1
|
Liu T, Cai YP, Song QH. Visible-Light-Mediated Borylation of Arenes via an Electron Donor-Acceptor Complex of Thianthrenium Salts. J Org Chem 2025; 90:6569-6576. [PMID: 40320712 DOI: 10.1021/acs.joc.5c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Aryl borates are one of the most important synthetic materials in organic synthesis. Herein, we report a visible-light-induced electron donor-acceptor (EDA)-based borylation protocol between thianthrenium salts and 1,4-diazabicyclo[2.2.2]octane (DABCO) for the synthesis of various aryl boronates without a photocatalyst or stepwise processing. Remarkably, this photochemical strategy is compatible with a wide range of sensitive functional groups and affords excellent yields. Moreover, the quantitative recovery of thianthrene for feedstock synthesis lowers the reaction cost.
Collapse
Affiliation(s)
- Tao Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yi-Ping Cai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
2
|
Chen H, Zhang B, Chen S, Xiong F, Zhu X, Yu B, Long S. Recent advances in transition metal-mediated/ catalyzed radiofluorination of arenes and heteroarenes for positron emission tomography. Bioorg Chem 2025; 157:108272. [PMID: 40015108 DOI: 10.1016/j.bioorg.2025.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
Positron emission tomography (PET) imaging endows the possibility of precise diagnosis and effective treatment of diseases. Aromatic (hetero)cycle is one of the most fundamental groups in pharmaceuticals as well as in the development of PET tracers. In particular, incorporation of 18F to aromatic (hetero)cycles has accelerated the progress of nuclear medicine tracers. Current trend indicates a rapid progress in 18F-labeling of aromatic (hetero)cycles for PET imaging. Transition metal-catalyzed 18F-labeling method speeds up the reaction by lowering the activation energy of the substrate by the metal complex. The reaction conditions are mild, and a wide range of substrates can be used. In this article we systematically reviewed the methods of radioactive 18F-labeling of aromatic (hetero)cycles with different precursors mediated by transition metals‑copper, ruthenium, nickel, palladium, silver, and titanium. The precursors, radiolabeling conditions, catalytic efficiency, catalytic mechanism, optimization of transition metal-catalyzed 18F-labeling methods, and corresponding frontier applications of 18F-labeled molecular probes were discussed.
Collapse
Affiliation(s)
- Haiyan Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China
| | - Buchuan Zhang
- Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China
| | - Siyu Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Feng Xiong
- Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China
| | - Xiaohua Zhu
- Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China.
| | - Bo Yu
- Tongji Hospital, Department of Nuclear Medicine Tongji Medical College Huazhong University of Science & Technology, 1095 Jiefang Ave, Wuhan 430,030, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1(st) Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| |
Collapse
|
3
|
Dohi T, Elboray EE, Kikushima K, Morimoto K, Kita Y. Iodoarene Activation: Take a Leap Forward toward Green and Sustainable Transformations. Chem Rev 2025; 125:3440-3550. [PMID: 40053418 PMCID: PMC11951092 DOI: 10.1021/acs.chemrev.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Constructing chemical bonds under green sustainable conditions has drawn attention from environmental and economic perspectives. The dissociation of (hetero)aryl-halide bonds is a crucial step of most arylations affording (hetero)arene derivatives. Herein, we summarize the (hetero)aryl halides activation enabling the direct (hetero)arylation of trapping reagents and construction of highly functionalized (hetero)arenes under benign conditions. The strategies for the activation of aryl iodides are classified into (a) hypervalent iodoarene activation followed by functionalization under thermal/photochemical conditions, (b) aryl-I bond dissociation in the presence of bases with/without organic catalysts and promoters, (c) photoinduced aryl-I bond dissociation in the presence/absence of organophotocatalysts, (d) electrochemical activation of aryl iodides by direct/indirect electrolysis mediated by organocatalysts and mediators acting as electron shuttles, and (e) electrophotochemical activation of aryl iodides mediated by redox-active organocatalysts. These activation modes result in aryl iodides exhibiting diverse reactivity as formal aryl cations/radicals/anions and aryne precursors. The coupling of these reactive intermediates with trapping reagents leads to the facile and selective formation of C-C and C-heteroatom bonds. These ecofriendly, inexpensive, and functional group-tolerant activation strategies offer green alternatives to transition metal-based catalysis.
Collapse
Affiliation(s)
- Toshifumi Dohi
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Elghareeb E. Elboray
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Department
of Chemistry, Faculty of Science, South
Valley University, Qena 83523, Egypt
| | - Kotaro Kikushima
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Koji Morimoto
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
4
|
Spula C, Becker V, Talajić G, Grätz S, Užarević K, Borchardt L. Metal-Free C-X Functionalization in Solid-State via Photochemistry in Ball Mills. CHEMSUSCHEM 2025; 18:e202401022. [PMID: 39404649 PMCID: PMC11874632 DOI: 10.1002/cssc.202401022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024]
Abstract
We report the first metal- and catalyst-free protocol for the facile cross-coupling of aryl halides towards C-B, C-P and C-S bonds under solid-state ball milling conditions via UV light irradiation. The reactions can be performed in the absence of bulk solvents at room temperature in a mixer mill, yielding up to 99 % and being tolerant towards various functionalized aryl halides (X=I or Br). Furthermore, we developed a novel photoreactor design increasing the light intensity. With this we could demonstrate that our protocol surpasses classical solvent based as well as purely mechanochemical approaches in terms of green metrics and energy efficiency.
Collapse
Affiliation(s)
- Carolina Spula
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstr. 15044801BochumGermany
| | - Valentin Becker
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstr. 15044801BochumGermany
| | - Gregor Talajić
- Divison of Organic ChemistryFaculty of ScienceUniversity of ZagrebHorvatovac 102aZagreb10000Croatia
| | - Sven Grätz
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstr. 15044801BochumGermany
| | - Krunoslav Užarević
- Division of Physical ChemistryRuđer Bošković InstituteBijenička 54Zagreb10000Croatia
| | - Lars Borchardt
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstr. 15044801BochumGermany
| |
Collapse
|
5
|
Fan Y, Zhang T, Wu M, Liu P, Sun P. Alkylthiolation of Aryl Halides under Electrochemical Conditions. J Org Chem 2024; 89:17744-17751. [PMID: 39586025 DOI: 10.1021/acs.joc.4c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
An electrochemical protocol for the alkylthiolation of aryl halides was developed. By using dialkyl disulfides as the alkylthio sources, Mg plate as the sacrificial anode and graphite felt (GF) as the cathode, a series of aryl sulfides were obtained in moderate to good yields. The approach was also suitable for the synthesis of aryl selenides. This method has the features such as simple reaction conditions and good functional group compatibility, which makes it have a good application prospect in organic synthesis and drug synthesis.
Collapse
Affiliation(s)
- Yingsibing Fan
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Tan Zhang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Mengyun Wu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
6
|
Spiller TE, Donabauer K, Brooks AF, Witek JA, Bowden GD, Scott PJH, Sanford MS. Room-Temperature Photochemical Copper-Mediated Fluorination of Aryl Iodides. Org Lett 2024; 26:6433-6437. [PMID: 39024514 PMCID: PMC11316249 DOI: 10.1021/acs.orglett.4c02227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
This report describes a method for the photochemical Cu-mediated fluorination of aryl iodides with AgF via putative aryl radical (Ar•) intermediates. It involves irradiating an aryl iodide with UVB light (λmax = 313 nm) in the presence of a mixture of CuI and CuII salts and AgF. Under these conditions, fluorination proceeds at room temperature for substrates containing diverse substituents, including alkoxy and alkyl groups, ketones, esters, sulfonate esters, sulfonamides, and protected amines. This method has been translated to radiofluorination using a combination of K18F, K3PO4, and AgOTf.
Collapse
Affiliation(s)
- Taylor E. Spiller
- Department of Chemistry, University of Michigan, 930 North Avenue, Ann Arbor, Michigan, 48104, United States
| | - Karsten Donabauer
- Department of Chemistry, University of Michigan, 930 North Avenue, Ann Arbor, Michigan, 48104, United States
| | - Allen F. Brooks
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jason A. Witek
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Gregory D. Bowden
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North Avenue, Ann Arbor, Michigan, 48104, United States
| |
Collapse
|
7
|
Kim S, Zhou X, Li Y, Yang Q, Liu X, Graf R, Blom PWM, Ferguson CTJ, Landfester K. Size-Dependent Photocatalytic Reactivity of Conjugated Microporous Polymer Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404054. [PMID: 38925104 DOI: 10.1002/adma.202404054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Particle size is a critical factor for improving photocatalytic reactivity of conjugated microporous polymers (CMPs) as mass transfer in the porous materials is often the rate-limiting step. However, due to the synthetic challenge of controlling the size of CMPs, the impact of particle size is yet to be investigated. To address this problem, a simple and versatile dispersion polymerization route that can synthesize dispersible CMP nanoparticles with controlled size from 15 to 180 nm is proposed. Leveraging the precise control of the size, it is demonstrated that smaller CMP nanoparticles have dramatically higher photocatalytic reactivity in various organic transformations, achieving more than 1000% enhancement in the reaction rates by decreasing the size from 180 to 15 nm. The size-dependent photocatalytic reactivity is further scrutinized using a kinetic model and transient absorption spectroscopy, revealing that only the initial 5 nm-thick surface layer of CMP nanoparticles is involved in the photocatalytic reactions because of internal mass transfer limitations. This finding substantiates the potential of small CMP nanoparticles to efficiently use photo-generated excitons and improve energy-efficiency of numerous photocatalytic reactions.
Collapse
Affiliation(s)
- Seunghyeon Kim
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xin Zhou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yungui Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Qiqi Yang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xiaomin Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Calum T J Ferguson
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
8
|
Araujo Dias AJ, Muranaka A, Uchiyama M, Tanaka K, Nagashima Y. Vibration-mediated long-wavelength photolysis of electronegative bonds beyond S 0-S 1 and S 0-T 1 transitions. Commun Chem 2024; 7:126. [PMID: 38834838 DOI: 10.1038/s42004-024-01208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
Photolysis is an attractive method in organic synthesis to produce free radicals through direct bond cleavage. However, in this method, specific irradiation wavelengths of light have been considered indispensable for excitation through S0-Sn or S0-Tn transitions. Here we report the photoinduced homolysis of electronegative interelement bonds using light at wavelengths much longer than theoretically and spectroscopically predicted for the S0-Sn or S0-Tn transitions. This long-wavelength photolysis proceeds in N-Cl, N-F, and O-Cl bonds at room temperature under blue, green, and red LED irradiation, initiating diverse radical reactions. Through experimental, spectroscopic, and computational studies, we propose that this "hidden" absorption is accessible via electronic excitations from naturally occurring vibrationally excited ground states to unbonded excited states and is due to the electron-pair repulsion between electronegative atoms.
Collapse
Affiliation(s)
- Antônio Junio Araujo Dias
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Atsuya Muranaka
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
9
|
Liu S, Luo Z, Zhao S, Luo M, Zeng X. Cr-catalyzed borylation of C(aryl)-F bonds using a terpyridine ligand. Chem Commun (Camb) 2024; 60:5201-5204. [PMID: 38651837 DOI: 10.1039/d4cc01330a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The defluoroborylation of fluoroarenes by chromium-catalyzed cleavage of unactivated C-F bonds is described. The reaction uses HBpin as the boron source, low-cost and commercially available chromium salt as the precatalyst, and terpyridine as a crucial ligand, providing a protocol with atom-efficient benefits and a wide range of applicable substrates for the functionalization of aryl C-F bonds. Preliminary mechanistic studies indicate that an unprecedented Cr-catalyzed magnesiation of the unactivated C-F bond occurred. The generated arylmagnesium intermediates then participated in the subsequent borylation reaction. The application of the strategy in the preparation of valuable derivatives is demonstrated by the late-stage functionalization of boronate ester groups.
Collapse
Affiliation(s)
- Senlin Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zheng Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Shuaiyong Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Meiming Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
10
|
Ji CL, Chen H, Gao Q, Han J, Li W, Xie J. Dinuclear gold-catalyzed divergent dechlorinative radical borylation of gem-dichloroalkanes. Nat Commun 2024; 15:3721. [PMID: 38698059 PMCID: PMC11066019 DOI: 10.1038/s41467-024-48085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
The enormous and widespread use of organoboronic acids has prompted the development of innovative synthetic methodologies to meet the demands on structural diversity and functional group tolerance. The existing photoinduced defunctionalization radical borylation, typically focused on the conversion of one C-X bond (X= Br, I, or other leaving group) into only one C-B bond. Herein, we disclose a divergent radical dechloroborylation reaction enabled by dinuclear gold catalysis with visible light irradiation. A wide range of structurally diverse alkyl boronic, α-chloroboronic, and gem-diboronic esters can be synthesized in moderate to good yields (up to 92%). Its synthetic robustness is further demonstrated on a preparative scale and applied to late-stage diversification of complex molecules. The process hinges on a C-Cl bond relay activation in readily available gem-dichloroalkanes through inner-sphere electron transfer, overcoming the redox potential limits of unreactive alkyl chlorides.
Collapse
Affiliation(s)
- Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongliang Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi Gao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Prakash A, Basappa S, Jeebula B, Nagaraju DH, Dhayal RS, Bose SK. A Simple Nickel Metal-Organic Framework-Catalyzed Borylation of Aryl Chlorides and Bromides. Org Lett 2024; 26:2569-2573. [PMID: 38527017 DOI: 10.1021/acs.orglett.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
We report a recyclable and efficient catalyst system based on a nickel-benzene tricarboxylic acid metal-organic framework (Ni-BTC MOF) for the borylation of aryl halides, including aryl chlorides, with bis(pinacolato)diboron, affording aryl boronate esters in high yields (up to >99% yield) with high selectivity. This protocol demonstrates broad functional group tolerance. Catalyst can be recyclable up to four times, and gram-scale reactions further highlights the usefulness of this method. In situ EPR experiments confirmed the formation of catalytically active Ni(I) species.
Collapse
Affiliation(s)
- Aishwarya Prakash
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore 562112, India
| | - Suma Basappa
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore 562112, India
| | - Bhavya Jeebula
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore 562112, India
| | - Doddahalli H Nagaraju
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore 560064, India
| | - Rajendra S Dhayal
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore 562112, India
| |
Collapse
|
12
|
Tian X, Liu Y, Yakubov S, Schütte J, Chiba S, Barham JP. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem Soc Rev 2024; 53:263-316. [PMID: 38059728 DOI: 10.1039/d2cs00581f] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.
Collapse
Affiliation(s)
- Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Jonathan Schütte
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
13
|
Hooker LV, Bandar JS. Synthetic Advantages of Defluorinative C-F Bond Functionalization. Angew Chem Int Ed Engl 2023; 62:e202308880. [PMID: 37607025 PMCID: PMC10843719 DOI: 10.1002/anie.202308880] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Much progress has been made in the development of methods to both create compounds that contain C-F bonds and to functionalize C-F bonds. As such, C-F bonds are becoming common and versatile synthetic functional handles. This review summarizes the advantages of defluorinative functionalization reactions for small molecule synthesis. The coverage is organized by the type of carbon framework the fluorine is attached to for mono- and polyfluorinated motifs. The main challenges, opportunities and advances of defluorinative functionalization are discussed for each class of organofluorine. Most of the text focuses on case studies that illustrate how defluorofunctionalization can improve routes to synthetic targets or how the properties of C-F bonds enable unique mechanisms and reactions. The broader goal is to showcase the opportunities for incorporating and exploiting C-F bonds in the design of synthetic routes, improvement of specific reactions and advent of new methods.
Collapse
Affiliation(s)
- Leidy V Hooker
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
14
|
Zhang BS, Jia WY, Wang YM, Oliveira JCA, Warratz S, Zhang ZQ, Gou XY, Liang YM, Wang XC, Quan ZJ, Ackermann L. Template Synthesis to Solve the Unreachable Ortho C-H Functionalization Reaction of Aryl Iodide. J Org Chem 2023; 88:16539-16546. [PMID: 37947111 DOI: 10.1021/acs.joc.3c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
This report describes the use of a simple Pd/NBE catalytic system to achieve ortho C-H oxylation and phosphonylation and other functionalizations of aryl iodide through templated conversion reactions. Dimethylamine is introduced in the ortho-site of aryl iodide through C-H amination, and aryl dimethylamine is quickly converted to methyl quaternary ammonium salt precipitation. Methyl quaternary ammonium salt avoids Hofmann elimination in subsequent functionalization. This method solves various ortho functionalization reactions of aryl iodide that have not been achieved for a long time in the field of Pd/NBE chemistry indirectly.
Collapse
Affiliation(s)
- Bo-Sheng Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Institut für Organische und Biomolekulare Chemie and Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, Göttingen 37077, Germany
| | - Wan-Yuan Jia
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yi-Ming Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie and Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, Göttingen 37077, Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie and Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, Göttingen 37077, Germany
| | - Ze-Qiang Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xue-Ya Gou
- Institut für Organische und Biomolekulare Chemie and Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, Göttingen 37077, Germany
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, Göttingen 37077, Germany
| |
Collapse
|
15
|
Bhawar R, Saini S, Patil KS, Nagaraju DH, Bose SK. Synthesis of Alkyl and Aryl Boronate Esters via CeO 2-Catalyzed Borylation of Alkyl and Aryl Electrophiles Including Alkyl Chlorides. J Org Chem 2023; 88:16270-16279. [PMID: 37957832 DOI: 10.1021/acs.joc.3c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A recyclable protocol using a CeO2-nanorod catalyst for borylation of alkyl halides with B2pin2 (pin = OCMe2CMe2O) is reported. A wide range of synthetically useful alkyl boronate esters are readily obtained from primary and secondary alkyl electrophiles, including unactivated alkyl chlorides, demonstrating broad utility and functional group tolerance. Preliminary investigation revealed an involvement of in situ formed catalytically active boryl species. The catalyst can be reused for up to six runs without appreciable loss in activity. In addition, we have demonstrated the use of this recyclable catalyst for the borylation of aryl halides with B2pin2, providing valuable aryl boronate esters under neat conditions.
Collapse
Affiliation(s)
- Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, India
| | - Suresh Saini
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, India
| | - Kiran S Patil
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, India
| | - D H Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore, 560064, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, India
| |
Collapse
|
16
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Bhanja R, Bera SK, Mal P. Photocatalyst- and Transition Metal-Free Light-Induced Borylation Reactions. Chem Asian J 2023; 18:e202300691. [PMID: 37747303 DOI: 10.1002/asia.202300691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
The increasing global warming concerns have propelled a surge in the demand for sustainable energy sources within the domain of synthetic organic chemistry. A particularly prominent area of research has been the development of mild synthetic strategies for generating heterocyclic compounds. Heterocyclic compounds containing boron have notably risen to prominence as pivotal reagents in a myriad of organic transformations, showcasing their wide-ranging applicability. This comprehensive review is aimed at collecting the literature pertaining to borylation reactions induced by light, specifically focusing on photocatalyst-free and transition metal-free methodologies. The central emphasis is on delving into selective mechanistic investigations. The amalgamation and analysis of these research insights elucidate the substantial potential inherent in eco-friendly approaches for synthesizing heterocyclic compounds, thus propelling the landscape of sustainable organic chemistry.
Collapse
Affiliation(s)
- Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| |
Collapse
|
18
|
Sun W, Wilding-Steele L, Brown RCD, Harrowven DC. Aryl-aryl cross-coupling reactions without reagents or catalysts: photocyclization of ortho-iodoaryl ethers and related compounds via triplet aryl cation intermediates. Chem Commun (Camb) 2023; 59:10797-10800. [PMID: 37594190 DOI: 10.1039/d3cc03271j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Cyclisations of benzyl ortho-iodoaryl ethers to benzo[c]chromenes can be effected without reagents or catalysts by irradiation with UVC under flow. Reactions proceed via triplet aryl cation generation, 5-exo and 3-exo-cyclisations, and rearomatisation. They have wide scope, are easy to effect and extend to a myriad of related ring systems.
Collapse
Affiliation(s)
- Wei Sun
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Luke Wilding-Steele
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Richard C D Brown
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - David C Harrowven
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| |
Collapse
|
19
|
Singh V, Singh R, Hazari AS, Adhikari D. Unexplored Facet of Pincer Ligands: Super-Reductant Behavior Applied to Transition-Metal-Free Catalysis. JACS AU 2023; 3:1213-1220. [PMID: 37124293 PMCID: PMC10131200 DOI: 10.1021/jacsau.3c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Pincer ligands are well-established supporting ancillaries to afford robust coordination to metals across the periodic table. Despite their widespread use in developing homogeneous catalysts, the redox noninnocence of the ligand backbone is less utilized in steering catalytic transformations. This report showcases a trianionic, symmetric NNN-pincer to drive C-C cross-coupling reactions and heterocycle formation via C-H functionalization, without any coordination to transition metals. The starting substrates are aryl chlorides that can tease the limit of a catalyst's ability to promote a reductive cleavage at a much demanding potential of -2.90 V vs SCE. The reducing power of the simple trianionic ligand backbone has been tremendously amplified by shining visible light on it. The catalyst's success relies on its easy access to the one-electron oxidized iminosemiquinonate form that has been thoroughly characterized by X-band electron paramagnetic resonance spectroscopy through spectroelectrochemical experiments. The moderately long-lived excited-state lifetime (10.2 ns) and such a super-reductive ability dependent on the one-electron redox shuttle between the bisamido and iminosemiquinonato forms make this catalysis effective.
Collapse
Affiliation(s)
- Vikramjeet Singh
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Mohali, SAS Nagar 140306, India
| | - Rahul Singh
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Mohali, SAS Nagar 140306, India
| | | | - Debashis Adhikari
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Mohali, SAS Nagar 140306, India
| |
Collapse
|
20
|
Matsuo K, Yamaguchi E, Itoh A. Halogen-Bonding-Promoted Photoinduced C-X Borylation of Aryl Halide Using Phenol Derivatives. J Org Chem 2023; 88:6176-6181. [PMID: 37083371 DOI: 10.1021/acs.joc.3c00201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
This study investigates the photoinduced C-X borylation reaction of aryl halides by forming a halogen-bonding (XB) complex using 2-naphthol as an XB acceptor. The method is chemoselective and broadly functional group tolerant and provides concise access to corresponding boronate esters. Mechanistic studies reveal that forming the XB complex between aryl halide and naphthol acts as an electron donor-acceptor complex to furnish aryl radicals through photoinduced electron transfer.
Collapse
Affiliation(s)
- Kazuki Matsuo
- Laboratory of Pharmaceuticals Synthetic, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceuticals Synthetic, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceuticals Synthetic, Gifu Pharmaceutical University 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
21
|
Bai J, Li S, Zhu R, Li Y, Li W. B 2(OH) 4-Mediated Reductive Transamidation of N-Acyl Benzotriazoles with Nitro Compounds En Route to Aqueous Amide Synthesis. J Org Chem 2023; 88:3714-3723. [PMID: 36888556 DOI: 10.1021/acs.joc.2c02995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
We herein developed a reductive transamidation reaction between N-acyl benzotriazoles (AcBt) and organic nitro compounds or NaNO2 under mild conditions. This protocol employed the stable and readily available B2(OH)4 as the reducing agent and H2O as the ideal solvent. N-Deuterated amides can be synthesized when conducting the reaction in D2O. A reasonable reaction mechanism involving bond metathesis between the AcBt amide and amino boric acid intermediate was proposed to explain the unique nature of AcBt.
Collapse
Affiliation(s)
- Jin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shangzhang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Riqian Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
22
|
Sheng H, Liu Q, Zhang BB, Wang ZX, Chen XY. Visible-Light-Induced N-Heterocyclic Carbene-Catalyzed Single Electron Reduction of Mono-Fluoroarenes. Angew Chem Int Ed Engl 2023; 62:e202218468. [PMID: 36633173 DOI: 10.1002/anie.202218468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/13/2023]
Abstract
Fluoroarenes are abundant and readily available feedstocks. However, due to the high reduction potentials of mono-fluoroarenes, their photoreduction remains a continuing challenge, motivating the development of efficient activation modes to address this issue. This report presents the blue light-induced N-heterocyclic carbene (NHC)-catalyzed single electron reduction of mono-fluoroarenes for biaryl cross-couplings. We discovered that under blue light irradiation, NHC/tBuOK combination could construct powerful photoactive architectures to promote single electron transfer for Caryl -F bond reduction via forming highly reducing NHC radical anion. Notably, the strategy was also successful to reduce Caryl -O, Caryl -N, and Caryl -S bonds for biaryl cross-couplings.
Collapse
Affiliation(s)
- He Sheng
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| |
Collapse
|
23
|
Zou W, Yang M, He L, Gao L, Wang G, Li S. Mechanistic Insights into the Metal-Free Deoxygenative Borylation of Ketones and Aldehydes with Bis(catecholato)diborane. Chemistry 2023; 29:e202203526. [PMID: 36547373 DOI: 10.1002/chem.202203526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
The mechanisms of direct deoxygenative borylation of acetone and benzaldehyde with bis(catecholato)diborane (B2 cat2 ) in the solvent N,N-dimethylacetamide (DMA) are investigated through detailed density functional theory calculations. These calculations show that the isomer 1,2-B2 cat2 in situ generated from 1,1-B2 cat2 induced by DMA is the reactive boron intermediate for the reactions. The addition of the B-B bond of 1,2-B2 cat2 to the C=O bond of acetone or benzaldehyde via a concerted [2σ+2π]-cycloaddition-like transition state is the rate-limiting step for both the triboration reaction of acetone and the monoboration reaction of benzaldehyde. DMA not only acts as the solvent but also promotes the structural isomerization of B2 cat2 , the deoxygenation of acetone to form the vinyl boronate intermediate and subsequent diboration of vinyl boronate with 1,2-B2 cat2 , as well as the protodeboronation of the gem-diboronate intermediate in the deoxygenative borylation of benzaldehyde. The presented computational results can explain the observed experimental facts and provide insight into the roles of the isomeric 1,2-B2 cat2 and the solvent DMA in related reactions.
Collapse
Affiliation(s)
- Wentian Zou
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Mo Yang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Linke He
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.,Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
24
|
Lamola JL, Moshapo PT, Holzapfel CW, Makhubela BC, Christopher Maumela M. Efficient system for facile access to ortho-substituted aryl boronates through palladium-catalysed borylation. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
25
|
Luo L, Tang S, Wu J, Jin S, Zhang H. Transition Metal-Free Aromatic C-H, C-N, C-S and C-O Borylation. CHEM REC 2023; 23:e202300023. [PMID: 36850026 DOI: 10.1002/tcr.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Aromatic organoboron compounds are highly valuable building blocks in organic chemistry. They were mainly synthesized through aromatic C-H and C-Het borylation, in which transition metal-catalysis dominate. In the past decade, with increasing attention to sustainable chemistry, numerous transition metal-free C-H and C-Het borylation transformations have been developed and emerged as efficient methods towards the synthesis of aromatic organoboron compounds. This account mainly focuses on recent advances in transition metal-free aromatic C-H, C-N, C-S, and C-O borylation transformations and provides insights to where further developments are required.
Collapse
Affiliation(s)
- Lu Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shuai Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Jiangyue Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
26
|
Li H, Li S, Hu H, Sun R, Liu M, Ding A, Liu X, Luo W, Fu Z, Guo S, Cai H. Visible-light-induced C(sp 3)-C(sp 3) bond formation via radical/radical cross-coupling. Chem Commun (Camb) 2023; 59:1205-1208. [PMID: 36629273 DOI: 10.1039/d2cc05840e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Radical/radical cross-coupling remains challenging due to diffusion control issues. Herein, we report a visible-light-induced radical/radical cross-coupling reaction of quaternary ammonium salts and Hantzschs via C-N and C-C bond cleavage. The current synthetic approach furnishes 1,2-diphenylethanes in moderate to good yields and provides a method for the construction of the C(sp3)-C(sp3) bond.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Sen Li
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Huimin Hu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Runbo Sun
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Meixia Liu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Anjun Ding
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Xiaoyong Liu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Wenlin Luo
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Zhengjiang Fu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Shengmei Guo
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Hu Cai
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| |
Collapse
|
27
|
Electrochemical borylation of nitroarenes. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Anti-Markovnikov ring-opening of sulfonium salts with alkynes by visible light/copper catalysis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Wei Q, Lee Y, Liang W, Chen X, Mu BS, Cui XY, Wu W, Bai S, Liu Z. Photocatalytic direct borylation of carboxylic acids. Nat Commun 2022; 13:7112. [PMID: 36402764 PMCID: PMC9675845 DOI: 10.1038/s41467-022-34833-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
The preparation of high value-added boronic acids from cheap and plentiful carboxylic acids is desirable. To date, the decarboxylative borylation of carboxylic acids is generally realized through the extra step synthesized redox-active ester intermediate or in situ generated carboxylic acid covalent derivatives above 150 °C reaction temperature. Here, we report a direct decarboxylative borylation method of carboxylic acids enabled by visible-light catalysis and that does not require any extra stoichiometric additives or synthesis steps. This operationally simple process produces CO2 and proceeds under mild reaction conditions, in terms of high step economy and good functional group compatibility. A guanidine-based biomimetic active decarboxylative mechanism is proposed and rationalized by mechanistic studies. The methodology reported herein should see broad application extending beyond borylation.
Collapse
Affiliation(s)
- Qiang Wei
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Yuhsuan Lee
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Weiqiu Liang
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Xiaolei Chen
- grid.32566.340000 0000 8571 0482Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000 China
| | - Bo-shuai Mu
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Xi-Yang Cui
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Wangsuo Wu
- grid.32566.340000 0000 8571 0482Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000 China
| | - Shuming Bai
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Zhibo Liu
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
30
|
Xu L, Dong Z, Zhang Q, Deng N, Li SY, Xu HJ. Protoboration of Alkynes and Miyaura Borylation Catalyzed by Low Loadings of Palladium. J Org Chem 2022; 87:14879-14888. [PMID: 36223839 DOI: 10.1021/acs.joc.2c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The versions of Miyaura borylation and protoboration of alkynes catalyzed by low loadings of palladium (400 mol ppm = 0.04 mol %) have been developed. These transformations have a broad substrate scope, good functional-group compatibility, and gram-scale synthetic ability.
Collapse
|
31
|
Moore JT, Dorantes MJ, Pengmei Z, Schwartz TM, Schaffner J, Apps SL, Gaggioli CA, Das U, Gagliardi L, Blank DA, Lu CC. Light-Driven Hydrodefluorination of Electron-Rich Aryl Fluorides by an Anionic Rhodium-Gallium Photoredox Catalyst. Angew Chem Int Ed Engl 2022; 61:e202205575. [PMID: 36017770 PMCID: PMC9826370 DOI: 10.1002/anie.202205575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 01/11/2023]
Abstract
An anionic Rh-Ga complex catalyzed the hydrodefluorination of challenging C-F bonds in electron-rich aryl fluorides and trifluoromethylarenes when irradiated with violet light in the presence of H2 , a stoichiometric alkoxide base, and a crown-ether additive. Based on theoretical calculations, the lowest unoccupied molecular orbital (LUMO), which is delocalized across both the Rh and Ga atoms, becomes singly occupied upon excitation, thereby poising the Rh-Ga complex for photoinduced single-electron transfer (SET). Stoichiometric and control reactions support that the C-F activation is mediated by the excited anionic Rh-Ga complex. After SET, the proposed neutral Rh0 intermediate was detected by EPR spectroscopy, which matched the spectrum of an independently synthesized sample. Deuterium-labeling studies corroborate the generation of aryl radicals during catalysis and their subsequent hydrogen-atom abstraction from the THF solvent to generate the hydrodefluorinated arene products. Altogether, the combined experimental and theoretical data support an unconventional bimetallic excitation that achieves the activation of strong C-F bonds and uses H2 and base as the terminal reductant.
Collapse
Affiliation(s)
- James T. Moore
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Michael J. Dorantes
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Zihan Pengmei
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Timothy M. Schwartz
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA,Institut für Anorganische ChemieUniversität BonnGerhard-Domagk-Str. 1Bonn53121Deutschland
| | - Jacob Schaffner
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Samantha L. Apps
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Carlo A. Gaggioli
- Department of ChemistryUniversity of Chicago5735 S Ellis Ave.ChicagoIllinois60637USA
| | - Ujjal Das
- Institut für Anorganische ChemieUniversität BonnGerhard-Domagk-Str. 1Bonn53121Deutschland
| | - Laura Gagliardi
- Department of ChemistryUniversity of Chicago5735 S Ellis Ave.ChicagoIllinois60637USA
| | - David A. Blank
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Connie C. Lu
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA,Institut für Anorganische ChemieUniversität BonnGerhard-Domagk-Str. 1Bonn53121Deutschland
| |
Collapse
|
32
|
Pan L, Deckert MM, Cooke MV, Bleeke AR, Laulhé S. Solvent Anions Enable Photoinduced Borylation and Phosphonation of Aryl Halides via EDA Complexes. Org Lett 2022; 24:6466-6471. [PMID: 36007222 PMCID: PMC9652786 DOI: 10.1021/acs.orglett.2c02631] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the synthesis of aryl boronic esters and aryl phosphonate esters promoted by visible-light in the absence of transition-metals or photoredox catalysts. The transformation proceeds at room temperature using sodium hydride, as a non-nucleophilic base, and exhibits functional group tolerance for anilines, amides, and esters. UV-vis spectroscopy, radical trapping experiments, and computational (TD-DFT) calculations suggest an electron-donor-acceptor (EDA) complex between solvent anions and aryl halides as the species responsible for this reactivity.
Collapse
Affiliation(s)
- Lei Pan
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5143, United States
| | - Macy M Deckert
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5143, United States
| | - Maria Victoria Cooke
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5143, United States
| | - Annika R Bleeke
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5143, United States
| | - Sébastien Laulhé
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5143, United States
| |
Collapse
|
33
|
Moore JT, Dorantes MJ, Pengmei Z, Schwartz TM, Schaffner J, Apps SL, Gaggioli CA, Das U, Gagliardi L, Blank DA, Lu CC. Light‐Driven Hydrodefluorination of Electron‐Rich Aryl Fluorides by an Anionic Rhodium‐Gallium Photoredox Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- James T. Moore
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Michael J. Dorantes
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Zihan Pengmei
- University of Chicago Department of Chemistry Chemistry UNITED STATES
| | - Timothy M. Schwartz
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Inorganic Chemistry GERMANY
| | - Jacob Schaffner
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Samantha L. Apps
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Carlo A. Gaggioli
- University of Chicago Department of Chemistry Chemistry UNITED STATES
| | - Ujjal Das
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Inorganic Chemistry GERMANY
| | - Laura Gagliardi
- University of Chicago Department of Chemistry Chemistry UNITED STATES
| | - David A. Blank
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Connie C. Lu
- University of Minnesota College of Science and Engineering Chemistry Gerhard-Domagk-Straße 1 53121 Bonn GERMANY
| |
Collapse
|
34
|
Hazra S, Mahato S, Kanti Das K, Panda S. Transition-Metal-Free Heterocyclic Carbon-Boron Bond Formation. Chemistry 2022; 28:e202200556. [PMID: 35438817 DOI: 10.1002/chem.202200556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/16/2022]
Abstract
Heteroaryl boronic acids and esters are extremely important and valuable intermediates because of their wide application in the synthesis of marketed drugs and bioactive compounds. Over the last couple of decades, the construction of highly important heteroaryl carbon-boron bonds has created huge attention. The transition-metal-free protocols are more green, less sensitive to air and moisture, and also economically advantageous over the transition-metal-based protocols. The transition-metal-free C-H borylation of heteroarenes and C-X (X=halogen) borylation of heteroaryl halides represents an excellent approach for their synthesis. Also, various cyclization and alkyne activation protocols have been recently established for their synthesis. The goal of this review article is to summarize the existing literature and the current state of the art for transition-metal-free synthesis of heteroaryl boronic acid and esters.
Collapse
Affiliation(s)
- Subrata Hazra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Somenath Mahato
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
35
|
Liu X, Xu B, Su W. Ni-Catalyzed Deoxygenative Borylation of Phenols Via O-Phenyl-uronium Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaojie Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, 2 Wulongjiang Road, Fuzhou 350108, China
| | - Biping Xu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, 2 Wulongjiang Road, Fuzhou 350108, China
| |
Collapse
|
36
|
Raut RK, Waghamare AB, Patel N, Majumdar M. Role of N, N′‐diboryl‐4, 4′‐bipyridinylidene in the Transition metal‐free Borylation of Aryl Halides and Direct C‐H arylation of Unactivated Benzene. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ravindra K. Raut
- Indian Institute of Science Education and Research Pune Chemistry INDIA
| | | | - Niranjan Patel
- Indian Institute of Science Education and Research Pune Chemistry INDIA
| | - Moumita Majumdar
- Indian Institute of Science Education and Research, Pune Chemistry Dr. Homi Bhabha RoadPashan 411008 Pune INDIA
| |
Collapse
|
37
|
Annibaletto J, Jacob C, Theunissen C. Ammonium Salts as Convenient Radical Precursors Using Iridium Photoredox Catalysis. Org Lett 2022; 24:4170-4175. [PMID: 35667038 DOI: 10.1021/acs.orglett.2c01407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ammonium salts are usually considered as highly challenging to reduce into the corresponding radicals because of the strength of their carbon-nitrogen bond. Here, we disclose that several ammonium salts can be readily activated using iridium photoredox catalysis to form radicals and illustrate the synthetic utility of this activation of strong C-N bonds with hydrodeamination reactions and radical couplings. Cyclic voltammetry was exploited to rationalize the reactivity observed for the activation of these ammonium salts.
Collapse
Affiliation(s)
- Julien Annibaletto
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Clément Jacob
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| |
Collapse
|
38
|
Adamczyk-Woźniak A, Sporzyński A. Merging Electron Deficient Boronic Centers with Electron-Withdrawing Fluorine Substituents Results in Unique Properties of Fluorinated Phenylboronic Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113427. [PMID: 35684365 PMCID: PMC9182515 DOI: 10.3390/molecules27113427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Fluorinated boron species are a very important group of organoboron compounds used first of all as receptors of important bioanalytes, as well as biologically active substances, including Tavaborole as an antifungal drug. The presence of substituents containing fluorine atoms increases the acidity of boronic compounds, which is crucial from the point of view of their interactions with analytes or certain pathogen's enzymes. The review discusses the electron acceptor properties of fluorinated boronic species using both the acidity constant (pKa) and acceptor number (AN) in connection with their structural parameters. The NMR spectroscopic data are also presented, with particular emphasis on 19F resonance due to the wide range of information that can be obtained from this technique. Equilibria in solutions, such as the dehydration of boronic acid to form boroxines and their esterification or cyclization with the formation of 3-hydroxyl benzoxaboroles, are discussed. The results of the latest research on the biological activity of boronic compounds by experimental in vitro methods and theoretical calculations using docking studies are also discussed.
Collapse
Affiliation(s)
- Agnieszka Adamczyk-Woźniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Correspondence: (A.A.-W.); (A.S.); Tel.: +48-22-2345737 (A.A.-W.)
| | - Andrzej Sporzyński
- Faculty of Agriculture and Forestry, University of Warmia and Mazury, Oczapowskiego 2, 10-719 Olsztyn, Poland
- Correspondence: (A.A.-W.); (A.S.); Tel.: +48-22-2345737 (A.A.-W.)
| |
Collapse
|
39
|
Jeong DY, Lee DS, Lee HL, Nah S, Lee JY, Cho EJ, You Y. Evidence and Governing Factors of the Radical-Ion Photoredox Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dong Yeun Jeong
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Da Seul Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ha Lim Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sanghee Nah
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
40
|
Cao J, Li G, Wang G, Gao L, Li S. Iodoperfluoroalkylation of unactivated alkenes via pyridine-boryl radical initiated atom-transfer radical addition. Org Biomol Chem 2022; 20:2857-2862. [PMID: 35297935 DOI: 10.1039/d2ob00453d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pyridine/bis(pinacolate)diboron combination has been found to be able to initiate the iodoperfluoroalkylation of unactivated alkenes with perfluoroalkyl iodides. Theoretical calculations and control experiments indicate that the atom transfer radical addition mechanism is responsible for the formation of iodoperfluoroalkylation products. This metal-free and photo-free strategy is applicable to a wide range of perfluoroalkyl iodides and unactivated alkenes with good functional group tolerance. Further applications in iodoperfluoroalkylation of organic semiconductor-relevant or bioactive molecules demonstrate the synthetic potential of this method.
Collapse
Affiliation(s)
- Jia Cao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China. .,School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, P. R. China
| | - Guoao Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
41
|
Kong X, Chen Y, Chen X, Lu ZX, Wang W, Ni SF, Cao ZY. A Practically Unified Electrochemical Strategy for Ni-Catalyzed Decarboxylative Cross-Coupling of Aryl Trimethylammonium Salts. Org Lett 2022; 24:2137-2142. [PMID: 35297250 DOI: 10.1021/acs.orglett.2c00408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By merging electrocatalysis and nickel catalysis, a unified strategy has been successfully applied to achieve the decarboxylative cross-coupling of four types of α-oxocarboxylic acids and their derivatives with aryl trimethylammonium salts under mild conditions. Our strategy provides a practical way for preparing aryl ketones, amides, esters, or aldehydes.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Zheng-Xuan Lu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Wei Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
42
|
Ma X, Kuang Z, Song Q. Recent Advances in the Construction of Fluorinated Organoboron Compounds. JACS AU 2022; 2:261-279. [PMID: 35252978 PMCID: PMC8889561 DOI: 10.1021/jacsau.1c00129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 05/05/2023]
Abstract
Fluorinated organoboron compounds are important synthetic building blocks that combine the unique characteristics of a fluorinated motif with the versatile synthetic applications of organoboron moiety. This review article guides the research on fluorinated organoboron compounds mainly from four aspects in recent years: selective monodefluoroborylation of polyfluoroarenes and polyfluoroalkenes, selective borylation of fluorinated substrates, selective fluorination of organoboron compounds, and borofluorination of alkynes/olefins. In addition, this review will provide a necessary guidance and inspiration for the research on the valuable synthetic building block fluorinated organoboron compounds.
Collapse
Affiliation(s)
- Xingxing Ma
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Zhijie Kuang
- Institute
of Next Generation Matter Transformation, College of Materials Science
Engineering & Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
- Institute
of Next Generation Matter Transformation, College of Materials Science
Engineering & Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| |
Collapse
|
43
|
One-pot nickel-catalyzed cross-coupling of (Het)arylammonium salts prepared in situ and organozinc reagents. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198211063806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A nickel-catalyzed arylation of aromatic amines using arylzinc reagents with trimethylammonium salts formed in situ is developed. Compared with previous systems using ammonium salts as the starting materials and complexes of pre-prepared nickel catalysts, this reaction directly employed an N, N-dimethyl(het)arylamine as the coupling partner and commercial Ni(COD)2 /TMEDA as the catalyst, greatly simplifying the experimental procedure, decreasing the cost, and being especially suitable for scale-up production processes.
Collapse
|
44
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Wang Y, Li F, Zeng Q. Advances in Formation of C—X Bonds via Cleavage of C—N Bond of Quaternary Ammonium Salts. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21110536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Li M, Liu S, Bao H, Li Q, Deng YH, Sun TY, Wang L. Photoinduced Metal-Free Borylation of Aryl Halides Catalysed by in situ Formed Donor-Acceptor Complex. Chem Sci 2022; 13:4909-4914. [PMID: 35655877 PMCID: PMC9067585 DOI: 10.1039/d2sc00552b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
Organoboron compounds are very important building blocks which can be applied in medicinal, biological and industrial fields. However, direct borylation in a metal free manner has been very rarely reported. Herein, we described the successful direct borylation of haloarenes under mild, operationally simple, catalyst-free conditions, promoted by irradiation with visible light. Mechanistic experiments and computational investigations indicate the formation of an excited donor–acceptor complex with a −3.12 V reduction potential, which is a highly active reductant and can facilitate single-electron-transfer (SET) with aryl halides to produce aryl radical intermediates. A two-step one-pot method was developed for site selective aromatic C–H bond borylation. The protocol's good functional group tolerance enables the functionalization of a variety of biologically relevant compounds, representing a new application of aryl radicals merged with photochemistry. We reported a facile metal-free conversion of aryl halides to the corresponding boronic esters catalysed by an in situ formed donor–acceptor complex. A two-step one-pot method was also developed for site selective aromatic C–H bond borylation.![]()
Collapse
Affiliation(s)
- Manhong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| | - Siqi Liu
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Haoshi Bao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| | - Qini Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| | - Yi-Hui Deng
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Leifeng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| |
Collapse
|
47
|
Kong X, Wang Y, Chen Y, Chen X, Lin L, Cao ZY. Cyanation and cyanomethylation of trimethylammonium salts via electrochemical cleavage of C–N bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01858b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A practical and mild electrochemical protocol for cyanation and cyanomethylation of trimethylammonium salts has been developed.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Yuchang Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Long Lin
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
48
|
Dou Q, Wang T, Cheng B, Li CJ, Zeng H. Recent advances in photochemical construction of aromatic C–P bonds via C–hetero bond cleavage. Org Biomol Chem 2022; 20:8818-8832. [DOI: 10.1039/d2ob01524b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photochemical C–P bond cross-coupling in aromatics via C–X (X = F, Cl, Br, I), C–N bond and C–O bond cleavages with/without photosensitizer were summarized in this review.
Collapse
Affiliation(s)
- Qian Dou
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
- The State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, China
| | - Taimin Wang
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Bin Cheng
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Chao-Jun Li
- Department of Chemistry, and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St West, Montreal, Quebec H3A 0B8, Canada
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
49
|
Wang Z, Sun Y, Shen LY, Yang WC, Meng F, Li P. Photochemical and electrochemical strategies in C–F bond activation and functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01512e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent advances in photochemical or electrochemical C–F bond activation and functionalization have been summarized and discussed.
Collapse
Affiliation(s)
- Zhanghong Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Yu Sun
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Liu-Yu Shen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Wen-Chao Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Fei Meng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Pinhua Li
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. of China
| |
Collapse
|
50
|
Ji S, Qin S, Yin C, Luo L, Zhang H. Unreactive C-N Bond Activation of Anilines via Photoinduced Aerobic Borylation. Org Lett 2021; 24:64-68. [PMID: 34898225 DOI: 10.1021/acs.orglett.1c03590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Unreactive C-N bond activation of anilines was achieved by photoinduced aerobic borylation. A diverse range of tertiary and secondary anilines were converted to aryl boronate esters in moderate to good yields with wide functional group tolerance under simple and ambient photochemical conditions. This transformation achieved the direct and facile C-N bond activation of unreactive anilines, providing a convenient and practical route transforming widely available anilines into useful aryl boronate esters.
Collapse
Affiliation(s)
- Shuohan Ji
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.,College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Shengxiang Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.,College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Chunyu Yin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Lu Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.,College of Chemistry, Nanchang University, Nanchang 330031, China
| |
Collapse
|