1
|
Hosoda T, Kominato M, Fujii A. Infrared Spectroscopy of [H 2O-N 2O] +-(H 2O) n ( n = 1 and 2): Microhydration Effects on the Hemibond. J Phys Chem A 2025; 129:2896-2902. [PMID: 40073341 DOI: 10.1021/acs.jpca.5c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The hemibond, a nonclassical covalent bond involving three electrons shared between two centers, has attracted considerable attention due to its significance in radiation chemistry. Water radical cation clusters, [H2O-X]+, exhibit two primary bonding motifs: the hemibond and the hydrogen bond. Although hydrogen bond formation typically dominates, recent studies have identified instances of hemibond formation in some systems involving water molecules. This study focuses on the [H2O-N2O]+ radical cation cluster, a rare system exhibiting hemibond formation. We investigate the stability of this hemibond in [H2O-N2O]+ against microhydration by employing infrared photodissociation spectroscopy and conducting theoretical calculations on [H2O-N2O]+-(H2O)n (n = 1 and 2). By comparing experimental and simulated spectra, we determined the predominant intermolecular bonding motifs in [H2O-N2O]+-(H2O)n (n = 1 and 2). Our analysis revealed that proton-transferred-type isomers are almost exclusively populated for n = 1 and 2, whereas hemibonded-type isomers are energetically unfavorable. These findings indicate that microhydration disrupts the hemibond and shifts the stable structural motifs.
Collapse
Affiliation(s)
- Tatsuki Hosoda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Mizuhiro Kominato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
2
|
Spencer RJ, Zhanserkeev AA, Yang EL, Steele RP. The Near-Sightedness of Many-Body Interactions in Anharmonic Vibrational Couplings. J Am Chem Soc 2024; 146:15376-15392. [PMID: 38771156 DOI: 10.1021/jacs.4c03198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Couplings between vibrational motions are driven by electronic interactions, and these couplings carry special significance in vibrational energy transfer, multidimensional spectroscopy experiments, and simulations of vibrational spectra. In this investigation, the many-body contributions to these couplings are analyzed computationally in the context of clathrate-like alkali metal cation hydrates, including Cs+(H2O)20, Rb+(H2O)20, and K+(H2O)20, using both analytic and quantum-chemistry potential energy surfaces. Although the harmonic spectra and one-dimensional anharmonic spectra depend strongly on these many-body interactions, the mode-pair couplings were, perhaps surprisingly, found to be dominated by one-body effects, even in cases of couplings to low-frequency modes that involved the motion of multiple water molecules. The origin of this effect was traced mainly to geometric distortion within water monomers and cancellation of many-body effects in differential couplings, and the effect was also shown to be agnostic to the identity of the ion. These outcomes provide new understanding of vibrational couplings and suggest the possibility of improved computational methods for the simulation of infrared and Raman spectra.
Collapse
Affiliation(s)
- Ryan J Spencer
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Asylbek A Zhanserkeev
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Emily L Yang
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ryan P Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Yang EL, Talbot JJ, Spencer RJ, Steele RP. Pitfalls in the n-mode representation of vibrational potentials. J Chem Phys 2023; 159:204104. [PMID: 38010326 DOI: 10.1063/5.0176612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
Simulations of anharmonic vibrational motion rely on computationally expedient representations of the governing potential energy surface. The n-mode representation (n-MR)-effectively a many-body expansion in the space of molecular vibrations-is a general and efficient approach that is often used for this purpose in vibrational self-consistent field (VSCF) calculations and correlated analogues thereof. In the present analysis, a lack of convergence in many VSCF calculations is shown to originate from negative and unbound potentials at truncated orders of the n-MR expansion. For cases of strong anharmonic coupling between modes, the n-MR can both dip below the true global minimum of the potential surface and lead to effective single-mode potentials in VSCF that do not correspond to bound vibrational problems, even for bound total potentials. The present analysis serves mainly as a pathology report of this issue. Furthermore, this insight into the origin of VSCF non-convergence provides a simple, albeit ad hoc, route to correct the problem by "painting in" the full representation of groups of modes that exhibit these negative potentials at little additional computational cost. Somewhat surprisingly, this approach also reasonably approximates the results of the next-higher n-MR order and identifies groups of modes with particularly strong coupling. The method is shown to identify and correct problematic triples of modes-and restore SCF convergence-in two-mode representations of challenging test systems, including the water dimer and trimer, as well as protonated tropine.
Collapse
Affiliation(s)
- Emily L Yang
- Department of Chemistry, The University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, USA
- Henry Eyring Center for Theoretical Chemistry, The University of Utah, Salt Lake City, Utah 84112, USA
| | - Justin J Talbot
- Department of Chemistry, University of California-Berkeley, 420 Latimer Hall, Berkeley, California 94720, USA
| | - Ryan J Spencer
- Department of Chemistry, The University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, USA
- Henry Eyring Center for Theoretical Chemistry, The University of Utah, Salt Lake City, Utah 84112, USA
| | - Ryan P Steele
- Department of Chemistry, The University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, USA
- Henry Eyring Center for Theoretical Chemistry, The University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
4
|
Reese DL, Steele RP. Molecular Motion in the Interconverting σ-H 2, Di-, and Tri-hydride Regimes: Mo(PH3)5H2. J Phys Chem A 2022; 126:6834-6848. [PMID: 36154020 DOI: 10.1021/acs.jpca.2c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transition-metal complex Mo(PH3)5H2 is known to exist in three possible isomeric forms, including a nonclassical, σ-bound dihydrogen complex and two classical dihydride isomers. As such, it has served as a model complex for the energies of conversion between these limiting structural regimes. In the present study, ab initio molecular dynamics computer simulations, combined with enhanced sampling techniques, were utilized to directly assess the degree of motion and isomerization of the dihydrogen/dihydride moieties in this complex. Ligand rotations (for both the H2 unit and the phosphine units) were found to be dominant in the low-temperature (298 K) regime, and the classical thermodynamic distribution showed no probability of thermally accessing dihydride forms, although unrestrained molecular dynamics trajectories showed fleeting configurations outside of the σ-H2 configuration. Simulations at higher temperatures surprisingly revealed new tri-hydride isomers that are energetically competitive with the σ-H2 and cis-/trans-dihydride isomers. Low-energy pathways to hydrogen/hydride transfer and phosphine dissociation were readily accessible, which considerably expands the known isomeric flexibility of this complex.
Collapse
Affiliation(s)
- Diana L Reese
- Department of Chemistry and Biochemistry, Utah Tech University, 225 South University Avenue, St. George, Utah 84770, United States
| | - Ryan P Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Liu JM, Nishigori T, Maeyama T, Huang QR, Katada M, Kuo JL, Fujii A. Infrared Spectroscopy and Anharmonic Vibrational Analysis of (H 2O-Kr n) + ( n = 1-3): Hemibond Formation of the Water Radical Cation. J Phys Chem Lett 2021; 12:7997-8002. [PMID: 34433278 DOI: 10.1021/acs.jpclett.1c02164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hemibond is a nonclassical covalent bond formed between a radical (cation) and a closed shell molecule. The hemibond formation ability of water has attracted great interest, concerning its role in ionization of water. While many computational studies on the water hemibond have been performed, clear experimental evidence has been hardly reported because the hydrogen bond formation overwhelms the hemibond formation. In the present study, infrared photodissociation spectroscopy is applied to (H2O-Krn)+ (n = 1-3) radical cation clusters. The observed spectra of (H2O-Krn)+ are well reproduced by the anharmonic vibrational simulations based on the hemibonded isomer structures. The firm evidence of the hemibond formation ability of water is revealed.
Collapse
Affiliation(s)
- Jing-Min Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan
| | - Tomoki Nishigori
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-Ku, Sendai 980-8578, Japan
| | - Toshihiko Maeyama
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-Ku, Sendai 980-8578, Japan
| | - Qian-Rui Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan
| | - Marusu Katada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-Ku, Sendai 980-8578, Japan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan
| | - Asuka Fujii
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-Ku, Sendai 980-8578, Japan
| |
Collapse
|
6
|
Hartweg S, Garcia GA, Nahon L. Photoelectron Spectroscopy of the Water Dimer Reveals Unpredicted Vibrational Structure. J Phys Chem A 2021; 125:4882-4887. [PMID: 34028282 DOI: 10.1021/acs.jpca.1c03201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen bonds and proton transfer reactions can be considered as being at the very heart of aqueous chemistry and of utmost importance for many processes of biological relevance. Nevertheless, these processes are not yet well understood, even in seemingly simple model systems like small water clusters. We present a study of the photoelectron spectrum of the water dimer, revealing previously unresolved vibrational structure with 10-30 meV (80-242 cm-1) typical splitting, in disagreement with a previous theoretical photoionization study predicting an apparent main vibrational progression with an ∼130 meV spacing [Kamarchik et al.; J. Chem. Phys. 2010, 132, 194311]. The observed vibrational structure and its deviation from the theoretical prediction is discussed in terms of known difficulties with calculations of strongly coupled anharmonic systems involving large amplitude motions. Potential contributions of the nonzero vibrational energy of the neutral water dimer at a finite experimental internal temperature are addressed. The internal temperature is estimated from the breakdown diagram associated with the dissociative ionization of the water dimer to be around to 130 K. This analysis also provides two additional, independently measured values for the 0 K appearance energy of the hydronium ion (H3O+) from dissociative ionization of the water dimer.
Collapse
Affiliation(s)
- Sebastian Hartweg
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin BP 48, 91192 Gif sur Yvette Cedex, France
| | - Gustavo A Garcia
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin BP 48, 91192 Gif sur Yvette Cedex, France
| | - Laurent Nahon
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin BP 48, 91192 Gif sur Yvette Cedex, France
| |
Collapse
|
7
|
Guan S, Rabus JM, Maître P, Bythell BJ. Gas-Phase Dissociation Chemistry of Deprotonated RGD. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:55-63. [PMID: 32267154 DOI: 10.1021/jasms.0c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the structure and dissociation pathways of the deprotonated amphoteric peptide arginylglycylasparic acid, [RGD-H]-. We model the pertinent gas-phase structures and fragmentation chemistry of the precursor anions and predominant sequence-informative bond cleavages (b2+H2O, c2, and z1 peaks) and compare these predictions to our tandem mass spectra and infrared spectroscopy experiments. Formation of the b2+H2O anions requires rate-limiting intramolecular back biting to cleave the second amide bond and generate an anhydride structure. Facile cleavage of the newly formed ester bond with concerted expulsion of a cyclic anhydride neutral generates the product structure. IR spectroscopy supports this b2+H2O anion having structures that are essentially identical to C-terminally deprotonated arginylglycine, [RG-H]-. Formation of the c2 anion is predicted to require concerted expulsion of CO2 from the aspartyl side chain carboxylate and cleavage of the N-Calpha bond to produce a proton-bound dimer of arginylglycinamide and acrylate. Proton transfers within the dimer then enable predominant detection of a c2 anion with the negative charge nominally on the central, glycine nitrogen (amidate structure) as the proton affinity of this structure is predicted to be lower than acrylate by ∼27 kJ mol-1. Alternate means of cleaving the same N-Calpha bond produce deprotonated cis-1,4-dibut-2-enoic acid z1 anion structures. These lowest energy processes involve C-H proton mobilization from the aspartyl side chain prior to N-Calpha bond cleavage consistent with proposals from the literature.
Collapse
Affiliation(s)
- Shanshan Guan
- Department of Chemistry and Biochemistry, Ohio University, 391 Clippinger Laboratories, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, Missouri 63121, United States
| | - Jordan M Rabus
- Department of Chemistry and Biochemistry, Ohio University, 391 Clippinger Laboratories, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, Missouri 63121, United States
| | - Philippe Maître
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, Ohio University, 391 Clippinger Laboratories, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
8
|
Riera M, Talbot JJ, Steele RP, Paesani F. Infrared signatures of isomer selectivity and symmetry breaking in the Cs+(H2O)3 complex using many-body potential energy functions. J Chem Phys 2020; 153:044306. [DOI: 10.1063/5.0013101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Marc Riera
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Justin J. Talbot
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Ryan P. Steele
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
9
|
Christensen EG, Steele RP. Stepwise Activation of Water by Open-Shell Interactions, Cl(H 2O) n=4–8,17. J Phys Chem A 2020; 124:3417-3437. [DOI: 10.1021/acs.jpca.0c01544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizabeth G. Christensen
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ryan P. Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
10
|
Talbot JJ, Yang N, Huang M, Duong CH, McCoy AB, Steele RP, Johnson MA. Spectroscopic Signatures of Mode-Dependent Tunnel Splitting in the Iodide-Water Binary Complex. J Phys Chem A 2020; 124:2991-3001. [PMID: 32162519 DOI: 10.1021/acs.jpca.0c00853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gas-phase vibrational spectrum of the isolated iodide-water cluster ion (I-·H2O), first reported in 1996, presents one of the most difficult, long-standing spectroscopic puzzles involving ion microhydration. Although the spectra of the smaller halides are well described in the context of an asymmetrical ground-state structure in which only one OH group is hydrogen-bonded to the ion, the I-·H2O spectrum displays multiplet structures with partially resolved rotational patterns that are additionally influenced by quantum nuclear spin statistics. In this study, this complex behavior is unraveled with a combination of experimental methods, including ion preparation in a temperature-controlled ion trap and spectral simplification through applications of tag-free, two-color IR-IR double-resonance spectroscopy. Analysis of the double-resonance spectra reveals a vibrational ground-state tunneling splitting of about 20 cm-1, which is on the same order as the spacing between the peaks that comprise the multiplet structure. These findings are further supported by the results obtained from a fully coupled, six-dimensional calculation of the vibrational spectrum. The underlying level structure can then be understood as a consequence of experimentally measurable, vibrational mode-dependent tunneling splittings (which, in the case of the ground vibrational state, is comparable to the rotational energy spacing between levels with Ka = 0 and 1), as well as Fermi resonance interactions. The latter include the hydrogen-bonded OH stretches and combination bands that involve the HOH bend overtones and soft-mode excitations of frustrated translation and rotation displacements of the water molecule relative to the ion. These anharmonic couplings yield closely spaced bands that are activated in the IR by borrowing intensity from the OH stretch fundamentals.
Collapse
Affiliation(s)
- Justin J Talbot
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nan Yang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Meng Huang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chinh H Duong
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan P Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mark A Johnson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Christensen EG, Steele RP. Probing the Partial Activation of Water by Open-Shell Interactions, Cl(H 2O) 1-4. J Phys Chem A 2019; 123:8657-8673. [PMID: 31513400 DOI: 10.1021/acs.jpca.9b07235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The partial chemical activation of water by reactive radicals was examined computationally for small clusters of chlorine and water, Cl•(H2O)n=1-4. Using an automated isomer-search procedure, dozens of unique, stable structures were computed. Among the resulting structural classes were intact, hydrated-chlorine isomers, as well as hydrogen-abstracted (HCl)(OH)(H2O)n-1 configurations. The latter showed increased stability as the degree of hydration increased, until n = 4, where a new class of structures was discovered with a chloride ion bound to an oxidized water network. The electronic structure of these three structural classes was investigated, and spectral signatures of this hydration-based evolution were connected to these electronic properties. An ancillary outcome of this detailed computational analysis, including coupled-cluster benchmarks, was the calibration of cost-effective quantum chemistry methods for future studies of these radical-water complexes.
Collapse
Affiliation(s)
- Elizabeth G Christensen
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Ryan P Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
12
|
Zhao-Qi W, Hai-Yan W, Zeng ZY, Yan C. Ab initio investigation of possible lower-energy candidate structure for cationic water cluster (H2O) 12+ via particle swarm optimization method. Struct Chem 2019. [DOI: 10.1007/s11224-018-1182-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Ab initio investigation of the lower-energy candidate structures for (H2O)10+ water cluster. Struct Chem 2018. [DOI: 10.1007/s11224-018-1109-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Hirshberg B, Gerber RB, Krylov AI. Autocorrelation of electronic wave-functions: a new approach for describing the evolution of electronic structure in the course of dynamics. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1464675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Barak Hirshberg
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry , Jerusalem, Israel
| | - R. Benny Gerber
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry , Jerusalem, Israel
- Department of Chemistry, University of California , Irvine, CA, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California , Los Angeles, CA, USA
| |
Collapse
|
15
|
Rabus JM, Simmons DR, Maître P, Bythell BJ. Deprotonated carbohydrate anion fragmentation chemistry: structural evidence from tandem mass spectrometry, infra-red spectroscopy, and theory. Phys Chem Chem Phys 2018; 20:27897-27909. [DOI: 10.1039/c8cp02620c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the gas-phase structures and fragmentation chemistry of deprotonated carbohydrate anions using combined tandem mass spectrometry, infrared spectroscopy, regioselective labelling, and theory.
Collapse
Affiliation(s)
- Jordan M. Rabus
- Department of Chemistry and Biochemistry
- University of Missouri-St. Louis
- St. Louis
- USA
| | - Daniel R. Simmons
- Department of Chemistry and Biochemistry
- University of Missouri-St. Louis
- St. Louis
- USA
| | - Philippe Maître
- Laboratoire de Chimie Physique (UMR8000)
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- Orsay
| | - Benjamin J. Bythell
- Department of Chemistry and Biochemistry
- University of Missouri-St. Louis
- St. Louis
- USA
| |
Collapse
|
16
|
Ab initio study of cationic water cluster (H 2 O) 9 + via particle swarm optimization algorithm. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Rekik N, Suleiman J, Blaise P, Wojcik MJ, Flakus HT, Nakajima T. Electrical anharmonicity in hydrogen bonded systems: complete interpretation of the IR spectra of the Cl-H[combining right harpoon above] stretching band in the gaseous (CH 3) 2OHCl complex. Phys Chem Chem Phys 2017; 19:5917-5931. [PMID: 28177021 DOI: 10.1039/c7cp00165g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Following the previous developments to simulate the fully infrared spectra of weak hydrogen bond systems within the linear response theory, an extension of the adiabatic model is presented here. A general formulation including the electrical anharmonicities in the calculation of the damped autocorrelation function of weak H-bonds is adopted to facilitate the support of the additional properties, and thus the IR spectra of the Cl-H[combining right harpoon above] stretching band in the gaseous (CH3)2OHCl complex. We have explored the origins of the broadening of the Cl-H[combining right harpoon above] stretching band. We found that the main features of the lineshape are attributed to electrical anharmonicity as a consequence of the large mixed second derivatives of the dipole moment with respect to the Cl-H[combining right harpoon above] bond and of the intermonomer elongations . In addition to providing more accurate theoretical band shapes, inclusion of the electrical anharmonicity in the present model paves the way for a more complete interpretation by generating three new Franck-Condon superposed distributions.
Collapse
Affiliation(s)
- Najeh Rekik
- Physics Department, Faculty of Science, University of Ha'il, Kingdom of Saudi Arabia. and Laboratoire de Physique Quantique, Faculté des Sciences de Monastir, 5019 Monastir, Tunisia.
| | - Jamal Suleiman
- Physics Department, Faculty of Science, University of Ha'il, Kingdom of Saudi Arabia.
| | - Paul Blaise
- LAMPS, Université de Perpignan Via Domitia, 52, Avenue Paul Alduy, 66860 Perpignan cedex, France
| | - Marek J Wojcik
- Laboratory of Molecular Spectroscopy, Faculty of Chemistry, Jagiellonian University, Ingardena, 3, 30-060 Kraków, Poland
| | - Henryk T Flakus
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, Pl-40-006 Katowice, Poland
| | - Takahito Nakajima
- RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
18
|
Hochlaf M. Advances in spectroscopy and dynamics of small and medium sized molecules and clusters. Phys Chem Chem Phys 2017; 19:21236-21261. [DOI: 10.1039/c7cp01980g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Investigations of the spectroscopy and dynamics of small- and medium-sized molecules and clusters represent a hot topic in atmospheric chemistry, biology, physics, atto- and femto-chemistry and astrophysics.
Collapse
Affiliation(s)
- Majdi Hochlaf
- Université Paris-Est
- Laboratoire Modélisation et Simulation Multi Echelle
- MSME UMR 8208 CNRS
- 77454 Marne-la-Vallée
- France
| |
Collapse
|
19
|
Herr JD, Steele RP. Signatures of Size-Dependent Structural Patterns in Hydrated Copper(I) Clusters, Cu +(H 2O) n=1-10. J Phys Chem A 2016; 120:10252-10263. [PMID: 27981838 DOI: 10.1021/acs.jpca.6b10346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The isomers of a hydrated Cu(I) ion with n = 1-10 water molecules were investigated by using ab initio quantum chemistry and an automated isomer-search algorithm. The electronic structure and vibrational spectra of the hundreds of resulting isomers were used to analyze the source of the observed bonding patterns. A structural evolution from dominantly two-coordinate structures (n = 1-4) toward a mixture of two- and three-coordinate structures was observed at n = 5-6, where the stability provided by expanded hydrogen-bonding was competitive with the dominantly electrostatic interaction between the water ligand and remaining binding sites of the metal ion. Further hydration (n = 7-10) led to a mixture of three- and four-coordinate structures. The metal ion was found, through spectroscopic signatures, to appreciably perturb the O-H bonds of even third-shell water molecules, which highlighted the ability of this nominally simple ion to partially activate the surrounding water network.
Collapse
Affiliation(s)
- Jonathan D Herr
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States and.,Henry Eyring Center for Theoretical Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ryan P Steele
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States and.,Henry Eyring Center for Theoretical Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
20
|
Affiliation(s)
- Daniel M. Chipman
- Radiation Laboratory, University of Notre Dame, Notre
Dame, Indiana 46556-5674, United States
| |
Collapse
|
21
|
Herr JD, Steele RP. Ion–Radical Pair Separation in Larger Oxidized Water Clusters, (H2O)+n=6–21. J Phys Chem A 2016; 120:7225-39. [DOI: 10.1021/acs.jpca.6b07465] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jonathan D. Herr
- Department
of Chemistry and Henry Eyring Center for
Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ryan P. Steele
- Department
of Chemistry and Henry Eyring Center for
Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|