1
|
Zhang J, Liu M, Zhang W, Guo C. Enantioselective electrochemical nickel-catalyzed vinylogous radical reactions. SCIENCE ADVANCES 2025; 11:eadu5594. [PMID: 40106571 PMCID: PMC11922052 DOI: 10.1126/sciadv.adu5594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Highly functionalized structural motifs with extended chiral carbon chains are prevalent in a wide range of bioactive compounds and play critical roles in the production of various functionalized molecules. Here, we describe a nickel-catalyzed asymmetric radical-based electrochemical functionalization of silyl polyenolates at α-, γ-, ε-, and η-positions. Driven by electric current, this methodology provides a sustainable route to access enantioenriched dicarbonyls via vinylogous radical pathways. It demonstrates excellent functional groups tolerance, mild reaction conditions, broad substrate compatibility, formation of quaternary stereocenters at remote positions, and high levels of regio- and enantioselectivity (up to 98% enantiomeric excess). Mechanistic investigations indicate that ferrocene-based electron transfer mediators are pivotal in the anodic oxidation process, facilitating the generation of nickel-bound α-carbonyl radicals while suppressing the undesired oxidation of silyl polyenolates, thus guiding the selection of mediators for electrocatalytic systems. The versatility of catalytic asymmetric electrosynthesis is highlighted by the preparation of valuable enantioenriched building blocks and the total synthesis of (-)-ethosuximide.
Collapse
Affiliation(s)
- Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Minghao Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wenyuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Sah P, Kapur M. Palladium-catalyzed distal γ- and ε-benzylation, allylation and allenylation of enones. Chem Commun (Camb) 2025; 61:1874-1877. [PMID: 39775281 DOI: 10.1039/d4cc05607h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
We report herein a palladium-catalyzed distal alkylation of silyldienol and silyltrienol ethers of enones through coupling with activated halides to achieve new endo- and exo-alkylated motifs. Additionally, by employing propargyl bromides, synthetically useful linear allenes along with functionalized enones have been synthesized. Low-catalyst loading, and late-stage transformations of pharmaceutically relevant molecules further showcase the importance of the present protocol.
Collapse
Affiliation(s)
- Pooja Sah
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, MP, India.
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, MP, India.
| |
Collapse
|
3
|
Banoun C, Bourdreux F, Magnier E, Dagousset G. Site-Selective γ-Trihalomethylation and γ-Dihalomethylidenation of Silyl Dienol Ethers under Organophotoredox Catalysis. Chemistry 2025; 31:e202403598. [PMID: 39559949 DOI: 10.1002/chem.202403598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
We report a general remote tribromo- and trichloromethylation process using CBr4 and CBrCl3 as ready available sources of trihalomethyl radicals. This method operates under mild and metal-free photocatalyzed conditions and enables the access to γ-trihalomethylated enals with complete regioselectivity in up to 71 % isolated yield. Importantly, this protocol is easily adapted to the selective one-pot synthesis of the corresponding γ-dihalomethylidenated enals in up to 49 % overall yield. Mechanistic studies are in favor of a radical chain propagation initiated by an oxidative quenching of the photocatalyst.
Collapse
Affiliation(s)
- Camille Banoun
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 45 avenue des Etats-Unis, 78000, Versailles, France
| | - Flavien Bourdreux
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 45 avenue des Etats-Unis, 78000, Versailles, France
| | - Emmanuel Magnier
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 45 avenue des Etats-Unis, 78000, Versailles, France
| | - Guillaume Dagousset
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 45 avenue des Etats-Unis, 78000, Versailles, France
| |
Collapse
|
4
|
Yarbrough DC, Osei-Badu BK, Wagner CJ, Storme KR, Marquez R SJ, Mohr JT. Fe-Catalyzed Structurally Divergent γ-Polyhaloalkylation of Siloxydienes. Org Lett 2024; 26:10735-10739. [PMID: 39637357 DOI: 10.1021/acs.orglett.4c03689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Regioselective γ-polyhaloalkylation is achieved using tetrahalomethanes or α,α,α-trihaloalkyl compounds and siloxydienes via Fe(II) catalysis. A range of siloxydienes are functionalized in good yields with high stereoselectivity under mild reaction conditions. Structural divergence is observed as either haloalkylated or haloalkenylated products are formed on the basis of the substitution pattern of the siloxydiene. The halogenated products show utility in further synthetic transformations, selective reduction, and cross-coupling reactions.
Collapse
Affiliation(s)
- Douglas C Yarbrough
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Brian K Osei-Badu
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Cole J Wagner
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Kayla R Storme
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Sebastian J Marquez R
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Justin T Mohr
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
5
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 PMCID: PMC12056945 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and EngineeringYamaguchi University2-16-1 TokiwadaiUbeYamaguchi755-8611Japan
| |
Collapse
|
6
|
Shan Q, Wu Y, Chen M, Zhao X, Loh T, Hu X. Synergistic Copper-Aminocatalysis for Direct Tertiary α-Alkylation of Ketones with Electron-Deficient Alkanes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402255. [PMID: 38885363 PMCID: PMC11336924 DOI: 10.1002/advs.202402255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/17/2024] [Indexed: 06/20/2024]
Abstract
In this study, a novel approach for the tertiary α-alkylation of ketones using alkanes with electron-deficient C─H bonds is presented, employing a synergistic catalytic system combining inexpensive copper salts with aminocatalysis. This methodology addresses the limitations of traditional alkylation methods, such as the need for strong metallic bases, regioselectivity issues, and the risk of over alkylation, by providing a high reactivity and chemoselectivity without the necessity for pre-functionalized substrates. The dual catalytic strategy enables the direct functionalization of C(sp3)─H bonds, demonstrating remarkable selectivity in the presence of conventional C(sp3)─H bonds that are adjacent to heteroatoms or π systems, which are typically susceptible to single-electron transfer processes. The findings contribute to the advancement of alkylation techniques, offering a practical and efficient route for the construction of C(sp3)─C(sp3) bonds, and paving the way for further developments in the synthesis of complex organic molecules.
Collapse
Affiliation(s)
- Qi‐Chao Shan
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| | - You‐Wei Wu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Mu‐Xiang Chen
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Xuefei Zhao
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Teck‐Peng Loh
- College of Advanced Interdisciplinary Science and TechnologyHenan University of Technology100 Lianhua StreetZhengzhou450001China
- Division of Chemistry and Biological ChemistrySchool of ChemistryChemical Engineering and BiotechnologyNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Xu‐Hong Hu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University30 South Puzhu RoadNanjing211816China
| |
Collapse
|
7
|
Tan X, Song Z, Liang X, Wang Z, Yuan H, Zhang Z, Yang Z. Regioselective Syntheses of 1,4- and 1,6-Dicarbonyl Compounds via Photoredox-Based Oxidative Heterocoupling of Enolsilanes with Oxygen as an Oxidant. Org Lett 2024; 26:5403-5408. [PMID: 38634728 DOI: 10.1021/acs.orglett.4c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
A photoredox-based oxidative heterocoupling of enolsilanes to the corresponding 1,4- and 1,6-dicarbonyl compounds was developed by using Mes-Acr+BF4- as the photocatalyst, and oxygen was used as the oxidant. This newly developed chemistry adheres to the principles of atom economy, step economy, and redox economy, making it a concise and efficient method.
Collapse
Affiliation(s)
- Xinyu Tan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhilin Song
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xinting Liang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhenbao Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hongyi Yuan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhongchao Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Science and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
8
|
Xu B, Liu X, Deng L, Shang Y, Jie X, Su W. Dehydrogenative synthesis of N-functionalized 2-aminophenols from cyclohexanones and amines: Molecular complexities via one-shot assembly. SCIENCE ADVANCES 2024; 10:eadn7656. [PMID: 38691610 PMCID: PMC11062582 DOI: 10.1126/sciadv.adn7656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Polyfunctionalized arenes are privileged structural motifs in both academic and industrial chemistry. Conventional methods for accessing this class of chemicals usually involve stepwise modification of phenyl rings, often necessitating expensive noble metal catalysts and suffering from low reactivity and selectivity when introducing multiple functionalities. We herein report dehydrogenative synthesis of N-functionalized 2-aminophenols from cyclohexanones and amines. The developed reaction system enables incorporating amino and hydroxyl groups into aromatic rings in a one-shot fashion, which simplifies polyfunctionalized 2-aminophenol synthesis by circumventing issues associated with traditional arene modifications. The wide substrate scope and excellent functional group tolerance are exemplified by late-stage modification of complex natural products and pharmaceuticals that are unattainable by existing methods. This dehydrogenative protocol benefits from using 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) as oxidant that offers interesting chemo- and regio-selective oxidation processes. More notably, the essential role of in situ generated water is disclosed, which protects aliphatic amine moieties from overoxidation via hydrogen bond-enabled interaction.
Collapse
Affiliation(s)
- Biping Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xiaojie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Lei Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xiaoming Jie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
9
|
Kusano S, Nishikata T. Controlling Cyclic Dienamine Reactivity in Radical tert-Alkylation for Molecular Diversity to Synthesize Multicyclic Compounds Possessing a Quaternary Carbon. Chemistry 2024; 30:e202304215. [PMID: 38234196 DOI: 10.1002/chem.202304215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/19/2024]
Abstract
Synthesis of diverse sterically congested molecules from a single important intermediate is one of the ideal synthetic strategies in organic synthesis. In this paper, we found that γ-oxoalkyl substituted cyclohexenone derivatives (OAC) possessing a quaternary carbon are a useful key intermediate to derive both congested fused [5,6] rings and spirocycles. For this purpose, we have established an efficient synthetic method to obtain OAC by tertiary alkylation of β-methylcyclohexenone derivatives using α-bromocarbonyl compounds as a tertiary alkyl source. The key to the success of this reaction is controlling the reactivity of the dienamine intermediate. While there have been many reports on enamine reactions, dienamine reactions have not been well studied. Herein, we report controlling reactivity of dienamines and molecular diversification from OAC.
Collapse
Affiliation(s)
- Shinjiro Kusano
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
10
|
Galaktionova D, Liu X, Chen X, Mohr JT. Iron-Catalyzed Gamma-Gamma Dimerization of Siloxydienes. Chemistry 2024; 30:e202302901. [PMID: 37903957 DOI: 10.1002/chem.202302901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/01/2023]
Abstract
We report the oxidative dimerization reaction of siloxydienes derived from simple enones that creates a new gamma-gamma (γ-γ) C-C bond using catalytic iron and benzoyl peroxide as the terminal oxidant in acetonitrile solvent at ambient temperature. The reaction shows a broad substrate scope including cyclic and acyclic siloxydienes derived from ketones, aldehydes, and esters, which are converted to 1,8-dicarbonyl compounds under mild catalytic reaction conditions in 19-89 % yield across 30 examples. The method is suitable for the coupling of sterically demanding carbon centers, including the formation of vicinal quaternary centers. Conceptually, the dienol ether serves as a precursor to a conjugated radical cation, which undergoes highly site selective γ-dimerization reactions. The γ-γ dimerization strategy is applied to the synthesis of a bioactive analogue of honokiol.
Collapse
Affiliation(s)
- Daria Galaktionova
- Department of Chemistry, University of Illinois-Chicago, 845 West Taylor St, Chicago, IL 60607, USA
| | - Xiaoguang Liu
- Department of Chemistry, University of Illinois-Chicago, 845 West Taylor St, Chicago, IL 60607, USA
| | - Xiaohong Chen
- Department of Chemistry, University of Illinois-Chicago, 845 West Taylor St, Chicago, IL 60607, USA
| | - Justin T Mohr
- Department of Chemistry, University of Illinois-Chicago, 845 West Taylor St, Chicago, IL 60607, USA
| |
Collapse
|
11
|
Crook PF, Lear AR, Das S, Brown MK. Cu/Pd-catalyzed arylboration of a 1-silyl-1,3-cyclohexadiene for stereocontrolled and diverse cyclohexane/ene synthesis. Chem Sci 2023; 14:10467-10470. [PMID: 37799986 PMCID: PMC10548526 DOI: 10.1039/d3sc02536e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/27/2023] [Indexed: 10/07/2023] Open
Abstract
The synthesis and Cu/Pd-catalyzed arylboration of 1-silyl-1,3-cyclohexadiene is described. This diene is significant as it allows for synthesis of polyfunctional cyclohexane/enes. To achieve high levels of diastereoselectivity, the use of a pyridylidene Cu-complex was employed. In addition, through the use of a chiral catalyst, an enantioselective reaction was possible. Due to the presence of the silyl and boron substituents, the products can be easily diversified into a range of valuable cyclohexane/ene products.
Collapse
Affiliation(s)
- Phillip F Crook
- Department of Chemistry, Indiana University 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Alan R Lear
- Department of Chemistry, Indiana University 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Suman Das
- Department of Chemistry, Indiana University 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - M Kevin Brown
- Department of Chemistry, Indiana University 800 E. Kirkwood Ave Bloomington IN 47405 USA
| |
Collapse
|
12
|
Singh J, Jones SA, Nelson TJ, Botello JA, Castle SL. Formal γ-C(sp 3)-H Activation of Ketones via Microwave-Promoted and Iminyl-Radical-Mediated 1,5-Hydrogen Atom Transfer. J Org Chem 2023; 88:10287-10297. [PMID: 37390469 DOI: 10.1021/acs.joc.3c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Microwave irradiation of O-phenyloximes triggers N-O homolysis and 1,5-hydrogen atom transfer (HAT), resulting in formal γ-C-H functionalization of ketones after trapping of the radical intermediate and in situ imine hydrolysis. The Lewis acid InCl3·H2O facilitated HAT, enabling functionalization of benzylic and nonbenzylic secondary carbon atoms. Functionalization of primary carbons was feasible but afforded low yields, requiring ClCH2CO2H instead of InCl3·H2O as an additive. C-O and C-C bond formation could both be accomplished by this method.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Spencer A Jones
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Tanner J Nelson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Jesus A Botello
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Steven L Castle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
13
|
Banoun C, Bourdreux F, Dagousset G. Highly selective γ-alkoxylation, γ-amination and γ-alkylation of unbiased enals by means of photoredox catalysis. Chem Commun (Camb) 2023; 59:760-763. [PMID: 36541835 DOI: 10.1039/d2cc05749b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report herein a general and highly selective γ-functionalization protocol under visible light irradiation. This mild radical approach enables the expansion of the scope of application to unbiased enals and the introduction of a wide variety of alkoxy, amino and alkyl functionalities in the γ position with complete regioselectivity.
Collapse
Affiliation(s)
- Camille Banoun
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, Versailles Cedex, 78035, France.
| | - Flavien Bourdreux
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, Versailles Cedex, 78035, France.
| | - Guillaume Dagousset
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, Versailles Cedex, 78035, France.
| |
Collapse
|
14
|
Briand M, Thai LD, Bourdreux F, Vanthuyne N, Moreau X, Magnier E, Anselmi E, Dagousset G. Remote Radical Trifluoromethylation: A Unified Approach to the Selective Synthesis of γ-Trifluoromethyl α,β-Unsaturated Carbonyl Compounds. Org Lett 2022; 24:9375-9380. [PMID: 36534949 DOI: 10.1021/acs.orglett.2c03676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Site-selective trifluoromethylation of silyl dienol ethers derived from α,β-unsaturated aldehydes, ketones, and amides was achieved for the first time in the remote γ position. This photoredox catalyzed process is quite general to compounds bearing many functionalities and is applicable to the late-stage functionalization of biorelevant molecules. The use of S-perfluoroalkyl sulfoximines as ·RF radical sources enables the generalization of the reaction to other perfluoroalkyl groups (RF = CF2H, C4F9). Importantly, an unprecedented enantioselective C(sp3)-H perfluoroalkylation process is disclosed.
Collapse
Affiliation(s)
- Marina Briand
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Linh D Thai
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Flavien Bourdreux
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Nicolas Vanthuyne
- Institut des Sciences Moléculaires de Marseille, Centrale Marseille, UMR 7313, Aix-Marseille Université, CNRS, Avenue Escadrille Normandie Niemen, 13013 Marseille Cedex, France
| | - Xavier Moreau
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Emmanuel Magnier
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Elsa Anselmi
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France.,Université de Tours, Faculté des Sciences et Techniques, 37200 Tours, France
| | - Guillaume Dagousset
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| |
Collapse
|
15
|
Riuttamäki S, Laczkó G, Madarász Á, Földes T, Pápai I, Bannykh A, Pihko PM. Carboxylate Catalyzed Isomerization of β,γ-Unsaturated N-Acetylcysteamine Thioesters. Chemistry 2022; 28:e202201030. [PMID: 35604200 PMCID: PMC9541288 DOI: 10.1002/chem.202201030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 11/11/2022]
Abstract
We demonstrate herein the capacity of simple carboxylate salts - tetrametylammonium and tetramethylguanidinium pivalate - to act as catalysts in the isomerization of β,γ-unsaturated thioesters to α,β-unsaturated thioesters. The carboxylate catalysts gave reaction rates comparable to those obtained with DBU, but with fewer side reactions. The reaction exhibits a normal secondary kinetic isotope effect (k1H /k1D =1.065±0.026) with a β,γ-deuterated substrate. Computational analysis of the mechanism provides a similar value (k1H /k1D =1.05) with a mechanism where γ-reprotonation of the enolate intermediate is rate determining.
Collapse
Affiliation(s)
- Saara Riuttamäki
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| | - Gergely Laczkó
- Institute of Organic ChemistryResearch Centre for Natural SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Ádám Madarász
- Institute of Organic ChemistryResearch Centre for Natural SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Tamás Földes
- Institute of Organic ChemistryResearch Centre for Natural SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Imre Pápai
- Institute of Organic ChemistryResearch Centre for Natural SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Anton Bannykh
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| | - Petri M. Pihko
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| |
Collapse
|
16
|
Mo X, Huang H, Zhang G. Tetrasubstituted Carbon Stereocenters via Copper-Catalyzed Asymmetric Sonogashira Coupling Reactions with Cyclic gem-Dihaloketones and Tertiary α-Carbonyl Bromides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xueling Mo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Han Huang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Guozhu Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
17
|
Zhao X, Yang F, Zou SY, Zhou QQ, Chen ZS, Ji K. Cu-Catalyzed Intermolecular γ-Site C–H Amination of Cyclohexenone Derivatives: The Benefit of Bifunctional Ligands. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Zhao
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
- School of Pharmacy, Baotou Medical College, Baotou 014060, Inner Mongolia, P. R. China
| | - Fang Yang
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Shao-Yu Zou
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Qian-Qian Zhou
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Zi-Sheng Chen
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Kegong Ji
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
18
|
Banoun C, Bourdreux F, Magnier E, Dagousset G. Intermolecular C-O Bond Formation with Alkoxyl Radicals: Photoredox-Catalyzed α-Alkoxylation of Carbonyl Compounds. Org Lett 2021; 23:8926-8930. [PMID: 34709834 DOI: 10.1021/acs.orglett.1c03444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to the high reactivity of alkoxyl (RO·) radicals and their propensity to easily undergo β-scission or Hydrogen Atom Transfer (HAT) reactions, intermolecular alkoxylations involving RO· radicals are barely described. We report herein for the first time the efficient intermolecular trapping of alkoxyl radicals by silyl enol ethers. This photoredox-mediated protocol enables the introduction of both structurally simple and more complex alkoxy groups into a wide range of ketones and amides.
Collapse
Affiliation(s)
- Camille Banoun
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Flavien Bourdreux
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Emmanuel Magnier
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Guillaume Dagousset
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| |
Collapse
|
19
|
Kurose A, Ishida Y, Hirata G, Nishikata T. Direct α‐Tertiary Alkylations of Ketones in a Combined Copper–Organocatalyst System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ayako Kurose
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Yuto Ishida
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Goki Hirata
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| |
Collapse
|
20
|
Kurose A, Ishida Y, Hirata G, Nishikata T. Direct α-Tertiary Alkylations of Ketones in a Combined Copper-Organocatalyst System. Angew Chem Int Ed Engl 2021; 60:10620-10625. [PMID: 33826789 DOI: 10.1002/anie.202016051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 11/07/2022]
Abstract
Herein, we report an efficient method for the tertiary alkylation of a ketone by using an α-bromocarbonyl compound as the tertiary alkyl source in a combined Cu-organocatalyst system. This dual catalyst system enables the addition of a tertiary alkyl radical to an enamine. Mechanistic studies revealed that the catalytically generated enamine is a key intermediate in the catalytic cycle. The developed method can be used to synthesize substituted 1,4-dicarbonyl compounds containing quaternary carbons bearing various alkyl chains.
Collapse
Affiliation(s)
- Ayako Kurose
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Yuto Ishida
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Goki Hirata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
21
|
Lei L, Liang YF, Liang C, Qin JK, Pan CX, Su GF, Mo DL. Copper(i)-catalyzed [4 + 2] cycloaddition of aza-ortho-quinone methides with bicyclic alkenes. Org Biomol Chem 2021; 19:3379-3383. [DOI: 10.1039/d1ob00319d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient copper(i)-catalyzed [4 + 2] cycloaddition of aza-ortho-quinone methides (ao-QMs) and bicyclic alkenes to prepare tetrahydroquinoline-fused bicycles bearing multiple stereocenters in good yields is reported.
Collapse
Affiliation(s)
- Lu Lei
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Yu-Feng Liang
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Cui Liang
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Jiang-Ke Qin
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Cheng-Xue Pan
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Gui-Fa Su
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| | - Dong-Liang Mo
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- Ministry of Science and Technology of China
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
| |
Collapse
|
22
|
Li D. Copper-Catalyzed Alkylation of Silyl Enol Ethers with Sterically Hindered α-Bromocarbonyls: Access to the Histamine H 3 Receptor Antagonist. J Org Chem 2021; 86:609-618. [PMID: 33295766 DOI: 10.1021/acs.joc.0c02277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general and efficient copper-catalyzed alkylation of silyl enol ethers with functionalized alkyl bromides has been developed for the synthesis of the sterically hindered γ-ketoesters. The transformation was induced through C(sp3)-halogen activation of commercially available sterically hindered alkyl bromides under mild conditions in good results. The strategy could be used for the synthesis of biologically active histamine H3 receptor (H3R) antagonist for medicinal purposes.
Collapse
Affiliation(s)
- Dengke Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, China
| |
Collapse
|
23
|
Iron- or copper-catalyzed cascade chloromethylation of activated alkenes: Efficient access to chlorinated oxindoles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Luo S, Min M, Wu Y, Jiang S, Xiao Y, Song R, Li J. Synthesis of Bulky 1,1‐Diarylalkanes by Copper‐Catalyzed 1,2‐Alkylarylation of Styrenes with
α
‐Carbonyl Alkyl Bromides and Arenes involving C−H Functionalization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shu‐Zheng Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Man‐Yi Min
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Yan‐Chen Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Shuai‐Shuai Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Yu‐Ting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Ren‐Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Jin‐Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 People's Republic of China
- State Key Laboratory of Chemo/Biosensing and ChemometricsHunan University Changsha 410082 People's Republic of China
| |
Collapse
|
25
|
Mo X, Chen B, Zhang G. Copper‐Catalyzed Enantioselective Sonogashira Type Coupling of Alkynes with α‐Bromoamides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xueling Mo
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Bin Chen
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
26
|
Mo X, Chen B, Zhang G. Copper‐Catalyzed Enantioselective Sonogashira Type Coupling of Alkynes with α‐Bromoamides. Angew Chem Int Ed Engl 2020; 59:13998-14002. [DOI: 10.1002/anie.202000860] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/16/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Xueling Mo
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Bin Chen
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
27
|
Matsumoto Y, Sawamura J, Murata Y, Nishikata T, Yazaki R, Ohshima T. Amino Acid Schiff Base Bearing Benzophenone Imine As a Platform for Highly Congested Unnatural α-Amino Acid Synthesis. J Am Chem Soc 2020; 142:8498-8505. [PMID: 32316721 DOI: 10.1021/jacs.0c02707] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unnatural α-amino acids are invaluable building blocks in synthetic organic chemistry and could upgrade the function of peptides. We developed a new mode for catalytic activation of amino acid Schiff bases, serving as a platform for highly congested unnatural α-amino acid synthesis. The redox active copper catalyst enabled efficient cross-coupling to construct contiguous tetrasubstituted carbon centers. The broad functional group compatibility highlights the mildness of the present catalysis. Notably, we achieved successive β-functionalization and oxidation of amino acid Schiff bases to afford dehydroalanine derivatives bearing tetrasubstituted carbon. A three-component cross-coupling reaction of an amino acid Schiff base, alkyl bromides, and styrene derivatives demonstrated the high utility of the present method. The diastereoselective reaction was also achieved using menthol derivatives as a chiral auxiliary, delivering enantiomerically enriched α-amino acid bearing α,β-continuous tetrasubstituted carbon. The synthesized highly congested unnatural α-amino acid could be derivatized and incorporated into peptide synthesis.
Collapse
Affiliation(s)
- Yohei Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jun Sawamura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yumi Murata
- Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Ryo Yazaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
28
|
Li D, Shen X. Iron-catalyzed regioselective alkylation of 1,4-quinones and coumarins with functionalized alkyl bromides. Org Biomol Chem 2020; 18:750-754. [DOI: 10.1039/c9ob02289a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A simple and efficient Fe-catalyzed regioselective alkylation of 1,4-quinones and coumarins, using functionalized alkyl bromides as alkylating reagents, has been developed.
Collapse
Affiliation(s)
- Dengke Li
- College of Chemistry and Environmental Science
- Qujing Normal University
- Qujing 655011
- China
| | - Xianfu Shen
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control
- Qujing Normal University
- Qujing 655011
- China
| |
Collapse
|
29
|
Kan J, Zhang M, Zhang X, Lou X, Shang Y, Xu B, Yang F, Su W. Oxidation of Enones for Regioselective [3+2] Cycloaddition through γ-Enone Radical Intermediates. Chemistry 2019; 25:15233-15238. [PMID: 31495987 DOI: 10.1002/chem.201903551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Herein, an oxidization reaction of enones with a CuII complex that leads to a new type of regioselective [3+2] cycloaddition is reported. Highly functionalized cyclopentenes and spirocyclic compounds are obtained in moderate-to-good yields. This cycloaddition reaction occurred through the formation of γ-enone radicals, providing a rarely explored reactivity pattern for enones.
Collapse
Affiliation(s)
- Jian Kan
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, P. R. China
| | - Min Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, P. R. China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, P. R. China
| | - Xin Lou
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, P. R. China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, P. R. China
| | - Biping Xu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, P. R. China
| | - Fanyuanhang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, P. R. China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
30
|
Saini G, Mondal A, Kapur M. Palladium-Mediated Remote Functionalization in γ- and ε-Arylations and Alkenylations of Unblocked Cyclic Enones. Org Lett 2019; 21:9071-9075. [PMID: 31680525 DOI: 10.1021/acs.orglett.9b03462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report herein an extensive investigation of simple and regioselective endo- as well as exo-γ-arylations of silyl-dienol ethers of unblocked cyclic enones with the utilization of palladium-catalyzed, modified Kuwajima-Urabe conditions. We have also successfully explored a new exo-ε-arylation of silyl-trienol ethers of π-extended cyclic enones. In addition, we also report, herein, exclusive γ- and ε-alkenylation of silyl-dienol and silyl-trienol ethers of cyclic enones.
Collapse
Affiliation(s)
- Gaurav Saini
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462066 , MP , India
| | - Arpan Mondal
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462066 , MP , India
| | - Manmohan Kapur
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462066 , MP , India
| |
Collapse
|
31
|
Ba D, Chen Y, Lv W, Wen S, Cheng G. Copper-Catalyzed Three-Component Cascade Michael Addition/Heck-Type Alkylation/Annulation: Accessing Fully Substituted 1,3-Dihydro-2H-pyrrol-2-ones. Org Lett 2019; 21:8603-8606. [DOI: 10.1021/acs.orglett.9b03189] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dan Ba
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Weiwei Lv
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Si Wen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
32
|
Murata Y, Shimada T, Nishikata T. Radical and Cation Crossover Reaction System Enables Synthesis of Complex Aliphatic Chains Possessing Functionalized Quaternary Carbons. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yumi Murata
- Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Taisei Shimada
- Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
33
|
Li Y, Han J, Luo H, An Q, Cao XP, Li B. Access to Benzylic Quaternary Carbons from Aromatic Ketones. Org Lett 2019; 21:6050-6053. [PMID: 31310556 DOI: 10.1021/acs.orglett.9b02204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The construction of benzylic all-carbon quaternary stereocenters, which are ubiquitous in biomolecules and drugs, is a task of high practical significance. Herein, we disclose a highly efficient one-pot method of constructing all-carbon quaternary structural units from aryl ketones, revealing that the entire process involves three consecutive chemical events, namely nucleophilic addition, Meinwald 1,2-hydrogen migration, and alkylation. Interestingly, dimerization of acetophenones results in formation of 2,4-diarylfurans under the employed conditions rather than the quaternary carbon products.
Collapse
Affiliation(s)
- You Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou , 730000 , P. R. China
| | - Jingpeng Han
- School of Chemistry and Chemical Engineering , Chongqing University , 174 Shazheng Street , Chongqing , 400030 , P. R. China
| | - Han Luo
- School of Chemistry and Chemical Engineering , Chongqing University , 174 Shazheng Street , Chongqing , 400030 , P. R. China
| | - Qiaoyu An
- School of Chemistry and Chemical Engineering , Chongqing University , 174 Shazheng Street , Chongqing , 400030 , P. R. China
| | - Xiao-Ping Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou , 730000 , P. R. China
| | - Baosheng Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering , Lanzhou University , 222 South Tianshui Road , Lanzhou , 730000 , P. R. China.,School of Chemistry and Chemical Engineering , Chongqing University , 174 Shazheng Street , Chongqing , 400030 , P. R. China
| |
Collapse
|
34
|
Tsuchiya N, Nishikata T. Construction of Vicinal Quaternary Carbons via Cu-catalyzed Dearomative Radical Addition. CHEM LETT 2019. [DOI: 10.1246/cl.190247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Naoki Tsuchiya
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
35
|
Li D, Yang WC. Copper-catalyzed regioselective alkylation of heteroarenes with functionalized alkyl halides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Murata Y, Takeuchi K, Nishikata T. The synthetic protocol for α-bromocarbonyl compounds via brominations. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Li WP, Zhu YC, Zhou YJ, Yang HW, Zhu CJ. Visible light induced C-H monofluoroalkylation to synthesize 1,4-unsaturated compound. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Xu K, Liu H, Hou Y, Shen J, Liu D, Zhang W. A Pd-catalyzed asymmetric allylic substitution cascade via an asymmetric desymmetrization for the synthesis of bicyclic dihydrofurans. Chem Commun (Camb) 2019; 55:13295-13298. [DOI: 10.1039/c9cc07204g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chiral bicyclic dihydrofurans bearing two vicinal carbon stereocenters have been synthesized in high yields and with up to 97% ee via a Pd-catalyzed asymmetric allylic substitution cascade and an asymmetric desymmetrization process.
Collapse
Affiliation(s)
- Kai Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- 800 Dongchuan Road
- Shanghai 200240
| | - Hao Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- 800 Dongchuan Road
- Shanghai 200240
| | - Yilin Hou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- 800 Dongchuan Road
- Shanghai 200240
| | - Jiefeng Shen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- 800 Dongchuan Road
- Shanghai 200240
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- 800 Dongchuan Road
- Shanghai 200240
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- 800 Dongchuan Road
- Shanghai 200240
| |
Collapse
|
39
|
Chuang TH, Chuang CP. Organic amine-mediated free-radical carbocyclization reactions of 2,2,2-trihalogeno-substituted N-(2-alkynylphenyl)acetamides. Org Biomol Chem 2018; 16:7265-7273. [PMID: 30259031 DOI: 10.1039/c8ob01870g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for the synthesis of 3-halogeno-substituted 4-benzoylquinolin-2-(1H)-ones from N-(2-alkynylphenyl)-substituted trihaloacetamides has been developed, in which organic amines (TNPA and DIEA) act as the electron donors. In this carbocyclization reaction, a new C-C bond formation occurred regioselectively via a 6-exo-dig radical cyclization. A variety of useful functional groups are compatible with the reaction conditions. In this process, readily removable organic amines were employed and no heavy metal catalysts were required.
Collapse
Affiliation(s)
- Tsung-Han Chuang
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China.
| | | |
Collapse
|
40
|
Yoshinaga K, Tsubaki N, Murata Y, Noda Y, Nishikata T. Ppm Cu Catalyst Enables tert-Alkylation Followed by C-H Cyclization To Synthesize Substituted Oxindoles. ACS OMEGA 2018; 3:9020-9026. [PMID: 31459034 PMCID: PMC6645334 DOI: 10.1021/acsomega.8b01397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/01/2018] [Indexed: 06/10/2023]
Abstract
In this paper, we established highly efficient Cu-catalyzed tandem tert-alkylation C-H cyclization of α-bromocarbonyls and methacrylamides to produce substituted oxindoles. The maximum turnover number was up to 48 000 with reasonable yield. Although the catalyst loadings were very low, the reaction was not involving radical chain reaction. The resulting oxindoles were able to transform into aza-multicyclic compound via a reduction.
Collapse
|
41
|
Ouyang XH, Song RJ, Li JH. Developments in the Chemistry of α-Carbonyl Alkyl Bromides. Chem Asian J 2018; 13:2316-2332. [DOI: 10.1002/asia.201800630] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/01/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle; Nanchang Hangkong University; Nanchang 330063 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics; Hunan University; Changsha 410082 China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle; Nanchang Hangkong University; Nanchang 330063 China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle; Nanchang Hangkong University; Nanchang 330063 China
| |
Collapse
|
42
|
Murata Y, Nishikata T. Facile Synthesis of Single α-tert-Alkylated Acetaldehydes by Hydroxyalkylation of Enamides in Aqueous Solution. Chemistry 2018; 24:6354-6357. [PMID: 29498461 DOI: 10.1002/chem.201801065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 01/31/2023]
Abstract
In this work, we established a general protocol to synthesize single α-tert-alkylated acetaldehydes via Cu-catalyzed hydroxyalkylation of enamides in aqueous solutions. The yields of the products were very high and there was excellent functional group compatibility. Our reaction allows easy access to highly functionalized acetaldehydes that can be used to synthesize further useful compounds including spirocycles. The control experiments revealed that this reaction includes hydroxyalkylation processes via radical reactions.
Collapse
Affiliation(s)
- Yumi Murata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
43
|
Bao Y, Wang GY, Zhang YX, Bian KJ, Wang XS. Copper-catalyzed formylation of alkenyl C-H bonds using BrCHCl 2 as a stoichiometric formylating reagent. Chem Sci 2018; 9:2986-2990. [PMID: 29732081 PMCID: PMC5915796 DOI: 10.1039/c8sc00210j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/13/2018] [Indexed: 11/25/2022] Open
Abstract
The first example of copper-catalyzed direct formylation of alkenyl C-H bonds for the facile synthesis of α,β-unsaturated aldehydes has been developed. This transformation has demonstrated high reactivity, mild reaction conditions and a broad substrate scope. BrCHCl2 is expected to be developed as an efficient stoichiometric C1 building block in organic synthesis.
Collapse
Affiliation(s)
- Yan Bao
- Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China .
| | - Gao-Yin Wang
- Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China .
| | - Ya-Xuan Zhang
- Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China .
| | - Kang-Jie Bian
- Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China .
| | - Xi-Sheng Wang
- Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China .
| |
Collapse
|
44
|
Li Y, Liu J, Zhao S, Du X, Guo M, Zhao W, Tang X, Wang G. Copper-Catalyzed Fluoroolefination of Silyl Enol Ethers and Ketones toward the Synthesis of β-Fluoroenones. Org Lett 2018; 20:917-920. [DOI: 10.1021/acs.orglett.7b03700] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yanlin Li
- Tianjin
Key Laboratory of Molecular Optoelectronic Science, Department of
Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Jing Liu
- Tianjin
Key Laboratory of Molecular Optoelectronic Science, Department of
Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Shuang Zhao
- Tianjin
Key Laboratory of Molecular Optoelectronic Science, Department of
Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xuzhao Du
- Tianjin
Key Laboratory of Molecular Optoelectronic Science, Department of
Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute
for Molecular Design and Synthesis, Health and Science Platform, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin
Key Laboratory of Molecular Optoelectronic Science, Department of
Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin
Key Laboratory of Molecular Optoelectronic Science, Department of
Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin
Key Laboratory of Molecular Optoelectronic Science, Department of
Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
45
|
Abstract
Copper-catalyzed intermolecular carboamination of alkenes with α-halocarbonyls and amines is presented with 42 examples. Electron rich, electron poor, and internal styrenes, as well as α-olefins, are functionalized with α-halocarbonyls and aryl or aliphatic amines. Mechanistic investigations suggest the reaction is proceeding through addition of a carbon-centered radical across an olefin followed by oxidation to form a 5-membered oxocarbenium intermediate and subsequent nucleophilic ring opening to forge the C-N bond.
Collapse
Affiliation(s)
- Samuel N Gockel
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Travis L Buchanan
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kami L Hull
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Kaewsri W, Norseeda K, Ruengsangtongkul S, Chaisan N, Thongsornkleeb C, Tummatorn J, Ruchirawat S. Synthesis of 2-Cyclohexenone-2-carboxylate and 4-Chloro-2-cyclohexenone-2-carboxylate Derivatives by Cyclization of Alkyne-Tethered 1,3-Ketoesters. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wilailak Kaewsri
- Program on Chemical Biology; Chulabhorn Graduate Institute, Center of Excellence on Environmental, Health and Toxicology (EHT), Ministry of Education; 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| | - Krissada Norseeda
- Program on Chemical Biology; Chulabhorn Graduate Institute, Center of Excellence on Environmental, Health and Toxicology (EHT), Ministry of Education; 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| | - Sureeporn Ruengsangtongkul
- Laboratory of Medicinal Chemistry; Chulabhorn Research Institute; 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| | - Nattawadee Chaisan
- Program on Chemical Biology; Chulabhorn Graduate Institute, Center of Excellence on Environmental, Health and Toxicology (EHT), Ministry of Education; 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Biology; Chulabhorn Graduate Institute, Center of Excellence on Environmental, Health and Toxicology (EHT), Ministry of Education; 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
- Laboratory of Organic Synthesis; Chulabhorn Research Institute; 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| | - Jumreang Tummatorn
- Program on Chemical Biology; Chulabhorn Graduate Institute, Center of Excellence on Environmental, Health and Toxicology (EHT), Ministry of Education; 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
- Laboratory of Medicinal Chemistry; Chulabhorn Research Institute; 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| | - Somsak Ruchirawat
- Program on Chemical Biology; Chulabhorn Graduate Institute, Center of Excellence on Environmental, Health and Toxicology (EHT), Ministry of Education; 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
- Laboratory of Medicinal Chemistry; Chulabhorn Research Institute; 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| |
Collapse
|
47
|
Deng Y, Kauser NI, Islam SM, Mohr JT. Ag
II
‐Mediated Synthesis of β‐Fluoroketones by Oxidative Cyclopropanol Opening. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700899] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuanlin Deng
- Department of Chemistry University of Illinois at Chicago 845 West Taylor Street 60607 Chicago Illinois USA
| | - Nabeelah I. Kauser
- Department of Chemistry University of Illinois at Chicago 845 West Taylor Street 60607 Chicago Illinois USA
| | - Shahidul M. Islam
- Department of Chemistry University of Illinois at Chicago 845 West Taylor Street 60607 Chicago Illinois USA
| | - Justin T. Mohr
- Department of Chemistry University of Illinois at Chicago 845 West Taylor Street 60607 Chicago Illinois USA
| |
Collapse
|
48
|
Tang SZ, Zhao W, Chen T, Liu Y, Zhang XM, Zhang FM. A Simple and Efficient Method for the Preparation of α-Halogenated Ketones Using Iron(III) Chloride and Iron(III) Bromide as Halogen Sources with Phenyliodonium Diacetate as Oxidant. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shi-Zhong Tang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Wenshuang Zhao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Tao Chen
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Yang Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry; Lanzhou University; Lanzhou 730000 People's Republic of China
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy; Sichuan University; Chengdu 610041 People's Republic of China
| |
Collapse
|
49
|
Allenols versus Allenones: Rhodium-Catalyzed Regiodivergent and Tunable Allene Reactivity with Triazoles. Chemistry 2017; 23:13754-13759. [DOI: 10.1002/chem.201702468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 01/07/2023]
|
50
|
Yang H, Hou S, Tao C, Liu Z, Wang C, Cheng B, Li Y, Zhai H. Rhodium-Catalyzed Denitrogenative [3+2] Cycloaddition: Access to Functionalized Hydroindolones and the Framework of Montanine-TypeAmaryllidaceaeAlkaloids. Chemistry 2017; 23:12930-12936. [DOI: 10.1002/chem.201702893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Hongjian Yang
- The State Key Laboratory of Applied Organic Chemistry; College of Chemistry and Chemical Engineering; Lanzhou University; 730000 P. R. China
| | - Shengtai Hou
- The State Key Laboratory of Applied Organic Chemistry; College of Chemistry and Chemical Engineering; Lanzhou University; 730000 P. R. China
| | - Cheng Tao
- The State Key Laboratory of Applied Organic Chemistry; College of Chemistry and Chemical Engineering; Lanzhou University; 730000 P. R. China
| | - Zhao Liu
- The State Key Laboratory of Applied Organic Chemistry; College of Chemistry and Chemical Engineering; Lanzhou University; 730000 P. R. China
| | - Chao Wang
- The State Key Laboratory of Applied Organic Chemistry; College of Chemistry and Chemical Engineering; Lanzhou University; 730000 P. R. China
| | - Bin Cheng
- The State Key Laboratory of Applied Organic Chemistry; College of Chemistry and Chemical Engineering; Lanzhou University; 730000 P. R. China
| | - Yun Li
- The State Key Laboratory of Applied Organic Chemistry; College of Chemistry and Chemical Engineering; Lanzhou University; 730000 P. R. China
| | - Hongbin Zhai
- The State Key Laboratory of Applied Organic Chemistry; College of Chemistry and Chemical Engineering; Lanzhou University; 730000 P. R. China
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; 518055 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); 300071 P. R. China
| |
Collapse
|