystals exhibit a localized surface plasmon resonance that is widely tunable across the mid- to near-infrared region, making them useful for applications in optoelectronics, sensing, and photocatalysis. Surface states pin the Fermi level and induce a surface depletion layer that hinders conductivity and refractive index sensing but can be advantageous for optical modulation. Several strategies have been developed to both synthetically and postsynthetically tailor the depletion layer toward particular applications; however, this understanding has primarily been advanced in Sn-doped In2O3 (ITO) nanocrystals, leaving open questions about generalizing to other doped metal oxides. Here, we quantitatively analyze the depletion layer in In-doped CdO (ICO) nanocrystals, which is shown to have an intrinsically wide depletion layer that leads to broad plasmonic modulation via postsynthetic chemical reduction and ligand exchange. Leveraging these insights, we applied depletion layer tuning to enhance the inherently weak plasmonic coupling in ICO nanocrystal superlattices. Our results demonstrate how an electronic band structure dictates the radial distribution of electrons and governs the response to postsynthetic modulation, enabling the design of tunable and responsive plasmonic materials.
Collapse
Affiliation(s)
- Sofia A Shubert-Zuleta
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Victor Segui Barragan
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - M Wren Berry
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Robert Russum
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Delia J Milliron
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Shulenberger KE, Jilek MR, Sherman SJ, Hohman BT, Dukovic G. Electronic Structure and Excited State Dynamics of Cadmium Chalcogenide Nanorods. Chem Rev 2023; 123:3852-3903. [PMID: 36881852 DOI: 10.1021/acs.chemrev.2c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The cylindrical quasi-one-dimensional shape of colloidal semiconductor nanorods (NRs) gives them unique electronic structure and optical properties. In addition to the band gap tunability common to nanocrystals, NRs have polarized light absorption and emission and high molar absorptivities. NR-shaped heterostructures feature control of electron and hole locations as well as light emission energy and efficiency. We comprehensively review the electronic structure and optical properties of Cd-chalcogenide NRs and NR heterostructures (e.g., CdSe/CdS dot-in-rods, CdSe/ZnS rod-in-rods), which have been widely investigated over the last two decades due in part to promising optoelectronic applications. We start by describing methods for synthesizing these colloidal NRs. We then detail the electronic structure of single-component and heterostructure NRs and follow with a discussion of light absorption and emission in these materials. Next, we describe the excited state dynamics of these NRs, including carrier cooling, carrier and exciton migration, radiative and nonradiative recombination, multiexciton generation and dynamics, and processes that involve trapped carriers. Finally, we describe charge transfer from photoexcited NRs and connect the dynamics of these processes with light-driven chemistry. We end with an outlook that highlights some of the outstanding questions about the excited state properties of Cd-chalcogenide NRs.
Collapse
Affiliation(s)
| | - Madison R Jilek
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Skylar J Sherman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin T Hohman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States.,Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
3
|
Prather KV, Tsui EY. Photoinduced Ligand-to-Metal Charge Transfer of Cobaltocene: Radical Release and Catalytic Cyclotrimerization. Inorg Chem 2023; 62:2128-2134. [PMID: 36701811 DOI: 10.1021/acs.inorgchem.2c03779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Irradiation of cobalt metallocenes at the ligand-to-metal charge transfer energies results in the labilization of the cyclopentadienyl-cobalt bond and radical release. The cyclopentadienyl radical is detected by electron paramagnetic resonance (EPR) spectroscopy using a spin trap and can also be chemically trapped using hydrogen-atom-donating reagents. This reaction presents a new photochemical method of generating new cobalt complexes or of forming cyclopentadienyl cobalt(I) species that are active for catalytic [2 + 2 + 2] cyclotrimerization reactions. More importantly, these results also show that cobaltocene should not be considered as a photostable redox reagent under many conditions, including those relevant to photovoltaics or photocatalysis.
Collapse
Affiliation(s)
- Keaton V Prather
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Emily Y Tsui
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
4
|
Damasceno JPV, Kubota LT. The Electronic Origin of the Zeta Potential is Supported by the Redox Mechanism on an Aqueous Dispersion of Exfoliated Graphite. Angew Chem Int Ed Engl 2022; 61:e202214995. [PMID: 36315162 DOI: 10.1002/anie.202214995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Herein we have proposed that a redox mechanism can produce surface charges and negative zeta potential on an aqueous graphite dispersion. Graphite was kept in contact with a concentrated ammonia aqueous solution, washed, and exfoliated in water, resulting in a dispersion with lyophobic nature. Ammonia treatment did not provide functional groups or nitrogen doping to graphite. Moreover, this material was washed twice before sonication to remove most hydroxide. Therefore, neither functional groups, nitrogen atoms, nor hydroxide excess is responsible for the zeta potential. Kelvin probe force microscopy has shown that the ammonia-treated and exfoliated graphite has higher Fermi level than the water-treated material, indicating that the contact between ammonia and graphite promotes redox reactions that provide electrons to graphite. These electrons raise the Fermi level of graphite and generate the negative zeta potential, consequently, they account for the colloidal stability.
Collapse
Affiliation(s)
- João Paulo Vita Damasceno
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo, 13084-971, Brazil
| | - Lauro Tatsuo Kubota
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo, 13084-971, Brazil
| |
Collapse
|
5
|
Damasceno JPV, Kubota LT. The Electronic Origin of the Zeta Potential is Supported by the Redox Mechanism on an Aqueous Dispersion of Exfoliated Graphite. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- João Paulo Vita Damasceno
- Department of Analytical Chemistry Institute of Chemistry University of Campinas P.O. Box 6154 Campinas São Paulo 13084-971 Brazil
| | - Lauro Tatsuo Kubota
- Department of Analytical Chemistry Institute of Chemistry University of Campinas P.O. Box 6154 Campinas São Paulo 13084-971 Brazil
| |
Collapse
|
6
|
McKenzie J, Kempler PA, Brozek CK. Solvent-controlled ion-coupled charge transport in microporous metal chalcogenides. Chem Sci 2022; 13:12747-12759. [PMID: 36519058 PMCID: PMC9645383 DOI: 10.1039/d2sc05090k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 07/22/2023] Open
Abstract
Interactions between ions and itinerant charges govern electronic processes ranging from the redox chemistry of molecules to the conductivity of organic semiconductors, but remain an open frontier in the study of microporous materials. These interactions may strongly influence the electronic behavior of microporous materials that confine ions and charges to length scales comparable to proton-coupled electron transfer. Yet despite mounting evidence that both solvent and electrolyte influence charge transport through ion-charge interactions in metal-organic frameworks, fundamental microscopic insights are only just beginning to emerge. Here, through electrochemical analysis of two open-framework chalcogenides TMA2FeGe4S10 and TMA2ZnGe4S10, we outline the key signatures of ion-coupled charge transport in band-type and hopping-type microporous conductors. Pressed-pellet direct-current and impedance techniques reveal that solvent enhances the conductivity of both materials, but for distinct mechanistic reasons. This analysis required the development of a fitting method that provides a novel quantitative metric of concerted ion-charge motion. Taken together, these results provide chemical parameters for a general understanding of electrochemistry in nanoconfined spaces and for designing microporous conductors and electrochemical methods used to evaluate them.
Collapse
Affiliation(s)
- Jacob McKenzie
- Department of Chemistry and Biochemistry, Materials Science Institute, Oregon Center for Electrochemistry, University of Oregon Eugene OR 97403 USA
| | - Paul A Kempler
- Department of Chemistry and Biochemistry, Materials Science Institute, Oregon Center for Electrochemistry, University of Oregon Eugene OR 97403 USA
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Materials Science Institute, Oregon Center for Electrochemistry, University of Oregon Eugene OR 97403 USA
| |
Collapse
|
7
|
Fabrizio K, Lazarou KA, Payne LI, Twight LP, Golledge S, Hendon CH, Brozek CK. Tunable Band Gaps in MUV-10(M): A Family of Photoredox-Active MOFs with Earth-Abundant Open Metal Sites. J Am Chem Soc 2021; 143:12609-12621. [PMID: 34370478 DOI: 10.1021/jacs.1c04808] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Titanium-based metal-organic frameworks (Ti-MOFs) have attracted intense research attention because they can store charges in the form of Ti3+ and they serve as photosensitizers to cocatalysts through heterogeneous photoredox reactions at the MOF-liquid interface. Both the charge storage and charge transfer depend on the redox potentials of the MOF and the molecular substrate, but the factors controlling these energetic aspects are not well understood. Additionally, photocatalysis involving Ti-MOFs relies on cocatalysts rather than the intrinsic Ti reactivity, in part because Ti-MOFs with open metal sites are rare. Here, we report that the class of Ti-MOFs known as MUV-10 can be synthetically modified to include a range of redox-inactive ions with flexible coordination environments that control the energies of the photoactive orbitals. Lewis acidic cations installed in the MOF cluster (Cd2+, Sr2+, and Ba2+) or introduced to the pores (H+, Li+, Na+, K+) tune the electronic structure and band gaps of the MOFs. Through the use of optical redox indicators, we report the first direct measurement of the Fermi levels (redox potentials) of photoexcited MOFs in situ. Taken together, these results explain the ability of Ti-MOFs to store charges and provide design principles for achieving heterogeneous photoredox chemistry with electrostatic control.
Collapse
|
8
|
Ghini M, Curreli N, Camellini A, Wang M, Asaithambi A, Kriegel I. Photodoping of metal oxide nanocrystals for multi-charge accumulation and light-driven energy storage. NANOSCALE 2021; 13:8773-8783. [PMID: 33959732 PMCID: PMC8136238 DOI: 10.1039/d0nr09163d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The growing demand for self-powered devices has led to the study of novel energy storage solutions that exploit green energies whilst ensuring self-sufficiency. In this context, doped metal oxide nanocrystals (MO NCs) are interesting nanosized candidates with the potential to unify solar energy conversion and storage into one set of materials. In this review, we aim to present recent and important developments of doped MO NCs for light-driven multi-charge accumulation (i.e., photodoping) and solar energy storage. We will discuss the general concept of photodoping, the spectroscopic and theoretical tools to determine the charging process, together with unresolved open questions. We conclude the review by highlighting possible device architectures based on doped MO NCs that are expected to considerably impact the field of energy storage by combining in a unique way the conversion and storage of solar power and opening the path towards competitive and novel light-driven energy storage solutions.
Collapse
Affiliation(s)
- Michele Ghini
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova, Italy and Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Nicola Curreli
- Functional Nanosystems, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova, Italy.
| | - Andrea Camellini
- Functional Nanosystems, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova, Italy.
| | - Mengjiao Wang
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova, Italy
| | - Aswin Asaithambi
- Functional Nanosystems, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova, Italy.
| | - Ilka Kriegel
- Functional Nanosystems, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
9
|
Hinterding SM, Salzmann BBV, Vonk SJW, Vanmaekelbergh D, Weckhuysen BM, Hutter EM, Rabouw FT. Single Trap States in Single CdSe Nanoplatelets. ACS NANO 2021; 15:7216-7225. [PMID: 33759503 PMCID: PMC8155320 DOI: 10.1021/acsnano.1c00481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Trap states can strongly affect semiconductor nanocrystals, by quenching, delaying, and spectrally shifting the photoluminescence (PL). Trap states have proven elusive and difficult to study in detail at the ensemble level, let alone in the single-trap regime. CdSe nanoplatelets (NPLs) exhibit significant fractions of long-lived "delayed emission" and near-infrared "trap emission". We use these two spectroscopic handles to study trap states at the ensemble and the single-particle level. We find that reversible hole trapping leads to both delayed and trap PL, involving the same trap states. At the single-particle level, reversible trapping induces exponential delayed PL and trap PL, with lifetimes ranging from 40 to 1300 ns. In contrast with exciton PL, single-trap PL is broad and shows spectral diffusion and strictly single-photon emission. Our results highlight the large inhomogeneity of trap states, even at the single-particle level.
Collapse
Affiliation(s)
- Stijn
O. M. Hinterding
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Bastiaan B. V. Salzmann
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | - Sander J. W. Vonk
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Daniel Vanmaekelbergh
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Eline M. Hutter
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Freddy T. Rabouw
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584CC Utrecht, The Netherlands
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| |
Collapse
|
10
|
Hartley CL, Kessler ML, Dempsey JL. Molecular-Level Insight into Semiconductor Nanocrystal Surfaces. J Am Chem Soc 2021; 143:1251-1266. [PMID: 33442974 DOI: 10.1021/jacs.0c10658] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Semiconductor nanocrystals exhibit attractive photophysical properties for use in a variety of applications. Advancing the efficiency of nanocrystal-based devices requires a deep understanding of the physical defects and electronic states that trap charge carriers. Many of these states reside at the nanocrystal surface, which acts as an interface between the semiconductor lattice and the molecular capping ligands. While a detailed structural and electronic understanding of the surface is required to optimize nanocrystal properties, these materials are at a technical disadvantage: unlike molecular structures, semiconductor nanocrystals lack a specific chemical formula and generally must be characterized as heterogeneous ensembles. Therefore, in order for the field to improve current nanocrystal-based technologies, a creative approach to gaining a "molecular-level" picture of nanocrystal surfaces is required. To this end, an expansive toolbox of experimental and computational techniques has emerged in recent years. In this Perspective, we critically evaluate the insight into surface structure and reactivity that can be gained from each of these techniques and demonstrate how their strategic combination is already advancing our molecular-level understanding of nanocrystal surface chemistry.
Collapse
Affiliation(s)
- Carolyn L Hartley
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Melody L Kessler
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
11
|
Mancuso JL, Fabrizio K, Brozek CK, Hendon CH. On the limit of proton-coupled electronic doping in a Ti(iv)-containing MOF. Chem Sci 2021; 12:11779-11785. [PMID: 34659715 PMCID: PMC8442679 DOI: 10.1039/d1sc03019a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
TiIV-containing metal–organic frameworks are known to accumulate electrons in their conduction bands, accompanied by protons, when irradiated in the presence of alcohols. The archetypal system, MIL-125, was recently shown to reach a limit of 2e− per Ti8 octomeric node. However, the origin of this limit and the broader applicability of this unique chemistry relies not only on the presence of TiIV, but also access to inorganic inner-sphere Lewis basic anions in the MOF nodes. Here, we study the loading of protons and electrons in MIL-125, and assess the thermodynamic limit of doping these materials. We find that the limit is determined by the reduction potential of protons: in high charging regimes the MOF exceeds the H+/H2 potential. Generally, we offer the design principle that inorganic anions in MOF nodes can host adatomic protons, which may stabilize meta-stable low valent transition metals. This approach highlights the unique chemistry afforded by MOFs built from inorganic clusters, and provides one avenue to developing novel catalytic scaffolds for hydrogen evolution and transfer hydrogenation. Photo-promoted doping of MIL-125 is limited by the potential of MOF-bound protons exceeding the hydrogen evolution reaction.![]()
Collapse
Affiliation(s)
- Jenna L. Mancuso
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Kevin Fabrizio
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Carl K. Brozek
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Christopher H. Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
12
|
Dutta P, Tang Y, Mi C, Saniepay M, McGuire JA, Beaulac R. Ultrafast hole extraction from photoexcited colloidal CdSe quantum dots coupled to nitroxide free radicals. J Chem Phys 2019; 151:174706. [DOI: 10.1063/1.5124887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Poulami Dutta
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, USA
| | - Yanhao Tang
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1322, USA
| | - Chenjia Mi
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, USA
| | - Mersedeh Saniepay
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, USA
| | - John A. McGuire
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1322, USA
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rémi Beaulac
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, USA
| |
Collapse
|
13
|
Garoz‐Ruiz J, Perales‐Rondon JV, Heras A, Colina A. Spectroelectrochemistry of Quantum Dots. Isr J Chem 2019. [DOI: 10.1002/ijch.201900028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jesus Garoz‐Ruiz
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | - Juan V. Perales‐Rondon
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | - Aranzazu Heras
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| | - Alvaro Colina
- Department of ChemistryUniversidad de Burgos Pza. Misael Bañuelos s/n E-09001 Burgos Spain
| |
Collapse
|
14
|
Guo H, Sen T, Zhang J, Wang L. Hierarchical porous TiO 2 single crystals templated from partly glassified polystyrene. J Colloid Interface Sci 2019; 538:248-255. [PMID: 30513466 DOI: 10.1016/j.jcis.2018.11.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022]
Abstract
Hierarchical macro-mesoporous anatase TiO2 single crystal is one-pot synthesized in an EtOH-H2O system using polystyrene (PS) as the single porogen both for macropore and mesopore and TiF4 as the titanium precursor. The key to the simultaneous growth of single crystal and the introduction of hierarchical pores is the assembly of PS and titania at the glassification temperature of PS (100 °C). During the hydrolytic polymerization of TiF4, PS is encapsulated inside titania and gradually glassified. The interference from elastic PS on the oriental growth of TiO2 crystallite is thus minimized and the final removal of PS through calcination leaves interconnected macropore and mesopore inside the single crystal. According to XPS, EPR and fluorescence analyses, abundant oxygen vacancies are formed on the hierarchical porous single crystal, which presents extraordinary photocatalytic activity and stability in degrading organic pollutants under simulated sunlight irradiation using Rhodamine B as the model. The improved photocatalytic activity is a synergistic effect of improved separation of charge carrier and facilitated interfacial charge transfer benefitting from highly accessible porous single crystal structure.
Collapse
Affiliation(s)
- Hongli Guo
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Tapas Sen
- Nano-biomaterials Research Group, School of Physical Sciences & Computing, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Jinlong Zhang
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Lingzhi Wang
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai, China.
| |
Collapse
|
15
|
Wu F, Cheng H, Wei H, Xiong T, Yu P, Mao L. Galvanic Redox Potentiometry for Self-Driven in Vivo Measurement of Neurochemical Dynamics at Open-Circuit Potential. Anal Chem 2018; 90:13021-13029. [DOI: 10.1021/acs.analchem.8b03854] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fei Wu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanjun Cheng
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
| | - Huan Wei
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), CAS Research/Education Center for Excellence in Molecule Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Valdez CN, Delley MF, Mayer JM. Cation Effects on the Reduction of Colloidal ZnO Nanocrystals. J Am Chem Soc 2018; 140:8924-8933. [PMID: 29920088 DOI: 10.1021/jacs.8b05144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of a variety of monatomic cations (H+, Li+, Na+, K+, Mg2+, and Ca2+) and larger cations (decamethylcobaltocenium and tetrabutylammonium) on the reduction of colloidal ZnO nanocrystals (NCs) are described. Suspensions of "TOPO"-capped ZnO NCs in toluene/THF were treated with controlled amounts of one-electron reductants (CoCp*2 or sodium benzophenone anion radical) and cations. Equilibria were quickly established and the extent of NC reduction was quantified via observation of the characteristic near-IR absorbance of conduction band electrons. Addition of excess reductant with or without added cations led to a maximum average number of electrons per ZnO NC, which was dependent on the NC volume and on the nature of the cation. Electrons are transferred to the ZnO NCs in a stoichiometric way, roughly one electron per monovalent cation and roughly two electrons per divalent cation. This shows that cations are charge-balancing the added electrons in ZnO NCs. Overall, our experiments provide insight into the thermodynamics of charge storage and relate the colloidal chemistry of ZnO with bulk oxide semiconductors. They indicate that the apparent band energies of colloidal ZnO are highly dependent on cation/electrolyte composition and concentration, as is known for bulk interfaces, and that electrons and cations are added stoichiometrically to balance charge, similar to the behavior of Li+-batteries.
Collapse
Affiliation(s)
- Carolyn N Valdez
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Murielle F Delley
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - James M Mayer
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States
| |
Collapse
|
17
|
Araujo JJ, Brozek CK, Kroupa DM, Gamelin DR. Degenerately n-Doped Colloidal PbSe Quantum Dots: Band Assignments and Electrostatic Effects. NANO LETTERS 2018; 18:3893-3900. [PMID: 29763319 DOI: 10.1021/acs.nanolett.8b01235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a spectroscopic study of colloidal PbSe quantum dots (QDs) that have been photodoped to introduce excess delocalized conduction-band (CB) electrons. High-quality absorption spectra are obtained for these degenerately doped QDs with excess electron concentrations up to ∼1020 cm-3. At the highest doping levels, electrons have completely filled the 1Se orbitals of the CB and partially populated the higher-energy 1Pe orbitals. Spectroscopic changes observed as a function of carrier concentration permit an unambiguous assignment of the second excitonic absorption maximum to 1Ph-1Pe transitions. At intermediate doping levels, a clear absorption feature appears between the first two excitonic maxima that is attributable to parity-forbidden 1Sh,e-1Pe,h excitations, which become observable because of electrostatic symmetry breaking. Redshifts of the main excitonic absorption features with increased carrier concentration are also analyzed. The Coulomb stabilization energies of both the 1Sh-1Se and 1Ph-1Pe excitons in n-doped PbSe QDs are remarkably similar to those observed for multiexcitons with the same electron count. The origins of these redshifts are discussed.
Collapse
Affiliation(s)
- Jose J Araujo
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Carl K Brozek
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Daniel M Kroupa
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Daniel R Gamelin
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| |
Collapse
|
18
|
Brozek CK, Zhou D, Liu H, Li X, Kittilstved KR, Gamelin DR. Soluble Supercapacitors: Large and Reversible Charge Storage in Colloidal Iron-Doped ZnO Nanocrystals. NANO LETTERS 2018; 18:3297-3302. [PMID: 29693400 DOI: 10.1021/acs.nanolett.8b01264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Colloidal ZnO semiconductor nanocrystals have previously been shown to accumulate multiple delocalized conduction-band electrons under chemical, electrochemical, or photochemical reducing conditions, leading to emergent semimetallic characteristics such as quantum plasmon resonances and raising prospects for application in multielectron redox transformations. Here, we demonstrate a dramatic enhancement in the capacitance of colloidal ZnO nanocrystals through aliovalent Fe3+-doping. Very high areal and volumetric capacitances (33 μF cm-2, 233 F cm-3) are achieved in Zn0.99Fe0.01O nanocrystals that rival those of the best supercapacitors used in commercial energy-storage devices. The redox properties of these nanocrystals are probed by potentiometric titration and optical spectroscopy. These data indicate an equilibrium between electron localization by Fe3+ dopants and electron delocalization within the ZnO conduction band, allowing facile reversible charge storage and removal. As "soluble supercapacitors", colloidal iron-doped ZnO nanocrystals constitute a promising class of solution-processable electronic materials with large charge-storage capacity attractive for future energy-storage applications.
Collapse
Affiliation(s)
- Carl K Brozek
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Dongming Zhou
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Hongbin Liu
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Xiaosong Li
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Kevin R Kittilstved
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Daniel R Gamelin
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| |
Collapse
|
19
|
Shen Y, Gee MY, Greytak AB. Purification technologies for colloidal nanocrystals. Chem Commun (Camb) 2018; 53:827-841. [PMID: 27942615 DOI: 10.1039/c6cc07998a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Almost all applications of colloidal nanocrystals require some type of purification or surface modification process following nanocrystal growth. Nanocrystal purification - the separation of nanocrystals from undesired solution components - can perturb the surface chemistry and thereby the physical properties of colloidal nanocrystals due to changes in solvent, solute concentrations, and exposure of the nanocrystal surface to oxidation or hydrolysis. For example, nanocrystal quantum dots frequently exhibit decreased photoluminescence brightness after precipitation from the growth solvent and subsequent redissolution. Consequently, purification is an integral part of the synthetic chemistry of colloidal nanocrystals, and the effect of purification methods must be considered in order to accurately compare and predict the behavior of otherwise similar nanocrystal samples. In this Feature Article we examine established and emerging approaches to the purification of colloidal nanoparticles from a nanocrystal surface chemistry viewpoint. Purification is generally achieved by exploiting differences in properties between the impurities and the nanoparticles. Three distinct properties are typically manipulated: polarity (relative solubility), electrophoretic mobility, and size. We discuss precipitation, extraction, electrophoretic methods, and size-based methods including ultracentrifugation, ultrafiltration, diafiltration, and size-exclusion chromatography. The susceptibility of quantum dots to changes in surface chemistry, with changes in photoluminescence decay associated with surface chemical changes, extends even into the case of core/shell structures. Accordingly, the goal of a more complete description of quantum dot surface chemistry has been a driver of innovation in colloidal nanocrystal purification methods. We specifically examine the effect of purification on surface chemistry and photoluminescence in quantum dots as an example of the challenges associated with nanocrystal purification and how improved understanding can result from increasingly precise techniques, and associated surface-sensitive analytical methods.
Collapse
Affiliation(s)
- Yi Shen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | - Megan Y Gee
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | - A B Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA. and USC Nanocenter, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
20
|
Hartstein KH, Brozek CK, Hinterding SOM, Gamelin DR. Copper-Coupled Electron Transfer in Colloidal Plasmonic Copper-Sulfide Nanocrystals Probed by in Situ Spectroelectrochemistry. J Am Chem Soc 2018; 140:3434-3442. [DOI: 10.1021/jacs.8b00174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kimberly H. Hartstein
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Carl K. Brozek
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stijn O. M. Hinterding
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Daniel R. Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
21
|
Hartstein KH, Erickson CS, Tsui EY, Marchioro A, Gamelin DR. Electron Stability and Negative-Tetron Luminescence in Free-Standing Colloidal n-Type CdSe/CdS Quantum Dots. ACS NANO 2017; 11:10430-10438. [PMID: 28915009 DOI: 10.1021/acsnano.7b05551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We examine the effects of CdS shell growth on photochemical reduction of colloidal CdSe quantum dots (QDs) and describe the spectroscopic properties of the resulting n-type CdSe/CdS QDs. CdS shell growth greatly slows electron trapping. Because of this improvement, complete two-electron occupancy of the 1Se conduction-band orbital is achieved in CdSe/CdS QDs and found to be much more stable than in past experiments. Simultaneous photoluminescence at two different energies is now observed from QDs possessing two excess conduction-band electrons, reflecting competing recombination of discretized 1Se and 1Pe conduction-band electrons within photogenerated four-carrier negative tetrons (three electrons and one hole). Stable occupancy of the 1Pe level is not achievable under these conditions, and possible reasons are discussed. The stability and accessibility of these multielectron configurations, and the facile spectroscopic detection of negative tetrons, both make photodoped core/shell QDs attractive for exploring the physical properties of free-standing heavily n-doped colloidal CdSe-based QDs.
Collapse
Affiliation(s)
- Kimberly H Hartstein
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Christian S Erickson
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Emily Y Tsui
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Arianna Marchioro
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| |
Collapse
|
22
|
Tsui EY, Carroll GM, Miller B, Marchioro A, Gamelin DR. Extremely Slow Spontaneous Electron Trapping in Photodoped n-Type CdSe Nanocrystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:3754-3762. [PMID: 28989233 PMCID: PMC5628775 DOI: 10.1021/acs.chemmater.7b00839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The trapping dynamics of conduction-band electrons in colloidal degenerately doped n-CdSe nanocrystals prepared by photochemical reduction (photodoping) were measured by direct optical methods. The nanocrystals show spontaneous electron trapping with distributed kinetics that extend to remarkably long timescales. Shifts in nanocrystal band-edge potentials caused by quantum confinement and surface ion stoichiometry were also measured by spectroelectrochemical techniques, and their relationship to the slow electron trapping is discussed. The very long electron-trapping timescales observed in these measurements are more consistent with atomic rearrangement than with fundamental electron-transfer processes. Such slow and broadly distributed electron-trapping dynamics are reminiscent of the well-known distributed dynamics of nanocrystal photoluminescence blinking, and potential relationships between the two phenomena are discussed.
Collapse
Affiliation(s)
- Emily Y Tsui
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700
| | - Gerard M Carroll
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700
| | - Brigit Miller
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700
| | - Arianna Marchioro
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700
| |
Collapse
|
23
|
Brozek CK, Hartstein KH, Gamelin DR. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals. J Am Chem Soc 2016; 138:10605-10. [DOI: 10.1021/jacs.6b05848] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Carl K. Brozek
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Kimberly H. Hartstein
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Daniel R. Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|