1
|
Geaneotes PJ, Janosko CP, Afeke C, Deiters A, Floreancig PE. Potent and Selective Oxidatively Labile Ether-Based Prodrugs through Late-Stage Boronate Incorporation. Angew Chem Int Ed Engl 2024; 63:e202409229. [PMID: 38986017 DOI: 10.1002/anie.202409229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
This manuscript describes a new strategy for prodrug synthesis in which a relatively inert ether group is introduced at an early stage in a synthetic sequence and functionalized in the final step to introduce a prodrug-activating group through a chemoselective process. Boryl allyloxy (BAO) ether groups are synthesized through several metal-mediated processes to form entities that are readily cleaved under oxidative conditions commonly found in cancer cells. The high cleavage propensity of the BAO group allows for ether cleavage, making these compounds substantially more hydrolytically stable in comparison to acyl-linked prodrugs while retaining the ability to release alcohols. We report the preparation of prodrug analogues of the natural products camptothecin and pederin from acetal precursors that serve as protecting groups in their synthetic sequences. The BAO acetal groups cleave in the presence of hydrogen peroxide to release the cytotoxic agents. The pederin-based prodrug shows dramatically greater cytotoxicity than negative controls and outstanding selectivity and potency toward cancer cell lines in comparison to non-cancerous cell lines. This late-stage functionalization approach to prodrug synthesis should be applicable to numerous systems that can be accessed through chemoselective processes.
Collapse
Affiliation(s)
- Paul J Geaneotes
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Chasity P Janosko
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Cephas Afeke
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
2
|
Chen Z, Isbrandt ES, Newman SG. Regioselective Synthesis of α-Vinyl Boronates via a Pd-Catalyzed Mizoroki-Heck Reaction. Org Lett 2024; 26:7723-7727. [PMID: 39213511 DOI: 10.1021/acs.orglett.4c02866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We report a palladium-catalyzed synthesis of α-vinyl boronates via a regioselective Mizoroki-Heck reaction between aryl triflates and vinyl boronates. This selectivity is achieved by the use of a 1,5-diaza-3,7-diphosphacyclooctane (P2N2) ligand, which results in minimal formation of the more commonly observed (linear) β-product. The choice of base, solvent, and presence of water are shown to be critical for controlling this outcome, with organic bases, nonpolar solvents, and anhydrous conditions favoring the Heck product and suppressing the competitive Suzuki-Miyaura coupling product.
Collapse
Affiliation(s)
- Zichuan Chen
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Eric S Isbrandt
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
3
|
Salmani Nezhad B, Habibi A, Takallou A, Badali E, Kumar Avula S, Al-Harrasi A. Development and synthesis of a novel salen-type ligand based on phenylalanine for Mizoroki-Heck, and S-arylation cross-coupling reactions. Nat Prod Res 2024:1-9. [PMID: 38520709 DOI: 10.1080/14786419.2024.2326853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
In this article, we introduced a novel salen-type ligand precursor and applied it in the Pd-catalyzed Mizoroki-Heck and Cu-catalyzed S-arylation cross-coupling reactions. For the preparation of this structure, (DL)-phenyl alanine was employed as a starting material. These ligand precursor and related catalytic system can be readily synthesised. Various aryl halides (-I, -Br) and alkenes were applied successfully in this protocol to give the corresponding Mizoroki-Heck cross-coupling and S-arylated products in high to excellent yields.
Collapse
Affiliation(s)
| | | | - Ahmad Takallou
- Faculty of Chemistry, Kharazmi University, Karaj, Iran
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Elham Badali
- Faculty of Chemistry, Kharazmi University, Karaj, Iran
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
4
|
Meng CF, Zhang BB, Liu Q, Chen KQ, Wang ZX, Chen XY. Achieving Nickel-Catalyzed Reductive C(sp 2)-B Coupling of Bromoboranes via Reversing the Activation Sequence. J Am Chem Soc 2024; 146:7210-7215. [PMID: 38437461 DOI: 10.1021/jacs.4c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Transition metal-catalyzed reductive cross-couplings to build C-C/Si bonds have been developed, but the reductive cross-coupling to create the C(sp2)-B bond has not been explored. Herein, we describe a nickel-catalyzed reductive cross-coupling between aryl halides and bromoboranes to construct a C(sp2)-B bond. This protocol offers a convenient approach for the synthesis of a wide range of aryl boronate esters, using readily available starting materials. Mechanistic studies indicate that the key to the success of the reaction is the activation of the B-Br bond of bromoboranes with a Lewis base such as 2-MeO-py. The activation ensures that bromoboranes will react with the active nickel(I) catalyst prior to aryl halides, which is different from the sequence of the general nickel-catalyzed reductive C(sp2)-C/Si cross-coupling, where the oxidative addition of an aryl halide proceeds first. Notably, this approach minimizes the production of undesired homocoupling byproduct without the requirement of excessive quantities of either substrate.
Collapse
Affiliation(s)
- Chun-Fu Meng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun-Quan Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
5
|
Zhang X, Su W, Guo H, Fang P, Yang K, Song Q. N-Heterocycle-Editing to Access Fused-BN-Heterocycles via Ring-Opening/C-H Borylation/Reductive C-B Bond Formation. Angew Chem Int Ed Engl 2024; 63:e202318613. [PMID: 38196396 DOI: 10.1002/anie.202318613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
Skeletal editing of N-heterocycles has recently received considerable attention, and the introduction of boron atom into heterocycles often results in positive property changes. However, direct enlargement of N-heterocycles through boron atom insertion is rarely reported in the literature. Here, we report a N-heterocyclic editing reaction through the combination boron atom insertion and C-H borylation, accessing the fused-BN-heterocycles. The synthetic potential of this chemistry was demonstrated by substrate scope and late-stage diversification of products.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wanlan Su
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Huosheng Guo
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Pengyuan Fang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
6
|
Feng YL, Zhang BW, Xu Y, Jin S, Mazzarella D, Cao ZY. The reactivity of alkenyl boron reagents in catalytic reactions: recent advances and perspectives. Org Chem Front 2024; 11:7249-7277. [DOI: 10.1039/d4qo01703j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Recent advances focusing on novel reactivity of alkenyl boron reagents in polar or radical pathways within catalytic reactions by employing transition metal catalysis, organocatalysis have been summarized and discussed.
Collapse
Affiliation(s)
- Ya-Li Feng
- Engineering Research Center for Water Environment and Health of Henan, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China
- Faculty of Biology and Chemistry, Arabaev Kyrgyz State University, Bishkek 720026, Kyrgyzstan
| | - Bo-Wen Zhang
- Engineering Research Center for Water Environment and Health of Henan, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China
- Faculty of Biology and Chemistry, Arabaev Kyrgyz State University, Bishkek 720026, Kyrgyzstan
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Shengnan Jin
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Daniele Mazzarella
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
7
|
Corpas J, Gomez-Mendoza M, Arpa EM, de la Peña
O'Shea VA, Durbeej B, Carretero JC, Mauleón P, Arrayás R. Iterative Dual-Metal and Energy Transfer Catalysis Enables Stereodivergence in Alkyne Difunctionalization: Carboboration as Case Study. ACS Catal 2023; 13:14914-14927. [PMID: 38026817 PMCID: PMC10662505 DOI: 10.1021/acscatal.3c03570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/04/2023] [Indexed: 12/01/2023]
Abstract
Stereochemically defined tetrasubstituted olefins are widespread structural elements of organic molecules and key intermediates in organic synthesis. However, flexible methods enabling stereodivergent access to E and Z isomers of fully substituted alkenes from a common precursor represent a significant challenge and are actively sought after in catalysis, especially those amenable to complex multifunctional molecules. Herein, we demonstrate that iterative dual-metal and energy transfer catalysis constitutes a unique platform for achieving stereodivergence in the difunctionalization of internal alkynes. The utility of this approach is showcased by the stereodivergent synthesis of both stereoisomers of tetrasubstituted β-boryl acrylates from internal alkynoates with excellent stereocontrol via sequential carboboration and photoisomerization. The reluctance of electron-deficient internal alkynes to undergo catalytic carboboration has been overcome through cooperative Cu/Pd-catalysis, whereas an Ir complex was identified as a versatile sensitizer that is able to photoisomerize the resulting sterically crowded alkenes. Mechanistic studies by means of quantum-chemical calculations, quenching experiments, and transient absorption spectroscopy have been applied to unveil the mechanism of both steps.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA
Energy Institute, Technological Park of Mostoles, Avda. Ramón de la
Sagra 3, 28935 Madrid, Spain
| | - Enrique M. Arpa
- Division of Theoretical Chemistry, IFM,
Linköping University, 581 83 Linköping,
Sweden
| | - Víctor A. de la Peña
O'Shea
- Photoactivated Processes Unit, IMDEA
Energy Institute, Technological Park of Mostoles, Avda. Ramón de la
Sagra 3, 28935 Madrid, Spain
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM,
Linköping University, 581 83 Linköping,
Sweden
| | - Juan C. Carretero
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Pablo Mauleón
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Ramón
Gómez Arrayás
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| |
Collapse
|
8
|
Yu S, Zhou L, Ye S, Tong X. Domino Sequences Involving Stereoselective Hydrazone-Type Heck Reaction and Denitrogenative [1,5]-Sigmatropic Rearrangement. J Am Chem Soc 2023; 145:7621-7627. [PMID: 36972519 DOI: 10.1021/jacs.3c01075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Although the Heck reactions of alkene partners with various electrophiles have achieved great success, the variant focused on carbon═heteroatom counterparts still remains elusive. Herein, we report a Pd(0)-catalyzed asymmetric intramolecular hydrazone-type Heck reaction of N-[(Z)-3-iodoallyl]-aminoacetaldehyde and hydrazine hydrate (NH2NH2-H2O), wherein the required hydrazone is in situ generated via an acid-promoted condensation. A key strategic advantage of this Heck paradigm is that the resultant Heck product allylic diazene rapidly undergoes stereospecific denitrogenative [1,5]-sigmatropic rearrangement, eventually furnishing a domino sequence toward 3-substituted tetrahydropyridine (THP) with high enantioselectivity. The substrate-induced diastereoselective version has also been realized, exclusively giving cis-2,5-disubstituted THPs. The utility of this sequence is demonstrated by the formal synthesis of multiple valuable bioactive targets, including 3-ethylindoloquinolizine, preclamol, and niraparib.
Collapse
Affiliation(s)
- Shuling Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Lijin Zhou
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Sihan Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 318000, China
| |
Collapse
|
9
|
Wang Z, Lamine W, Miqueu K, Liu SY. A syn outer-sphere oxidative addition: the reaction mechanism in Pd/Senphos-catalyzed carboboration of 1,3-enynes. Chem Sci 2023; 14:2082-2090. [PMID: 36845936 PMCID: PMC9945512 DOI: 10.1039/d2sc05828f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
We report a combined experimental and computational study of Pd/Senphos-catalyzed carboboration of 1,3-enynes utilizing DFT calculations, 31P NMR study, kinetic study, Hammett analysis and Arrhenius/Eyring analysis. Our mechanistic study provides evidence against the conventional inner-sphere β-migratory insertion mechanism. Instead, a syn outer-sphere oxidative addition mechanism featuring a Pd-π-allyl intermediate followed by coordination-assisted rearrangements is consistent with all the experimental observations.
Collapse
Affiliation(s)
- Ziyong Wang
- Department of Chemistry, Boston College Chestnut Hill Massachusetts 02467-3860 USA
| | - Walid Lamine
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254 Hélioparc, 2 Avenue P. Angot 64053 Pau Cedex 09 France
| | - Karinne Miqueu
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254 Hélioparc, 2 Avenue P. Angot 64053 Pau Cedex 09 France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College Chestnut Hill Massachusetts 02467-3860 USA
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254 Hélioparc, 2 Avenue P. Angot 64053 Pau Cedex 09 France
| |
Collapse
|
10
|
Dai Y, Yuan B, Li Z, Zhang L, Li L, Pu M, Lei M. Density Functional Theory Study on the H 2-Acceptorless Dehydrogenative Boration of Alkenes Catalyzed by a Zirconium Complex. J Org Chem 2022; 87:16632-16643. [PMID: 36446027 DOI: 10.1021/acs.joc.2c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the synthesis of vinyl boronate esters, the direct catalytic H2-acceptorless dehydrogenative boration of alkenes is one of the promising strategies. In this paper, the density functional theory method was employed to investigate the reaction mechanism of dehydrogenative boration and transfer boration of alkenes catalyzed by a zirconium complex (Cp2ZrH2). There are two possible pathways for this reaction: the alkene insertion followed by the dehydrogenative boration (path A) and the alkene insertion after the dehydrogenative boration (path B). The calculated results showed that path A is more favorable than path B, and that the rate-determining step is the C-B coupling step with an energy barrier of 18.7 kcal/mol. The reaction modes of the C-B coupling assisted dehydrogenative boration and the alkene insertion were also discussed. These analyses reveal a novel hydrogen release behavior in dehydrogenative boration and the alkene insertion modes and sequences were proposed to be of importance in the chemoselectivity of this reaction. In addition, the X ligand effect (X = H, Cl) on the catalytic activity of the zirconium complex was explored, indicating that the H ligand could enhance the catalytic activity of the complex for styrene dehydrogenative boration.
Collapse
Affiliation(s)
- Yulan Dai
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Binfang Yuan
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Longfei Li
- College of Pharmaceutical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Xu L, Dong Z, Zhang Q, Deng N, Li SY, Xu HJ. Protoboration of Alkynes and Miyaura Borylation Catalyzed by Low Loadings of Palladium. J Org Chem 2022; 87:14879-14888. [PMID: 36223839 DOI: 10.1021/acs.joc.2c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The versions of Miyaura borylation and protoboration of alkynes catalyzed by low loadings of palladium (400 mol ppm = 0.04 mol %) have been developed. These transformations have a broad substrate scope, good functional-group compatibility, and gram-scale synthetic ability.
Collapse
|
12
|
Desrosiers V, Knight SM, Fontaine FG. A Metal-Free Approach for the C–H Activation and Transfer Borylation of Electron-Rich Alkenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vincent Desrosiers
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, Quebec G1 V 0A6, Canada
| | - Samantha M. Knight
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Frédéric-Georges Fontaine
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Quebec City, Quebec G1 V 0A6, Canada
| |
Collapse
|
13
|
Horbaczewskyj CS, Fairlamb IJS. Pd-Catalyzed Cross-Couplings: On the Importance of the Catalyst Quantity Descriptors, mol % and ppm. Org Process Res Dev 2022; 26:2240-2269. [PMID: 36032362 PMCID: PMC9396667 DOI: 10.1021/acs.oprd.2c00051] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 12/26/2022]
Abstract
![]()
This Review examines parts per million (ppm) palladium
concentrations
in catalytic cross-coupling reactions and their relationship with
mole percentage (mol %). Most studies in catalytic cross-coupling
chemistry have historically focused on the concentration ratio between
(pre)catalyst and the limiting reagent (substrate), expressed as mol
%. Several recent papers have outlined the use of “ppm level”
palladium as an alternative means of describing catalytic cross-coupling
reaction systems. This led us to delve deeper into the literature
to assess whether “ppm level” palladium is a practically
useful descriptor of catalyst quantities in palladium-catalyzed cross-coupling
reactions. Indeed, we conjectured that many reactions could, unknowingly,
have employed low “ppm levels” of palladium (pre)catalyst,
and generally, what would the spread of ppm palladium look like across
a selection of studies reported across the vast array of the cross-coupling
chemistry literature. In a few selected examples, we have examined
other metal catalyst systems for comparison with palladium.
Collapse
Affiliation(s)
| | - Ian J. S. Fairlamb
- University of York, Heslington, York, North Yorkshire, YO10 5DD, United Kingdom
| |
Collapse
|
14
|
Zhao Q, Wu XF, Xiao X, Wang ZY, Zhao J, Wang BW, Lei H. Group 4 Metallocene Complexes Supported by a Redox-Active O, C-Chelating Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiuting Zhao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Xiao-Fan Wu
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiang Xiao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Zi-Yu Wang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jixing Zhao
- Analysis and Testing Center, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Bing-Wu Wang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Lei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Kvasovs N, Gevorgyan V. Accessing Illusive E Isomers of α-Ester Hydrazones via Visible-Light-Induced Pd-Catalyzed Heck-Type Alkylation. Org Lett 2022; 24:4176-4181. [PMID: 35653178 PMCID: PMC10122867 DOI: 10.1021/acs.orglett.2c01409] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A visible-light-induced Pd-catalyzed stereoselective synthesis of alkylated ester hydrazones has been developed. This method operates via generation of a nucleophilic carbon-centered radical from alkyl bromide, iodide, or redox-active ester, followed by its addition to hydrazone, and a subsequent desaturation by palladium. The majority of products have E configuration, which are inaccessible by conventional condensation methods. In addition, a sequential C,N-alkylation protocol has been developed: a reaction between 1,3-dihalides and glyoxylate-derived hydrazone, delivering tetrahydropyridazines.
Collapse
Affiliation(s)
- Nikita Kvasovs
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
16
|
Gutiérrez-Bonet Á, Popov S, Emmert MH, Hughes JME, Nolting AF, Ruccolo S, Wang Y. Asymmetric Synthesis of Tertiary and Secondary Cyclopropyl Boronates via Cyclopropanation of Enantioenriched Alkenyl Boronic Esters. Org Lett 2022; 24:3455-3460. [PMID: 35544734 DOI: 10.1021/acs.orglett.2c01018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cyclopropanation of alkenyl boronates and subsequent derivatization of the boronate handle are a convenient strategy to quickly build molecular complexity and access diverse compounds with a high sp3 fraction. Herein, we describe the asymmetric cyclopropanation of enantioenriched hydrobenzoin-derived alkenyl boronic esters toward the synthesis of tertiary and secondary cyclopropyl boronates.
Collapse
Affiliation(s)
- Álvaro Gutiérrez-Bonet
- Process Research & Development, Merck Research Laboratories (MRL), Merck & Company, Incorporated, West Point, Pennsylvania 19486, United States
| | - Stasik Popov
- Process Research & Development, Merck Research Laboratories (MRL), Merck & Company, Incorporated, Rahway, New Jersey 07065, United States
| | - Marion H Emmert
- Process Research & Development, Merck Research Laboratories (MRL), Merck & Company, Incorporated, Rahway, New Jersey 07065, United States
| | - Jonathan M E Hughes
- Process Research & Development, Merck Research Laboratories (MRL), Merck & Company, Incorporated, Rahway, New Jersey 07065, United States
| | - Andrew F Nolting
- Process Research & Development, Merck Research Laboratories (MRL), Merck & Company, Incorporated, West Point, Pennsylvania 19486, United States
| | - Serge Ruccolo
- Process Research & Development, Merck Research Laboratories (MRL), Merck & Company, Incorporated, Rahway, New Jersey 07065, United States
| | - Yunyi Wang
- Analytical Research and Development, Merck Research Laboratories (MRL), Merck & Company, Incorporated, West Point, Pennsylvania 19486, United States
| |
Collapse
|
17
|
Recent advances in the boration and cyanation functionalization of alkenes and alkynes. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Sigrist M, Zhang Y, Antheaume C, Dydio P. Isoselective Hydroformylation of Propylene by Iodide-Assisted Palladium Catalysis. Angew Chem Int Ed Engl 2022; 61:e202116406. [PMID: 35170175 DOI: 10.1002/anie.202116406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 11/10/2022]
Abstract
Isobutanal is a high value bulk material that, in principle, could be produced with 100 % atom-economy by isoselective hydroformylation of propylene with syngas. However, leading industrial Rh- and Co-catalyzed hydroformylation methods preferentially form n-butanal over the iso-product, and methods offering isoselectivity remain underdeveloped. Here we report an iodide-assisted Pd-catalyzed hydroformylation of propylene that produces isobutanal with unprecedented levels of selectivity. The method involves PdI2 , simple alkyl monophosphines, such as tricyclohexylphosphine, and common green solvents, enabling the title reaction to occur with isoselectivity in up to 50 : 1 iso/n product ratios under industrially relevant conditions (80-120 °C). The catalytic and preliminary mechanistic experiments indicate a key role of the iodide anions in both the catalytic activity and the isoselectivity.
Collapse
Affiliation(s)
- Michel Sigrist
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Yang Zhang
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Cyril Antheaume
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Paweł Dydio
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
19
|
Zhao Y, Ge S. Synergistic Hydrocobaltation and Borylcobaltation Enable Regioselective Migratory Triborylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202116133. [PMID: 35088939 DOI: 10.1002/anie.202116133] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 01/06/2023]
Abstract
The structural diversity of sp3 -triorganometallic reagents enhances their potentiality in the modular construction of molecular complexity in chemical synthesis. Despite significant achievements on the preparation of sp3 1,1,1- and 1,1,2-triorganometallic B,B,B-reagents, catalytic approaches that enable the installation of multiple boryl groups at skipped carbons of unactivated alkenes still remain elusive. Herein, we report a cobalt-catalyzed selective triborylation reaction of unactivated alkenes to access synthetically versatile 1,1,3-triborylalkanes. This triborylation protocol provides a general platform for regioselective trifunctionalization of unactivated alkenes, and its utility is highlighted by the synthesis of various value-added chemicals from readily accessible unactivated alkenes. Mechanistic studies, including deuterium-labelling experiments and evaluation of potential reactive intermediates, provide insight into the experimentally observed chemo- and regioselectivity.
Collapse
Affiliation(s)
- Yinsong Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
20
|
Sigrist M, Zhang Y, Antheaume C, Dydio P. Isoselective Hydroformylation of Propylene by Iodide‐Assisted Palladium Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michel Sigrist
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| | - Yang Zhang
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| | - Cyril Antheaume
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| | - Paweł Dydio
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
21
|
Marciniec B, Pietraszuk C, Pawluć P, Maciejewski H. Inorganometallics (Transition Metal-Metalloid Complexes) and Catalysis. Chem Rev 2022; 122:3996-4090. [PMID: 34967210 PMCID: PMC8832401 DOI: 10.1021/acs.chemrev.1c00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/28/2022]
Abstract
While the formation and breaking of transition metal (TM)-carbon bonds plays a pivotal role in the catalysis of organic compounds, the reactivity of inorganometallic species, that is, those involving the transition metal (TM)-metalloid (E) bond, is of key importance in most conversions of metalloid derivatives catalyzed by TM complexes. This Review presents the background of inorganometallic catalysis and its development over the last 15 years. The results of mechanistic studies presented in the Review are related to the occurrence of TM-E and TM-H compounds as reactive intermediates in the catalytic transformations of selected metalloids (E = B, Si, Ge, Sn, As, Sb, or Te). The Review illustrates the significance of inorganometallics in catalysis of the following processes: addition of metalloid-hydrogen and metalloid-metalloid bonds to unsaturated compounds; activation and functionalization of C-H bonds and C-X bonds with hydrometalloids and bismetalloids; activation and functionalization of C-H bonds with vinylmetalloids, metalloid halides, and sulfonates; and dehydrocoupling of hydrometalloids. This first Review on inorganometallic catalysis sums up the developments in the catalytic methods for the synthesis of organometalloid compounds and their applications in advanced organic synthesis as a part of tandem reactions.
Collapse
Affiliation(s)
- Bogdan Marciniec
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Cezary Pietraszuk
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Hieronim Maciejewski
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
22
|
Zhao Y, Ge S. Synergistic Hydrocobaltation and Borylcobaltation Enable Regioselective Migratory Triborylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yinsong Zhao
- National University of Singapore Department of Chemistry 3 Science Drive 3 117543 Singapore SINGAPORE
| | - Shaozhong Ge
- National University of Singapore Chemistry 3 Science Drive 3 117543 Singapore SINGAPORE
| |
Collapse
|
23
|
Rudlof J, Glodde T, Mix A, Neumann B, Stammler H, Mitzel NW. Synthesis of Bifunctional Boron‐Lewis Acids – Thorough Investigation of the Adduct Formation with Pyrimidine. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jens Rudlof
- Chair of Inorganic and Structural Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Timo Glodde
- Chair of Inorganic and Structural Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Andreas Mix
- Chair of Inorganic and Structural Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Hans‐Georg Stammler
- Chair of Inorganic and Structural Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Norbert W. Mitzel
- Chair of Inorganic and Structural Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
24
|
Rudlof J, Neumann B, Stammler HG, Mitzel NW. Synthesis of a bifunctional boron-Lewis acid and studies on host-guest chemistry using pyridine and TMPD. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Based on the previously described bifunctional Lewis acid with a functional distance of the boron functions of 4.918(2) Å, the development of a further bifunctional, boron-containing Lewis acid with a wider functional distance is demonstrated. Again, a stannylated precursor was used and the Lewis-acidic boron functions were introduced by means of tin-boron exchange. The general suitability of this class of compounds for the formation of host-guest-complexes is demonstrated by NMR experiments and by solid-state structures using pyridine and TMPD (N
1,N
1,N
4,N
4-tetramethylbenzene-1,4-diamine) as Lewis basic guests. The influence of traces of moisture on the boron-containing, bifunctional Lewis acids was investigated by the structure elucidation of a decomposition product.
Collapse
Affiliation(s)
- Jens Rudlof
- Inorganic and Structural Chemistry, Bielefeld University , Universitätsstraße 25, D-33615 Bielefeld , Germany
| | - Beate Neumann
- Inorganic and Structural Chemistry, Bielefeld University , Universitätsstraße 25, D-33615 Bielefeld , Germany
| | - Hans-Georg Stammler
- Inorganic and Structural Chemistry, Bielefeld University , Universitätsstraße 25, D-33615 Bielefeld , Germany
| | - Norbert W. Mitzel
- Inorganic and Structural Chemistry, Bielefeld University , Universitätsstraße 25, D-33615 Bielefeld , Germany
| |
Collapse
|
25
|
Alam S, Karim R, Khan A, Pal AK, Maruani A. Copper‐Catalyzed Preparation of Alkenylboronates and Arylboronates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Safiul Alam
- Department of Chemistry Aliah University IIA/27, New Town Kolkata 700160 India
| | - Rejaul Karim
- Department of Chemistry Aliah University IIA/27, New Town Kolkata 700160 India
| | - Aminur Khan
- Department of Chemistry Aliah University IIA/27, New Town Kolkata 700160 India
| | - Amarta Kumar Pal
- Centre for Advance Studies in Chemistry North-Eastern Hill University Mawlai Campus Shillong 793022 India
| | - Antoine Maruani
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques – UMR 8601 Université de Paris UFR Biomédicale 45 rue des Saints Pères Paris 75006 France
| |
Collapse
|
26
|
Wang Z, Wu J, Lamine W, Li B, Sotiropoulos JM, Chrostowska A, Miqueu K, Liu SY. C-Boron Enolates Enable Palladium Catalyzed Carboboration of Internal 1,3-Enynes. Angew Chem Int Ed Engl 2021; 60:21231-21236. [PMID: 34245074 DOI: 10.1002/anie.202108534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 12/17/2022]
Abstract
A new family of carbon-bound boron enolates, generated by a kinetically controlled halogen exchange between chlorocatecholborane and silylketene acetals, is described. These C-boron enolates are demonstrated to activate 1,3-enyne substrates in the presence of a Pd0 /Senphos ligand complex, resulting in the first examples of a carboboration reaction of an alkyne with enolate-equivalent nucleophiles. Highly substituted dienyl boron building blocks are produced in excellent site-, regio-, and diastereoselectivity by the described catalytic cis-carboboration reaction.
Collapse
Affiliation(s)
- Ziyong Wang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jason Wu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Walid Lamine
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jean-Marc Sotiropoulos
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Anna Chrostowska
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Karinne Miqueu
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA.,Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| |
Collapse
|
27
|
Wang Z, Wu J, Lamine W, Li B, Sotiropoulos J, Chrostowska A, Miqueu K, Liu S. C−Boron Enolates Enable Palladium Catalyzed Carboboration of Internal 1,3‐Enynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ziyong Wang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Jason Wu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Walid Lamine
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Bo Li
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Jean‐Marc Sotiropoulos
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Anna Chrostowska
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Karinne Miqueu
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Shih‐Yuan Liu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| |
Collapse
|
28
|
Bole LJ, Uzelac M, Hernán-Gómez A, Kennedy AR, O'Hara CT, Hevia E. Progressing the Frustrated Lewis Pair Abilities of N-Heterocyclic Carbene/GaR 3 Combinations for Catalytic Hydroboration of Aldehydes and Ketones. Inorg Chem 2021; 60:13784-13796. [PMID: 34191489 DOI: 10.1021/acs.inorgchem.1c01276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exploiting the steric incompatibility of the tris(alkyl)gallium GaR3 (R = CH2SiMe3) and the bulky N-heterocyclic carbene (NHC) 1,3-bis(tert-butyl)imidazol-2-ylidene (ItBu), here we report the B-H bond activation of pinacolborane (HBPin), which has led to the isolation and structural authentication of a novel ion pair, [{ItBu-BPin}+{GaR3(μ-H)GaR3}-] (2). Contrastingly, neither ItBu or GaR3 was able to react with HBPin under the conditions of this study. Combining an NHC-stabilized borenium cation, [{ItBu-BPin}+], with an anionic dinuclear gallate, [{GaR3(μ-H)GaR3}-], 2 proved to be unstable in solution at room temperature, evolving to the abnormal NHC-Ga complex [BPinC{{N(tBu)]2CHCGa(R)3}] (3). Interestingly, the structural isomer of 2, with the borenium cation residing at the C4 position of the carbene, [{aItBu-BPin}+{GaR3(μ-H)GaR3}-] (4), was obtained when the abnormal NHC complex [aItBu·GaR3] (1) was heated to 70 °C with HBPin, demonstrating that, under these forced conditions, it is possible to induce thermal frustration of the Lewis base/Lewis acid components of 1, enabling the activation of HBPin. Building on these stoichiometric studies, the frustrated Lewis pair (FLP) reactivity observed for the GaR3/ItBu combination with HBPin could then be upgraded to catalytic regimes, allowing the efficient hydroboration of a range of aldehydes and ketones under mild reaction conditions. Mechanistic insights into the possible reaction pathway involved in this process have been gained by combining kinetic investigations with a comparative study of the catalytic capabilities of several gallium and borenium species related to 2. Disclosing a new cooperative partnership, reactions are proposed to occur via the formation of a highly reactive monomeric hydride gallate, [{ItBu-BPin}+{GaR3(H)}-] (I). Each anionic and cationic component of I plays a key role for success of the hydroboration, with the nucleophilic monomeric gallate anion favoring the transfer of its hydride to the C═O bond of the organic substate, which in turn is activated by coordination to the borenium cation.
Collapse
Affiliation(s)
- Leonie J Bole
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Bern CH3012, Switzerland
| | - Marina Uzelac
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, United Kingdom
| | - Alberto Hernán-Gómez
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares-Madrid 28805, Spain
| | - Alan R Kennedy
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, United Kingdom
| | - Charles T O'Hara
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, United Kingdom
| | - Eva Hevia
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Bern CH3012, Switzerland
| |
Collapse
|
29
|
Ping Y, Wang R, Wang Q, Chang T, Huo J, Lei M, Wang J. Synthesis of Alkenylboronates from N-Tosylhydrazones through Palladium-Catalyzed Carbene Migratory Insertion. J Am Chem Soc 2021; 143:9769-9780. [PMID: 34157838 DOI: 10.1021/jacs.1c02331] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The palladium-catalyzed oxidative borylation reaction of N-tosylhydrazones has been developed. The reaction features mild conditions, broad substrate scope, and good functional group tolerance. It thus represents a highly efficient and practical method for the synthesis of di-, tri-, and tetrasubstituted alkenylboronates from readily available N-tosylhydrazones. One-pot Suzuki coupling and other transformations highlight the synthetic utility of the approach. DFT calculations have revealed that palladium-carbene formation and subsequent boryl migratory insertion are the key steps in the catalytic cycle. The high stereoselectivity observed in the formation of trisubstituted alkenylboronates has been explained by distortion-interaction analysis and NBO analysis.
Collapse
Affiliation(s)
- Yifan Ping
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Rui Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qianyue Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Taiwei Chang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jingfeng Huo
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.,The State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
30
|
Idowu OO, Hayes JC, Reid WB, Watson DA. Synthesis of 1,1-Diboryl Alkenes Using the Boryl-Heck Reaction. Org Lett 2021; 23:4838-4842. [PMID: 34043367 DOI: 10.1021/acs.orglett.1c01567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of 1,1-diboryl alkenes from terminal alkenes is reported. 1,1-Regioselective addition is observed for both conjugated and unconjugated alkenes, allowing for a single method to prepare a wide range of 1,1-diboryl alkenes.
Collapse
Affiliation(s)
- Olamide O Idowu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jacob C Hayes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - William B Reid
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Donald A Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
31
|
Kvasovs N, Iziumchenko V, Palchykov V, Gevorgyan V. Visible Light-Induced Pd-Catalyzed Alkyl-Heck Reaction of Oximes. ACS Catal 2021; 11:3749-3754. [PMID: 34422448 PMCID: PMC8372551 DOI: 10.1021/acscatal.1c00267] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A visible light-induced palladium-catalyzed oxidative C-H alkylation of oximes has been developed. This mild protocol allows for an efficient atom economical C-C bond construction of alkyl-substituted oximes. A broad range of primary, secondary, and tertiary alkyl bromides and iodides, as well as a range of different formaldoximes, can efficiently undergo this transformation. The method features visible light-induced generation of nucleophilic hybrid alkyl Pd radical intermediates, which upon radical addition at the imine moiety and a subsequent β-hydrogen elimination deliver substituted imines.
Collapse
Affiliation(s)
- Nikita Kvasovs
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Valeriia Iziumchenko
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vitalii Palchykov
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
32
|
Wu L, Li S, Cui X, Wang Y. Catalyst Development in the Dehydrogenative Borylation of Alkenes for the Synthesis Vinylboronate Esters. Synlett 2020. [DOI: 10.1055/s-0040-1707275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractCatalytic dehydrogenative borylation of alkenes provides an efficient and straightforward method for the preparation of synthetically useful vinylboronate esters. Here, we present a summary of developments and recent advances in this area, classified according to the various reactants and catalyst systems.1 Introduction2 Catalytic Dehydrogenative Borylation of Alkenes by Using Boranes3 Catalytic Dehydrogenative Borylation of Alkenes by Using Diboranes4 Zirconium-Catalyzed H
2
–Acceptorless Dehydrogenative Borylation of Alkenes with Boranes5 Conclusion and Outlook
Collapse
Affiliation(s)
- Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP)
- University of Chinese Academy of Sciences
| | - Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP)
- University of Chinese Academy of Sciences
| | - Xin Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP)
| | - Yue Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP)
| |
Collapse
|
33
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N‐Heterocyclic Carbene–Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C−C, C−B, C−H, and C−Si Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| | - Yuebiao Zhou
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Ying Shi
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - M. Kevin Brown
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Hao Wu
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Sebastian Torker
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| |
Collapse
|
34
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N-Heterocyclic Carbene-Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C-C, C-B, C-H, and C-Si Bonds. Angew Chem Int Ed Engl 2020; 59:21304-21359. [PMID: 32364640 DOI: 10.1002/anie.202003755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Indexed: 12/21/2022]
Abstract
A copper-based complex that contains a sulfonate N-heterocyclic carbene ligand was first reported 15 years ago. Since then, these organometallic entities have proven to be uniquely effective in catalyzing an assortment of enantioselective transformations, including allylic substitutions, conjugate additions, proto-boryl additions to alkenes, boryl and silyl substitutions, hydride-allyl additions to alkenyl boronates, and additions of boron-containing allyl moieties to N-H ketimines. In this review article, we detail the shortcomings in the state-of-the-art that fueled the development of this air stable ligand class, members of which can be prepared on multigram scale. For each reaction type, when relevant, the prior art at the time of the advance involving sulfonate NHC-Cu catalysts and/or subsequent key developments are briefly analyzed, and the relevance of the advance to efficient and enantioselective total or formal synthesis of biologically active molecules is underscored. Mechanistic analysis of the structural attributes of sulfonate NHC-Cu catalysts that are responsible for their ability to facilitate transformations with high efficiency as well as regio- and enantioselectivity are detailed. This review contains several formerly undisclosed methodological advances and mechanistic analyses, the latter of which constitute a revision of previously reported proposals.
Collapse
Affiliation(s)
- Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| | - Yuebiao Zhou
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Ying Shi
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - M Kevin Brown
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Hao Wu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Sebastian Torker
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| |
Collapse
|
35
|
Zhu D, Gan S, Bao RLY, Shi L. Copper-catalyzed cross-coupling of vinyliodonium salts and diboron reagents to generate alkenyl boronic esters. Org Biomol Chem 2020; 18:5567-5570. [PMID: 32662488 DOI: 10.1039/d0ob01121e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach for the synthesis of alkenyl boronic esters through the copper-catalyzed cross-coupling of vinyliodonium salts and diboron reagents is reported. This method is distinguished by its mild conditions and short reaction time of less than 30 min, which should provide an additional way for the construction of alkenyl boronic esters.
Collapse
Affiliation(s)
- Dan Zhu
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Shaoyan Gan
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Robert Li-Yuan Bao
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Lei Shi
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
36
|
Wang X, Cui X, Li S, Wang Y, Xia C, Jiao H, Wu L. Zirconium‐Catalyzed Atom‐Economical Synthesis of 1,1‐Diborylalkanes from Terminal and Internal Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xin Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Yue Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
37
|
Wang X, Cui X, Li S, Wang Y, Xia C, Jiao H, Wu L. Zirconium-Catalyzed Atom-Economical Synthesis of 1,1-Diborylalkanes from Terminal and Internal Alkenes. Angew Chem Int Ed Engl 2020; 59:13608-13612. [PMID: 32297413 PMCID: PMC7496309 DOI: 10.1002/anie.202002642] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/23/2022]
Abstract
A general and atom‐economical synthesis of 1,1‐diborylalkanes from alkenes and a borane without the need for an additional H2 acceptor is reported for the first time. The key to our success is the use of an earth‐abundant zirconium‐based catalyst, which allows a balance of self‐contradictory reactivities (dehydrogenative boration and hydroboration) to be achieved. Our method avoids using an excess amount of another alkene as an H2 acceptor, which was required in other reported systems. Furthermore, substrates such as simple long‐chain aliphatic alkenes that did not react before also underwent 1,1‐diboration in our system. Significantly, the unprecedented 1,1‐diboration of internal alkenes enabled the preparation of 1,1‐diborylalkanes.
Collapse
Affiliation(s)
- Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yue Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
38
|
Altarejos J, Sucunza D, Vaquero JJ, Carreras J. Practical Solvent-Free Microwave-Assisted Hydroboration of Alkynes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Julia Altarejos
- Departamento de Química Orgánica y Química Inorgánica; Instituto de Investigación Química “Andrés M. del Río” (IQAR); Universidad de Alcalá; IRYCIS; 28805 Madrid Alcalá de Henares Spain
| | - David Sucunza
- Departamento de Química Orgánica y Química Inorgánica; Instituto de Investigación Química “Andrés M. del Río” (IQAR); Universidad de Alcalá; IRYCIS; 28805 Madrid Alcalá de Henares Spain
| | - Juan J. Vaquero
- Departamento de Química Orgánica y Química Inorgánica; Instituto de Investigación Química “Andrés M. del Río” (IQAR); Universidad de Alcalá; IRYCIS; 28805 Madrid Alcalá de Henares Spain
| | - Javier Carreras
- Departamento de Química Orgánica y Química Inorgánica; Instituto de Investigación Química “Andrés M. del Río” (IQAR); Universidad de Alcalá; IRYCIS; 28805 Madrid Alcalá de Henares Spain
| |
Collapse
|
39
|
Li Y, Wei H, Wu D, Li Z, Wang W, Yin G. Nickel-Catalyzed Chemodivergent 1,1-Difunctionalization of Unactivated α-Olefins with Alkynyl Electrophiles and B2pin2. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00898] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yangyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Hong Wei
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Dong Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Zheqi Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Wang Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| |
Collapse
|
40
|
Chen J, Li J, Plutschack MB, Berger F, Ritter T. Regio- and Stereoselective Thianthrenation of Olefins To Access Versatile Alkenyl Electrophiles. Angew Chem Int Ed Engl 2020; 59:5616-5620. [PMID: 31782968 PMCID: PMC7154751 DOI: 10.1002/anie.201914215] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 11/07/2022]
Abstract
Herein, we report a regioselective alkenyl electrophile synthesis from unactivated olefins that is based on a direct and regioselective C-H thianthrenation reaction. The selectivity is proposed to arise from an unusual inverse-electron-demand hetero-Diels-Alder reaction. The alkenyl sulfonium salts can serve as electrophiles in palladium- and ruthenium-catalyzed cross-coupling reactions to make alkenyl C-C, C-Cl, C-Br, and C-SCF3 bonds with stereoretention.
Collapse
Affiliation(s)
- Junting Chen
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Jiakun Li
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Matthew B. Plutschack
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Florian Berger
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Tobias Ritter
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
41
|
Chen J, Li J, Plutschack MB, Berger F, Ritter T. Regio‐ and Stereoselective Thianthrenation of Olefins To Access Versatile Alkenyl Electrophiles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Junting Chen
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Jiakun Li
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Matthew B. Plutschack
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Florian Berger
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
42
|
Liu X, Ming W, Friedrich A, Kerner F, Marder TB. Copper-Catalyzed Triboration of Terminal Alkynes Using B 2 pin 2 : Efficient Synthesis of 1,1,2-Triborylalkenes. Angew Chem Int Ed Engl 2020; 59:304-309. [PMID: 31502712 PMCID: PMC6972586 DOI: 10.1002/anie.201908466] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/31/2019] [Indexed: 02/04/2023]
Abstract
We report herein the catalytic triboration of terminal alkynes with B2 pin2 (bis(pinacolato)diboron) using readily available Cu(OAc)2 and Pn Bu3 . Various 1,1,2-triborylalkenes, a class of compounds that have been demonstrated to be potential matrix metalloproteinase (MMP-2) inhibitors, were obtained directly in moderate to good yields. The process features mild reaction conditions, a broad substrate scope, and good functional group tolerance. This copper-catalyzed reaction can be conducted on a gram scale to produce the corresponding 1,1,2-triborylalkenes in modest yields. The utility of these products was demonstrated by further transformations of the C-B bonds to prepare gem-dihaloborylalkenes (F, Cl, Br), monohaloborylalkenes (Cl, Br), and trans-diaryldiborylalkenes, which serve as important synthons and have previously been challenging to prepare.
Collapse
Affiliation(s)
- Xiaocui Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Wenbo Ming
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Kerner
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
43
|
Zhu D, Qu ZW, Stephan DW. Addition reactions and diazomethane capture by the intramolecular P–O–B FLP: tBu2POBcat. Dalton Trans 2020; 49:901-910. [DOI: 10.1039/c9dt04560k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
FLPs, R2POBcat (R = tBu 1, Mes 2), are shown to react with a variety of substrates including diazomethanes.
Collapse
Affiliation(s)
- Diya Zhu
- Department of Chemistry
- University of Toronto
- Toronto
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53115 Bonn
- Germany
| | | |
Collapse
|
44
|
Ryu JH, Lee GJ, Shih YRV, Kim TI, Varghese S. Phenylboronic Acid-polymers for Biomedical Applications. Curr Med Chem 2019; 26:6797-6816. [DOI: 10.2174/0929867325666181008144436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Background:
Phenylboronic acid-polymers (PBA-polymers) have attracted tremendous
attention as potential stimuli-responsive materials with applications in drug-delivery
depots, scaffolds for tissue engineering, HIV barriers, and biomolecule-detecting/sensing platforms.
The unique aspect of PBA-polymers is their interactions with diols, which result in reversible,
covalent bond formation. This very nature of reversible bonding between boronic
acids and diols has been fundamental to their applications in the biomedical area.
Methods:
We have searched peer-reviewed articles including reviews from Scopus, PubMed,
and Google Scholar with a focus on the 1) chemistry of PBA, 2) synthesis of PBA-polymers,
and 3) their biomedical applications.
Results:
We have summarized approximately 179 papers in this review. Most of the applications
described in this review are focused on the unique ability of PBA molecules to interact
with diol molecules and the dynamic nature of the resulting boronate esters. The strong sensitivity
of boronate ester groups towards the surrounding pH also makes these molecules
stimuli-responsive. In addition, we also discuss how the re-arrangement of the dynamic boronate
ester bonds renders PBA-based materials with other unique features such as self-healing
and shear thinning.
Conclusion:
The presence of PBA in the polymer chain can render it with diverse functions/
relativities without changing their intrinsic properties. In this review, we discuss the development
of PBA polymers with diverse functions and their biomedical applications with a
specific focus on the dynamic nature of boronate ester groups.
Collapse
Affiliation(s)
- Ji Hyun Ryu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yu-Ru V. Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Tae-il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| |
Collapse
|
45
|
Liu X, Ming W, Friedrich A, Kerner F, Marder TB. Kupfer‐katalysierte Triborierung terminaler Alkine mit B
2
pin
2
: Effiziente Synthese von 1,1,2‐Triborylalkenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaocui Liu
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Wenbo Ming
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Alexandra Friedrich
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Florian Kerner
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Todd B. Marder
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
46
|
Reid WB, McAtee JR, Watson DA. Synthesis of Unsaturated Silyl Heterocycles via an Intramolecular Silyl-Heck Reaction. Organometallics 2019; 38:3796-3803. [PMID: 32431470 DOI: 10.1021/acs.organomet.9b00498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the synthesis of unsaturated silacycles via an intramolecular silyl-Heck reaction. Using palladium catalysis, silicon electrophiles tethered to alkenes cyclize to form 5- and 6-membered silicon heterocycles. The effects of alkene substitution and tether length on the efficiency and regioselectivity of the cyclizations are described. Finally, through the use of an intramolecular tether, the first examples of disubstituted alkenes in silyl-Heck reactions are reported.
Collapse
Affiliation(s)
- William B Reid
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jesse R McAtee
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Donald A Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
47
|
Shi X, Li S, Wu L. H2‐Acceptorless Dehydrogenative Boration and Transfer Boration of Alkenes Enabled by Zirconium Catalyst. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaonan Shi
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Sida Li
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
48
|
Shi X, Li S, Wu L. H
2
‐Acceptorless Dehydrogenative Boration and Transfer Boration of Alkenes Enabled by Zirconium Catalyst. Angew Chem Int Ed Engl 2019; 58:16167-16171. [DOI: 10.1002/anie.201908931] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaonan Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
49
|
Li K, Yu S, Zhuo K, Lu X, Xiao B, Gong T, Fu Y. Synthesis of Conjugated Boron‐Enynes
via cis‐
Alkynylboration of Terminal Alkynes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kuan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Shang‐Hai Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Kai‐Feng Zhuo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Xi Lu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Bin Xiao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Tian‐Jun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM University of Science and Technology of China Hefei 230026 People's Republic of China
| |
Collapse
|
50
|
Abstract
At the advent of cross-coupling chemistry, carbon electrophiles based on halides or pseudohalides were the only suitable electrophilic coupling partners. Almost two decades passed before the first cross-coupling reaction of heteroatom-based electrophiles was reported. Early work by Murai and Tanaka initiated investigations into silicon electrophiles. Narasaka and Johnson pioneered the way in the use of nitrogen electrophiles, while Suginome began the exploration of boron electrophiles. The chemistry reviewed within provides perspective on the use of heteroatomic electrophiles, specifically silicon-, nitrogen-, boron-, oxygen-, and phosphorus-based electrophiles in transition-metal catalyzed cross-coupling. For the purposes of this review, a loose definition of cross-coupling is utilized; all reactions minimally proceed via an oxidative addition event. Although not cross-coupling in a traditional sense, we have also included catalyzed reactions that join a heteroatomic electrophile with an in situ generated nucleophile. However, for brevity, those involving hydroamination or C-H activation as a key step are largely excluded. This work includes primary references published up to and including October 2018.
Collapse
Affiliation(s)
- Katerina M Korch
- Department of Chemistry and Biochemistry , University of Delaware Newark , Delaware 19716 , United States
| | - Donald A Watson
- Department of Chemistry and Biochemistry , University of Delaware Newark , Delaware 19716 , United States
| |
Collapse
|