1
|
Kuroiwa K, Takeuchi K, Hirai T, Nakamura Y, Oaki Y, Fujii S. Janus Particles Synthesized via Vapor-Phase Coupling Polymerization Protocol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5439-5448. [PMID: 39985468 DOI: 10.1021/acs.langmuir.4c05061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
The vapor-phase polymerization of pyrrole in the presence of polystyrene (PS) particles adsorbed at the air-water interface successfully leads to the formation of PS/polypyrrole (PPy) Janus particles where only the surface in contact with the air phase is regioselectively covered with the PPy nanolayer. The coverage area of the PPy nanolayer on the Janus particles, and therefore the contact angle of Janus particles at the air-liquid interface, decreases with a decrease in surface tension of liquid by the addition of isopropanol. The contact angle of particles at the interface decreases after the polymerization, which should be because the pyrrole monomer dissolved in the water phase from the gas phase promotes the wetting of the liquid to the PS particles by decreasing the surface tension of the liquid. Controlling the PS particle size realizes the formation of PS/PPy Janus particles with sizes ranging between 5 and 1000 μm. Furthermore, the Janus particles are demonstrated to be oriented at the air-water interface with the hydrophilic PS side toward the water phase and the hydrophobic PPy side toward the air phase, realizing stabilization of an armored bubble in the water medium.
Collapse
Affiliation(s)
- Kazuma Kuroiwa
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Kazusa Takeuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
2
|
Pang Y, Li L, Lou Y, Wang X, Liu Z. Equilibrium and self-assembly of Janus particles at liquid-liquid interfaces for the film formation. Colloids Surf B Biointerfaces 2024; 244:114178. [PMID: 39216440 DOI: 10.1016/j.colsurfb.2024.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/10/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
This article investigates the equilibrium arrangement, self-assembly process, and subsequent curing of amphiphilic snowman-shaped Janus particles at the oil-water interface. The independent Janus particles are in vertical equilibrium state and the contact position of the oil-water interface is at the largest cross section of the particle's hydrophobic phase. Under the effect of the surface tension and the adsorption of materials, Janus particles may form particle combinations including the particle pairs and the particle triangle, whose inner and outer sides have the liquid surface exhibiting completely opposite contact angles. Particle combinations form stable parallel double-chain structures with diverse shapes after the self-assembly process. However, the single Janus particles attain a state of mechanical equilibrium under the influence of surrounding particles, enabling them to assemble into regular array structures. The relationship of interfacial tension coefficient between phases can be changed by adjusting the oil-water system, which leads to variations in the self-assembly speed and the final arrangement results. The thin-film with uniformly distributed vertical particles is achieved by replacing the underlying deionized water with a curing agent. Based on the understanding of the interactions between irregularly shaped Janus particles at the oil-water interface, it will be convenient to achieve the controllable self-assembly and widely applications of these particles.
Collapse
Affiliation(s)
- Yan Pang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China
| | - Lin Li
- College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yi Lou
- College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiang Wang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China.
| | - Zhaomiao Liu
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Guillot K, Brahana PJ, Al Harraq A, Ogbonna ND, Lombardo NS, Lawrence J, An Y, Benton MG, Bharti B. Selective Vapor Condensation for the Synthesis and Assembly of Spherical Colloids with a Precise Rough Patch. JACS AU 2024; 4:1107-1117. [PMID: 38559733 PMCID: PMC10976603 DOI: 10.1021/jacsau.3c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 04/04/2024]
Abstract
Patchy particles occupy an increasingly important space in soft matter research due to their ability to assemble into intricate phases and states. Being able to fine-tune the interactions among these particles is essential to understanding the principles governing the self-assembly processes. However, current fabrication techniques often yield patches that deviate chemically and physically from the native particles, impeding the identification of the driving forces behind self-assembly. To overcome this challenge, we propose a new approach to synthesizing spherical colloids with a well-defined rough patch on their surface. By treating polystyrene microspheres with vapors of a good solvent, here an acetone-water mixture, we achieve selective polymer corrugation on the particle surface resulting in a chemically similar yet rough surface patch. The key step is the selective condensation of the acetone-water vapors on the apex of the polystyrene microparticles immobilized on a substrate, which leads to rough patch formation. We leverage the ability to tune the vapor-liquid equilibrium of the volatile acetone-water mixture to precisely control the polymer corrugation on the particle surface. We demonstrate the dependence of patch formation on particle and substrate wettability, with the condensation occurring on the particle apex only when it is more wettable than the substrate, which is consistent with Volmer's classical nucleation theory. By combining experiments and molecular dynamics simulations, we identify the role of the rough patch in the depletion interaction-driven self-assembly of the microspheres, which is crucial for designing programmable supracolloidal structures.
Collapse
Affiliation(s)
| | | | | | - Nduka D. Ogbonna
- Cain Department of Chemical
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Nicholas S. Lombardo
- Cain Department of Chemical
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jimmy Lawrence
- Cain Department of Chemical
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yaxin An
- Cain Department of Chemical
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Michael G. Benton
- Cain Department of Chemical
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
4
|
Hu JD, Wang T, Lei QL, Ma YQ. Transformable Superisostatic Crystals Self-Assembled from Segment Colloidal Rods. ACS NANO 2024; 18:8073-8082. [PMID: 38456633 DOI: 10.1021/acsnano.3c11538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Transformable mechanical structures can switch between distinct mechanical states. Whether this kind of structure can be self-assembled from simple building blocks at microscale is a question to be answered. In this work, we propose a self-assembly strategy for these structures based on a nematic monolayer of segmented colloidal rods with lateral cutting. By using Monte Carlo simulation, we find that rods with different cutting degrees can self-assemble into different crystals characterized by bond coordination z that varies from 3 to 6. Among these, we identify a transformable superisostatic structure with pgg symmetry and redundant bonds (z = 5). We show that this structure can support either soft bulk modes or soft edge modes depending on its Poisson's ratio, which can be tuned from positive to negative through a uniform soft deformation. We also prove that the bulk soft modes are associated with states of self-stress along the direction of zero strain during uniform soft deformation. The self-assembled transformable structures may act as mechanical metamaterials with potential applications in micromechanical engineering.
Collapse
Affiliation(s)
- Ji-Dong Hu
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| | - Ting Wang
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 210023 Nanjing, China
| | - Qun-Li Lei
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| |
Collapse
|
5
|
Sun J, Shi Z, Liu X, Ma Y, Li R, Chen S, Xin S, Wang N, Jia S, Wu K. Theoretical Investigation on the Metamaterials Based on the Magnetic Template-Assisted Self-Assembly of Magnetic-Plasmonic Nanoparticles for Adjustable Photonic Responses. J Phys Chem B 2023; 127:8681-8689. [PMID: 37782892 DOI: 10.1021/acs.jpcb.3c04917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The assembly of artificial nano- or microstructured materials with tunable functionalities and structures, mimicking nature's complexity, holds great potential for numerous novel applications. Despite remarkable progress in synthesizing colloidal molecules with diverse functionalities, most current methods, such as the capillarity-assisted particle assembly method, the ionic assembly method based on ionic interactions, or the field-directed assembly strategy based on dipole-dipole interactions, are confined to focusing on achieving symmetrical molecules. But there have been few examples of fabricating asymmetrical colloidal molecules that could exhibit unprecedented optical properties. Here, we introduce a microfluidic and magnetic template-assisted self-assembly protocol that relies mainly on the magnetic dipole-dipole interactions between magnetized magnetic-plasmonic nanoparticles and the mechanical constraints resulting from the specially designed traps. This novel strategy not only requires no specific chemistry but also enables magnetophoretic control of magnetic-plasmonic nanoparticles during the assembly process. Moreover, the assembled asymmetrical colloidal molecules also exhibit interesting hybridized plasmon modes and produce exotic optical properties due to the strong coupling of the individual nanoparticle. The ability to fabricate asymmetrical colloidal molecules based on the bottom-up method opens up a new direction for the fabrication of novel microscale structures for biosensing, patterning, and delivery applications.
Collapse
Affiliation(s)
- Jiajia Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Zongqian Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Xiaofeng Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Yuxin Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Ruohan Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Shuang Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Shumin Xin
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Nan Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Shenli Jia
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, Shaanxi, China
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
6
|
Basu A, Okello LB, Castellanos N, Roh S, Velev OD. Assembly and manipulation of responsive and flexible colloidal structures by magnetic and capillary interactions. SOFT MATTER 2023; 19:2466-2485. [PMID: 36946137 DOI: 10.1039/d3sm00090g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The long-ranged interactions induced by magnetic fields and capillary forces in multiphasic fluid-particle systems facilitate the assembly of a rich variety of colloidal structures and materials. We review here the diverse structures assembled from isotropic and anisotropic particles by independently or jointly using magnetic and capillary interactions. The use of magnetic fields is one of the most efficient means of assembling and manipulating paramagnetic particles. By tuning the field strength and configuration or by changing the particle characteristics, the magnetic interactions, dynamics, and responsiveness of the assemblies can be precisely controlled. Concurrently, the capillary forces originating at the fluid-fluid interfaces can serve as means of reconfigurable binding in soft matter systems, such as Pickering emulsions, novel responsive capillary gels, and composites for 3D printing. We further discuss how magnetic forces can be used as an auxiliary parameter along with the capillary forces to assemble particles at fluid interfaces or in the bulk. Finally, we present examples how these interactions can be used jointly in magnetically responsive foams, gels, and pastes for 3D printing. The multiphasic particle gels for 3D printing open new opportunities for making of magnetically reconfigurable and "active" structures.
Collapse
Affiliation(s)
- Abhirup Basu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Lilian B Okello
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Natasha Castellanos
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Sangchul Roh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
7
|
Song Q, Shi S, Liu B. Metal-Organic Framework-Based Colloidal Particle Synthesis, Assembly, and Application. Chempluschem 2023; 88:e202200396. [PMID: 36740571 DOI: 10.1002/cplu.202200396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Metal-organic frameworks (MOFs) assembled from metal nodes and organic ligands have received significant attention over the past two decades for their fascinating porous properties and broad applications. Colloidal MOFs (CMOFs) not only inherit the intrinsic properties of MOFs, but can also serve as building blocks for self-assembly to make functional materials. Compared to bulk MOFs, the colloidal size of CMOFs facilitates further manipulation of CMOF particles in a single or collective state in a liquid medium. The resulting crystalline order obtained by self-assembly in position and orientation can effectively improve performance. In this review, we summarize the latest developments of CMOFs in synthesis strategies, self-assembly methods, and related applications. Finally, we discuss future challenges and opportunities of CMOFs in synthesis and assembly, by which we hope that CMOFs can be further developed into new areas for a wider range of applications.
Collapse
Affiliation(s)
- Qing Song
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shang Shi
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
8
|
Tsumura Y, Fameau AL, Matsui K, Hirai T, Nakamura Y, Fujii S. Photo- and Thermoresponsive Liquid Marbles Based on Fatty Acid as Phase Change Material Coated by Polypyrrole: From Design to Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:878-889. [PMID: 36602465 DOI: 10.1021/acs.langmuir.2c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Responsive liquid marbles (LMs), which can change their shape, stability, and motion by the application of stimuli, attract a growing interest due to their wide range of applications. Our approach to design photo- and thermoresponsive LMs is based on the use of micrometer-sized fatty acid (FA) particles as phase change material covered with polypyrrole (PPy) overlayers with photothermal property. The core-shell particles were synthesized by aqueous chemical oxidative seeded dispersion polymerization. First, we investigated the effect of the alkyl chain length of FA on the resulting FA/PPy core-shell particles by characterizing their size and its distribution, shape, morphology, chemical composition, and photothermal behavior. Then LMs were fabricated by rolling water droplets on the dried FA/PPy particle powder bed and their light and temperature dual stimuli-responsive nature was studied as a function of the FA alkyl chain length. For all FAs studied, LMs disrupted in a domino manner by light irradiation as the first trigger: the temperature of the FA/PPy particles on the LM surface increased by light irradiation, followed by phase change of FA core of the particles from solid to liquid, resulting in disruption of the LM and release of the encapsulated water. The disruption time was closely correlated to the melting point of FA linked to the alkyl chain length and light irradiation power, and it could be controlled and tuned easily between quasi instantaneous and approximately 10 s. Finally, we showed potential applications of the LMs as a carrier for controlled delivery and release of substances and a sensor.
Collapse
Affiliation(s)
- Yusuke Tsumura
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Anne-Laure Fameau
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Kanade Matsui
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
9
|
Tsumura Y, Oyama K, Fameau AL, Seike M, Ohtaka A, Hirai T, Nakamura Y, Fujii S. Photo/Thermo Dual Stimulus-Responsive Liquid Marbles Stabilized with Polypyrrole-Coated Stearic Acid Particles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41618-41628. [PMID: 36043393 DOI: 10.1021/acsami.2c12681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we report on the fabrication of photo/thermo dual stimulus-responsive liquid marbles (LMs) that can be disrupted by light irradiation and/or heating. To stabilize the LMs, we synthesized micrometer-sized stearic acid (SA) particles coated with overlayers of polypyrrole (PPy) by aqueous chemical oxidative seeded dispersion polymerization. The SA/PPy core-shell particles could adsorb at the air-water interface to stabilize LMs by rolling water droplets on the particle powder bed. The presence of SA, known as a phase-change material, which undergoes a transition from solid to liquid by heating, and PPy, which can transduce light to heat, gives rise to the photo and thermo dual stimulus-responsive characters of the LMs. The disruption of the LMs could be induced in a cascade manner: light irradiation on the LM induced a temperature increase, followed by melting of the SA component on the LM surface, leading to its disruption and release of the inner water. The disruption time is linked to the PPy loading and light irradiation power, and it can be tuned from quasi-instantaneous to a few tens of seconds. The melting of SA due to a light-induced phase change from the solid to liquid state is a new mechanism to trigger the disruption of LMs. We finally demonstrated two applications of the LMs as a light-responsive microreactor and a sensor.
Collapse
Affiliation(s)
- Yusuke Tsumura
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Keigo Oyama
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Anne-Laure Fameau
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207─UMET─Unité Matériaux et Transformations, F-59000 Lille, France
| | - Musashi Seike
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Atsushi Ohtaka
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
10
|
Fameau A, Marangoni AG. Back to the future: Fatty acids, the green genie to design smart soft materials. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anne‐Laure Fameau
- Université Lille, CNRS, Centrale Lille, UMET INRAe Villeneuve d'Ascq France
| | | |
Collapse
|
11
|
Ewins EJ, Han K, Bharti B, Robinson T, Velev OD, Dimova R. Controlled adhesion, membrane pinning and vesicle transport by Janus particles. Chem Commun (Camb) 2022; 58:3055-3058. [PMID: 35166272 DOI: 10.1039/d1cc07026f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The interactions between biomembranes and particles are key to many applications, but the lack of controllable model systems to study them limits the progress in their research. Here, we describe how Janus polystyrene microparticles, half coated with iron, can be partially engulfed by artificial cells, namely giant vesicles, with the goals to control and investigate their adhesion and degree of encapsulation. The interaction between the Janus particles and these model cell membrane systems is mediated by electrostatic charge, offering a further mode of modulation in addition to the iron patches. The ferromagnetic particle coatings also enable manipulation and transport of the vesicles by magnetic fields.
Collapse
Affiliation(s)
- Eleanor J Ewins
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany.
| | - Koohee Han
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Bhuvnesh Bharti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Tom Robinson
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany.
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany.
| |
Collapse
|
12
|
Lyu D, Xu W, Wang Y. Low‐Symmetry MOF‐Based Patchy Colloids and Their Precise Linking via Site‐Selective Liquid Bridging to Form Supra‐Colloidal and Supra‐Framework Architectures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dengping Lyu
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Wei Xu
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Yufeng Wang
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| |
Collapse
|
13
|
Tian L, Liu Y, Wang D, Tan J, Xie Y, Bei L, Zhang Q, Zhu C, Xu J. Particle-Click-Particle: Colloidal Clusters from Click Seeded Emulsion Polymerization. Polym Chem 2022. [DOI: 10.1039/d1py00360g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-organization of building blocks in colloidal clusters and their architecture adjustment are crucial for colloid synthesis and design. We report on a click seeded emulsion polymerization via swelling-induced self-assembly...
Collapse
|
14
|
Lyu D, Xu W, Wang Y. Low-Symmetry MOF-Based Patchy Colloids and Their Precise Linking via Site-Selective Liquid Bridging to Form Supra-Colloidal and Supra-Framework Architectures. Angew Chem Int Ed Engl 2021; 61:e202115076. [PMID: 34889018 DOI: 10.1002/anie.202115076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 11/08/2022]
Abstract
Colloids with surface patches (or patchy particles) can bind and assemble with directionality. However, the bonding between the usually high-symmetry, dome-shaped patches is not precise, as it cannot lock the exact position and orientation of the relevant particles. This issue prevents the assembly of well-defined colloidal superstructures by design. Herein, we introduce low-symmetry, metal-organic framework (MOF)-based patchy colloids, which feature a polyhedral matrix and flat hexagonal patches, along with anisotropic surfaces and compositions. Guided by the encoded shape/chemical information and mediated by a site-selective liquid-bridging interaction, the distinct patchy particles self-assemble into supra-colloidal (or supra-framework) structures with unprecedented precision. In this case, the valence, position, and orientation of the particles within assemblies are fully coordinated and precisely aligned. The dynamic nature of the liquid bridges also allows us to investigate the unique assembly kinetics. Our strategy not only defines new modes of colloidal bonding, but also provides a powerful means toward creating hierarchical and multi-component MOF materials.
Collapse
Affiliation(s)
- Dengping Lyu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wei Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
15
|
Liu Q, Yu G, Zhu C, Peng B, Li R, Yi T, Yu Y. An Integrated Droplet Manipulation Platform with Photodeformable Microfluidic Channels. SMALL METHODS 2021; 5:e2100969. [PMID: 34928016 DOI: 10.1002/smtd.202100969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/23/2021] [Indexed: 06/14/2023]
Abstract
Manipulating droplets by light in microscale allows precise control of microfluidics, liquid delivery, micromachines, and so on. Among these applications, microfluidic technology is of particular interest for miniaturization of the portable analysis systems, which require the integration of various liquid operations in one device. Here, a photodeformable microfluidic platform is constructed by combining Laplace pressure and capillary condensation to integrate the transportation, fusion, separation, and mixing of liquid slugs in one chip. The Laplace pressure, attributed to the photodeformation of the liquid crystal polymers, is generated to propel the slug. The capillary condensation is introduced by the delicate design of the fluid channels, allowing the fusion and separation of slugs without any connected microvalves. Catalytic oxidation reaction and protein detection processes are realized in the platform, which are amenable to a variety of miniaturized bio-medical applications, such as portable analysis and point of care testing.
Collapse
Affiliation(s)
- Quan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Guodong Yu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Chongyu Zhu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Bo Peng
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Ruohan Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Tao Yi
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yanlei Yu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
16
|
Ni Z, Chu F, Feng Y, Yao S, Wen D. Large-Scale Dewetting via Surfactant-Laden Droplet Impact. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13729-13736. [PMID: 34762805 DOI: 10.1021/acs.langmuir.1c02456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The dewetting phenomenon of a liquid film in the presence of a surfactant exists in various natural, industrial, and biomedical processes but still remains mysterious in some specific scenarios. Here, we investigate the dewetting behavior of water films initiated by surfactant-laden droplet impact and show that the maximum dewetting diameter can even reach more than 50 times that of the droplet size. We identify the S-type variation of the dewetting area and demonstrate its correlation to the dynamic surface tension reduction. From a viewpoint of energy conversion, we attribute the dewetting to the released surface energy caused by the surfactant addition and establish a linear relation between the maximum dewetting and the surfactant concentration in the film, i.e., dmax2 ∝ cfilm, which agrees well with the experiments. These results may advance the physics of liquid film dewetting triggered by surfactant injection, which shall further guide practical applications.
Collapse
Affiliation(s)
- Zhongyuan Ni
- School of Aeronautic Science and Engineering and School of General Engineering, Beihang University, Beijing 100191, China
| | - Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanhui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Dongsheng Wen
- School of Aeronautic Science and Engineering and School of General Engineering, Beihang University, Beijing 100191, China
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
17
|
Pratt LR, Gomez DT, Muralidharan A, Pesika N. Shapes of Nonsymmetric Capillary Bridges. J Phys Chem B 2021; 125:12378-12383. [PMID: 34709808 PMCID: PMC8591610 DOI: 10.1021/acs.jpcb.1c07448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we study the shapes of droplets captured between chemically distinct parallel plates. This work is a preliminary step toward characterizing the influence of second-phase bridging between biomolecular surfaces on their solution contacts, i.e., capillary attraction or repulsion. We obtain a simple, variable-separated quadrature formula for the bridge shape. The technical complication of double-ended boundary conditions on the shapes of nonsymmetric bridges is addressed by studying waists in the bridge shape, i.e., points where the bridge silhouette has zero derivative. Waists are generally expected with symmetric bridges, but waist points can serve to characterize shape segments in general cases. We study how waist possibilities depend on the physical input to these problems, noting that these formulas change with the sign of the inside-outside pressure difference of the bridge. These results permit a variety of different interesting shapes, and the development below is accompanied by several examples.
Collapse
Affiliation(s)
- L R Pratt
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - D T Gomez
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - A Muralidharan
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconson 53706, United States
| | - N Pesika
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
18
|
Meincke T, Walter J, Pflug L, Thajudeen T, Völkl A, Cardenas Lopez P, Uttinger MJ, Stingl M, Watanabe S, Peukert W, Klupp Taylor RN. Determination of the yield, mass and structure of silver patches on colloidal silica using multiwavelength analytical ultracentrifugation. J Colloid Interface Sci 2021; 607:698-710. [PMID: 34530190 DOI: 10.1016/j.jcis.2021.08.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022]
Abstract
Anisotropic nanoparticles offer considerable promise for applications but also present significant challenges in terms of their characterization. Recent developments in the electroless deposition of silver patches directly onto colloidal silica particles have opened up a simple and scalable synthesis method for patchy particles with tunable optical properties. Due to the reliance on patch nucleation and growth, however, the resulting coatings are distributed in coverage and thickness and some core particles remain uncoated. To support process optimization, new methods are required to rapidly determine patch yield, thickness and coverage. Here we present a novel approach based on multiwavelength analytical ultracentrifugation (MWL-AUC) which permits simultaneous hydrodynamic and spectroscopic characterization. The patchy particle colloids are produced in a continuous flow mixing process that makes use of a KM-type micromixer. By varying the process flow rate or metal precursor concentration we show how the silver to silica mass ratio distribution derived from the AUC-measured sedimentation coefficient distribution can be influenced. Moreover, through reasoned assumptions we arrive at an estimation of the patch yield that is close to that determined by arduous analysis of scanning electron microscopy (SEM) images. Finally, combining MWL-AUC, electrodynamic simulations and SEM image analysis we establish a procedure to estimate the patch thickness and coverage.
Collapse
Affiliation(s)
- Thomas Meincke
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Johannes Walter
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Lukas Pflug
- Applied Mathematics 2, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 11, Erlangen 91058, Germany
| | - Thaseem Thajudeen
- Mechanical Engineering Department, IIT Goa, Ponda, Goa, 403401, India
| | - Andreas Völkl
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Paola Cardenas Lopez
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Maximilian J Uttinger
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Michael Stingl
- Applied Mathematics 2, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 11, Erlangen 91058, Germany
| | - Satoshi Watanabe
- Chemical Engineering Department, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 Japan
| | - Wolfgang Peukert
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Robin N Klupp Taylor
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| |
Collapse
|
19
|
Lei QL, Zheng W, Tang F, Wan X, Ni R, Ma YQ. Self-Assembly of Isostatic Self-Dual Colloidal Crystals. PHYSICAL REVIEW LETTERS 2021; 127:018001. [PMID: 34270286 DOI: 10.1103/physrevlett.127.018001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Self-dual structures whose dual counterparts are themselves possess unique hidden symmetry, beyond the description of classical spatial symmetry groups. Here we propose a strategy based on a nematic monolayer of attractive half-cylindrical colloids to self-assemble these exotic structures. This system can be seen as a 2D system of semidisks. By using Monte Carlo simulations, we discover two isostatic self-dual crystals, i.e., an unreported crystal with pmg space-group symmetry and the twisted kagome crystal. For the pmg crystal approaching the critical point, we find the double degeneracy of the full phononic spectrum at the self-dual point and the merging of two tilted Weyl nodes into one critically tilted Dirac node. The latter is "accidentally" located on the high-symmetry line. The formation of this unconventional Dirac node is due to the emergence of the critical flatbands at the self-dual point, which are linear combinations of "finite-frequency" floppy modes. These modes can be understood as mechanically coupled self-dual rhombus chains vibrating in some unique uncoupled ways. Our work paves the way for designing and fabricating self-dual materials with exotic mechanical or phononic properties.
Collapse
Affiliation(s)
- Qun-Li Lei
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Wei Zheng
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Feng Tang
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| | - Xiangang Wan
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| | - Ran Ni
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| |
Collapse
|
20
|
Cai Z, Li Z, Ravaine S, He M, Song Y, Yin Y, Zheng H, Teng J, Zhang A. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem Soc Rev 2021; 50:5898-5951. [PMID: 34027954 DOI: 10.1039/d0cs00706d] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last three decades, photonic crystals (PhCs) have attracted intense interests thanks to their broad potential applications in optics and photonics. Generally, these structures can be fabricated via either "top-down" lithographic or "bottom-up" self-assembly approaches. The self-assembly approaches have attracted particular attention due to their low cost, simple fabrication processes, relative convenience of scaling up, and the ease of creating complex structures with nanometer precision. The self-assembled colloidal crystals (CCs), which are good candidates for PhCs, have offered unprecedented opportunities for photonics, optics, optoelectronics, sensing, energy harvesting, environmental remediation, pigments, and many other applications. The creation of high-quality CCs and their mass fabrication over large areas are the critical limiting factors for real-world applications. This paper reviews the state-of-the-art techniques in the self-assembly of colloidal particles for the fabrication of large-area high-quality CCs and CCs with unique symmetries. The first part of this review summarizes the types of defects commonly encountered in the fabrication process and their effects on the optical properties of the resultant CCs. Next, the mechanisms of the formation of cracks/defects are discussed, and a range of versatile fabrication methods to create large-area crack/defect-free two-dimensional and three-dimensional CCs are described. Meanwhile, we also shed light on both the advantages and limitations of these advanced approaches developed to fabricate high-quality CCs. The self-assembly routes and achievements in the fabrication of CCs with the ability to open a complete photonic bandgap, such as cubic diamond and pyrochlore structure CCs, are discussed as well. Then emerging applications of large-area high-quality CCs and unique photonic structures enabled by the advanced self-assembly methods are illustrated. At the end of this review, we outlook the future approaches in the fabrication of perfect CCs and highlight their novel real-world applications.
Collapse
Affiliation(s)
- Zhongyu Cai
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Serge Ravaine
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Mingxin He
- Department of Physics, Center for Soft Matter Research, New York University, New York, NY 10003, USA
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Hanbin Zheng
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Ao Zhang
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China.
| |
Collapse
|
21
|
Maestas JR, Ma F, Wu N, Wu DT. Electric-Field-Driven Assembly of Dipolar Spheres Asymmetrically Confined between Two Electrodes. ACS NANO 2021; 15:2399-2412. [PMID: 33570907 DOI: 10.1021/acsnano.0c04939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Externally applied electric fields have previously been utilized to direct the assembly of colloidal particles confined at a surface into a large variety of colloidal oligomers and nonclose-packed honeycomb lattices (J. Am. Chem. Soc. 2013, 135, 7839-7842). The colloids under such confinement and fields are observed to spontaneously organize into bilayers near the electrode. To extend and better understand how particles can come together to form quasi-two-dimensional materials, we have performed Monte Carlo simulations and complementary experiments of colloids that are strongly confined between two electrodes under an applied alternating current electric field, controlling field strength and particle area fraction. Of particular importance, we control the fraction of particles in the upper vs lower plane, which we describe as asymmetric confinement, and which effectively modulates the coordination number of particles in each plane. We model the particle-particle interactions using a Stockmayer potential to capture the dipolar interactions induced by the electric field. Phase diagrams are then delineated as a function of the control parameters, and a theoretical model is developed in which the energies of several idealized lattices are calculated and compared. We find that the resulting theoretical phase diagrams agree well with simulation. We have not only reproduced the structures observed in experiments using parameters that are close to experimental conditions but also found several previously unobserved phases in the simulations, including a network of rectangular bands, zig zags, and a sigma lattice, which we were then able to confirm in experiment. We further propose a simple way to precisely control the number ratio of particles between different planes, that is, superimposing a direct current electric field with the alternating current electric field, which can be implemented conveniently in experiments. Our work demonstrates that a diverse collection of materials can be assembled from relatively simple ingredients, which can be analyzed effectively through comparison of simulation, theory, and experiment. Our model further explains possible pathways between different phases and provides a platform for examining phases that have yet to be observed in experiments.
Collapse
Affiliation(s)
- Joseph R Maestas
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Fuduo Ma
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - David T Wu
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
22
|
Behrens SH. Oil-coated bubbles in particle suspensions, capillary foams, and related opportunities in colloidal multiphase systems. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Paul S, Vashisth H. Self-assembly behavior of experimentally realizable lobed patchy particles. SOFT MATTER 2020; 16:8101-8107. [PMID: 32935732 DOI: 10.1039/d0sm00954g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report simulation studies on the self-assembly behavior of five different types of lobed patchy particles of different shapes (snowman, dumbbell, trigonal planar, square planar, and tetrahedral). Inspired by an experimental method of synthesizing patchy particles (Wang et al., Nature, 2012, 491, 51-55), we control the lobe size indirectly by gradually varying the seed diameter and study its effect on self-assembled structures at different temperatures. Snowman shaped particles self-assemble only at a lower temperature and form two-dimensional sheets, elongated micelles, and spherical micelles, depending on the seed diameter. Each of the four other lobed particles self-assemble into four distinct morphologies (random aggregates, spherical aggregates, liquid droplets, and crystalline structures) for a given lobe size and temperature. We observed temperature-dependent transitions between two morphologies depending on the type of the lobed particle. The self-assembled structures formed by these four types of particles are porous. We show that their porosities can be tuned by controlling the lobe size and temperature.
Collapse
Affiliation(s)
- Sanjib Paul
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA.
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA.
| |
Collapse
|
24
|
Clustering of asymmetric dumbbell-shaped silica/polystyrene nanoparticles by solvent-induced self-assembly. J Colloid Interface Sci 2020; 560:639-648. [DOI: 10.1016/j.jcis.2019.10.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
|
25
|
Li W, Palis H, Mérindol R, Majimel J, Ravaine S, Duguet E. Colloidal molecules and patchy particles: complementary concepts, synthesis and self-assembly. Chem Soc Rev 2020; 49:1955-1976. [DOI: 10.1039/c9cs00804g] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
About the latest developments regarding self-assembly of textured colloids and its prospects.
Collapse
Affiliation(s)
- Weiya Li
- Univ. Bordeaux
- CNRS
- ICMCB
- UMR 5026
- Pessac
| | | | | | | | | | | |
Collapse
|
26
|
Luo Z, Zhou J, Liu B. Engineering Surface Patterning of Colloidal Rings through Plateau-Rayleigh Instability. Angew Chem Int Ed Engl 2019; 58:16884-16888. [PMID: 31531921 DOI: 10.1002/anie.201910695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 11/05/2022]
Abstract
Plateau-Rayleigh (P-R) instability occurring on Brownian colloidal particles is presented. This instability can be used for the surface patterning of Brownian colloidal rings. This idea was realized by employing polystyrene(PS)/SiO2 core/shell rings, for which PS layer was selectively grown onto the interior surface of SiO2 rings. The P-R instability was initiated in the ring's dispersion by adding a good solvent of PS. By using both experiments and theory, it is shown that the number of patches is tunable and that it is linearly related to a function of two variables, namely, solvent quantity and contact angle. In particular, one-patch Janus rings and patchy disks were also synthesized at high yields. The patch size of all particles is tunable by step-by-step polymerization and the patches can be functionalized, for example by ATRP grafting with pH-sensitive polymers. This approach can be adapted for the synthesis of other patchy colloids with designated complexity.
Collapse
Affiliation(s)
- Zhang Luo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Jiajia Zhou
- Center of Soft Matter Physics and Its Application, Beihang University, Beijing, 100191, China
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100149, China
| |
Collapse
|
27
|
Luo Z, Zhou J, Liu B. Engineering Surface Patterning of Colloidal Rings through Plateau–Rayleigh Instability. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhang Luo
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100149 China
| | - Jiajia Zhou
- Center of Soft Matter Physics and Its ApplicationBeihang University Beijing 100191 China
| | - Bing Liu
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100149 China
| |
Collapse
|
28
|
Baran Ł, Borówko M, Rżysko W, Patrykiejew A. Self-assembly of Janus disks confined in a slit. J Chem Phys 2019; 151:104703. [PMID: 31521087 DOI: 10.1063/1.5117887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using Monte Carlo simulations, we investigate the self-organization of Janus disks confined in two-dimensional slits. Janus particles are modeled as circles composed of attractive and repulsive parts. We consider the slits with identical walls and slits with competing walls (the so-called Janus-like pores). We investigate how the system morphology depends on the slit width, density, and temperature. Different unique orientationally ordered structures are found. The mechanism of formation of these structures is discussed in detail. We show that the anisotropic interactions between the confined molecules, the nature of the "walls," and the slit size strongly affect the self-organization.
Collapse
Affiliation(s)
- Ł Baran
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - M Borówko
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - W Rżysko
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - A Patrykiejew
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| |
Collapse
|
29
|
Mérindol R, Duguet E, Ravaine S. Synthesis of Colloidal Molecules: Recent Advances and Perspectives. Chem Asian J 2019; 14:3232-3239. [DOI: 10.1002/asia.201900962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Rémi Mérindol
- Centre de Recherche Paul Pascal (CRPP, UMR 5031)CNRS, Univ. Bordeaux 115 avenue du Dr Albert Schweitzer 33600 Pessac France
| | - Etienne Duguet
- Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB, UMR 5026)CNRS, Univ. Bordeaux, Bordeaux INP 87 avenue du Dr Albert Schweitzer 33600 Pessac France
| | - Serge Ravaine
- Centre de Recherche Paul Pascal (CRPP, UMR 5031)CNRS, Univ. Bordeaux 115 avenue du Dr Albert Schweitzer 33600 Pessac France
| |
Collapse
|
30
|
Marschelke C, Diring O, Synytska A. Reconfigurable assembly of charged polymer-modified Janus and non-Janus particles: from half-raspberries to colloidal clusters and chains. NANOSCALE ADVANCES 2019; 1:3715-3726. [PMID: 36133568 PMCID: PMC9418436 DOI: 10.1039/c9na00522f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 05/30/2023]
Abstract
Understanding the dynamic and reversible assembly of colloids and particles into complex constructs, inspired by natural phenomena, is of fundamental significance for the fabrication of multi-scale responsive and reconfigurable materials. In this work, we investigate the pH-triggered and reconfigurable assembly of structures composed of binary mixtures of oppositely charged polyacrylic acid (PAA)-modified non-Janus and poly(2-dimethylamino)ethyl methacrylate (PDMAEMA)/poly(N-isopropylacrylamide) (PNIPAM)-modified Janus particles driven by electrostatic interactions. Three different target structures are visible both in dispersions and in dry state: half-raspberry structures, colloidal clusters and colloidal chains depending on the mass, numerical and particle size ratio. All formed structures are well-defined and stable in a certain pH range. Half-raspberry-like structures are obtained at pH 6 and numerical ratios N JP/PAA-HP of 1 : 500 (for 200-PAA-HP), 1 : 44 (for 450-PAA-HP) and 1 : 15 (for 650-PAA-HP), respectively, due to electrostatic interactions between the central JP and the excessive PAA-HP. Colloidal chains and cluster-like structures are generated at numerical ratios N JP/PAA-HP of 4 : 5 (for 200-PAA-HP), 4 : 3 (for 450-PAA-HP), and 4 : 1 (for 650-PAA-HP). Moreover, the smaller the size of a "connecting" PAA colloid, the larger is the average length of a colloidal chain. Depending on the particle size ratio S JP/PAA-HP, some of the observed structures can be disassembled on demand by changing the pH value either close to the IEP of the PDMAEMA (for half-raspberries) or PAA (for colloidal clusters and chains) and then reassembled into new stable structures many times. The obtained results open a pathway to pH-controlled reconfigurable assembly of a binary mixture composed of polymeric-modified non-Janus and Janus particles, which allow the reuse of particle building blocks.
Collapse
Affiliation(s)
- Claudia Marschelke
- Leibniz Institute of Polymer Research Dresden e. V. Hohe Straße 6 01069 Dresden Germany
- Dresden University of Technology, Faculty of Mathematics and Science, Institute of Physical Chemistry and Polymer Physics 01062 Dresden Germany
| | - Olga Diring
- Leibniz Institute of Polymer Research Dresden e. V. Hohe Straße 6 01069 Dresden Germany
- Dresden University of Technology, Faculty of Mathematics and Science, Institute of Physical Chemistry and Polymer Physics 01062 Dresden Germany
| | - Alla Synytska
- Leibniz Institute of Polymer Research Dresden e. V. Hohe Straße 6 01069 Dresden Germany
- Dresden University of Technology, Faculty of Mathematics and Science, Institute of Physical Chemistry and Polymer Physics 01062 Dresden Germany
| |
Collapse
|
31
|
Lee JG, Brooks AM, Shelton WA, Bishop KJM, Bharti B. Directed propulsion of spherical particles along three dimensional helical trajectories. Nat Commun 2019; 10:2575. [PMID: 31189873 PMCID: PMC6561940 DOI: 10.1038/s41467-019-10579-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/16/2019] [Indexed: 01/20/2023] Open
Abstract
Active colloids are a class of microparticles that ‘swim’ through fluids by breaking the symmetry of the force distribution on their surfaces. Our ability to direct these particles along complex trajectories in three-dimensional (3D) space requires strategies to encode the desired forces and torques at the single particle level. Here, we show that spherical colloids with metal patches of low symmetry self-propel along non-linear 3D trajectories when powered remotely by an alternating current (AC) electric field. In particular, particles with triangular patches of approximate mirror symmetry trace helical paths along the axis of the field. We demonstrate that the speed and shape of the particle’s trajectory can be tuned by the applied field strength and the patch geometry. We show that helical motion can enhance particle transport through porous materials with implications for the design of microrobots that can navigate complex environments. The development of functional microrobots calls for new strategies to design locomotion facilitating navigation through complex environments. Here, Lee et al. show how to realize and program helical motion in three dimensions using patchy microspheres under an alternating current electric field.
Collapse
Affiliation(s)
- Jin Gyun Lee
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Allan M Brooks
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - William A Shelton
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kyle J M Bishop
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
32
|
Zhao S, Wu Y, Lu W, Liu B. Capillary Force Driving Directional 1D Assembly of Patchy Colloidal Discs. ACS Macro Lett 2019; 8:363-367. [PMID: 35651138 DOI: 10.1021/acsmacrolett.8b00985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Self-assembly from individual colloidal building units to complex superstructures provides a simple yet effective way for the fabrication of functional materials. A rational design of the unit interactions is essential for it to proceed in a desired manner. Here we show that nondirectional capillary force can be used for directional one-dimensional (1D) assembly of colloidal discs having a designed patch distribution, and colloidal discs with two liquid patches can assemble into long colloidal chains where the stacked colloidal discs have a well-matched configuration with parallel orientation. The length of the chains can be controlled by controlling the experimental parameters. We also found when liquid patches gradually turn into sticky patches, hydrophobic attraction comes into play and becomes dominant, which can also result in chains with continuously increasing length. This method opens an effective avenue for obtaining colloidal chains (or fibers), which can be adapted for the fabrication of other superstructures.
Collapse
Affiliation(s)
- Shuping Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Yuanyuan Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wensheng Lu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100149, China
| |
Collapse
|
33
|
Borówko M, Rżysko W, Słyk E. Self-assembly in two-dimensional mixtures of Janus disks and isotropic particles. J Chem Phys 2019; 150:044705. [DOI: 10.1063/1.5063292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- M. Borówko
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - W. Rżysko
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - E. Słyk
- Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| |
Collapse
|
34
|
Leeth Holterhoff A, Li M, Gibbs JG. Self-Phoretic Microswimmers Propel at Speeds Dependent upon an Adjacent Surface's Physicochemical Properties. J Phys Chem Lett 2018; 9:5023-5028. [PMID: 30122044 DOI: 10.1021/acs.jpclett.8b02277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-phoretic colloids are emerging as critical components of programmable nano- and microscale active matter and may usher in a new area of complex, small-scale machinery. To date, most studies have focused upon active particles confined by gravity to a plane located just above a solid/liquid interface. Despite this ubiquity, little attention has been directed at how the physicochemical qualities of this interface might affect motion. Here, we show that both the chemical and physical properties of the solid, above which motion takes place, significantly influence the behavior of particles propelled by self-generated concentration gradients. More specifically, titania/silica (TiO2/SiO2) photoactive microswimmers move faster when the local osmotic flow over the stationary solid is diminished, which we demonstrate by reducing the magnitude of the surface's zeta potential or by increasing surface roughness. Our results suggest that consideration of surface properties is crucial for modeling self-phoretic active matter while simultaneously offering a new avenue for engineering the kinematic behavior of such systems.
Collapse
Affiliation(s)
- Andrew Leeth Holterhoff
- Department of Physics and Astronomy , Northern Arizona University , Flagstaff , Arizona 86011 , United States
| | - Mingyang Li
- Department of Physics and Astronomy , Northern Arizona University , Flagstaff , Arizona 86011 , United States
| | - John G Gibbs
- Department of Physics and Astronomy , Northern Arizona University , Flagstaff , Arizona 86011 , United States
| |
Collapse
|
35
|
Roh S, Velev OD. Nanomaterials Fabrication by Interfacial Templating and Capillary Engineering in Multiphasic Liquids. AIChE J 2018. [DOI: 10.1002/aic.16348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sangchul Roh
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina
| | - Orlin D. Velev
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina
| |
Collapse
|
36
|
Ferrick A, Wang M, Woehl TJ. Direct Visualization of Planar Assembly of Plasmonic Nanoparticles Adjacent to Electrodes in Oscillatory Electric Fields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6237-6248. [PMID: 29727566 DOI: 10.1021/acs.langmuir.8b00992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electric field-directed assembly of colloidal nanoparticles (NPs) has been widely adopted for fabricating functional thin films and nanostructured surfaces. While first-order electrokinetic effects on NPs are well-understood in terms of classical models, effects of second-order electrokinetics that involve induced surface charge are still poorly understood. Induced charge electroosmotic phenomena, such as electrohydrodynamic (EHD) flow, have long been implicated in electric field-directed NP assembly with little experimental basis. Here, we use in situ dark-field optical microscopy and plasmonic NPs to directly observe the dynamics of planar assembly of colloidal NPs adjacent to a planar electrode in low-frequency (<1 kHz) oscillatory electric fields. We exploit the change in plasmonic NP color resulting from interparticle plasmonic coupling to visualize the assembly dynamics and assembly structure of silver NPs. Planar assembly of NPs is unexpected because of strong electrostatic repulsion between NPs and indicates that there are strong attractive interparticle forces oriented perpendicular to the electric field direction. A parametric investigation of the voltage- and frequency-dependent phase behavior reveals that planar NP assembly occurs over a narrow frequency range below which irreversible ballistic deposition occurs. Two key experimental observations are consistent with EHD flow-induced NP assembly: (1) NPs remain mobile during assembly and (2) electron microscopy observations reveal randomly close-packed planar assemblies, consistent with strong interparticle attraction. We interpret planar assembly in terms of EHD fluid flow and develop a scaling model that qualitatively agrees with the measured phase regions. Our results are the first direct in situ observations of EHD flow-induced NP assembly and shed light on long-standing unresolved questions concerning the formation of NP superlattices during electric field-induced NP deposition.
Collapse
Affiliation(s)
- Adam Ferrick
- Department of Chemical and Biomolecular Engineering , University of Maryland , College Park 20742 , United States
| | - Mei Wang
- Department of Chemical and Biomolecular Engineering , University of Maryland , College Park 20742 , United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering , University of Maryland , College Park 20742 , United States
| |
Collapse
|
37
|
Meester V, Kraft DJ. Complex patchy colloids shaped from deformable seed particles through capillary interactions. SOFT MATTER 2018; 14:1162-1170. [PMID: 29349450 DOI: 10.1039/c7sm02020a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigate the mechanisms underlying the reconfiguration of random aggregates of spheres through capillary interactions, the so-called "colloidal recycling" method, to fabricate a wide variety of patchy particles. We explore the influence of capillary forces on clusters of deformable seed particles by systematically varying the crosslink density of the spherical seeds. Spheres with a poorly crosslinked polymer network strongly deform due to capillary forces and merge into large spheres. With increasing crosslink density and therefore rigidity, the shape of the spheres is increasingly preserved during reconfiguration, yielding patchy particles of well-defined shape for up to five spheres. In particular, we find that the aspect ratio between the length and width of dumbbells, L/W, increases with the crosslink density (cd) as L/W = B - A·exp(-cd/C). For clusters consisting of more than five spheres, the particle deformability furthermore determines the patch arrangement of the resulting particles. The reconfiguration pathway of clusters of six densely or poorly crosslinked seeds leads to octahedral and polytetrahedral shaped patchy particles, respectively. For seven particles several geometries were obtained with a preference for pentagonal dipyramids by the rigid spheres, while the soft spheres do rarely arrive in these structures. Even larger clusters of over 15 particles form non-uniform often aspherical shapes. We discuss that the reconfiguration pathway is largely influenced by confinement and geometric constraints. The key factor which dominates during reconfiguration depends on the deformability of the spherical seed particles.
Collapse
Affiliation(s)
- V Meester
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands.
| | | |
Collapse
|
38
|
Han K, Shields CW, Diwakar NM, Bharti B, López GP, Velev OD. Sequence-encoded colloidal origami and microbot assemblies from patchy magnetic cubes. SCIENCE ADVANCES 2017; 3:e1701108. [PMID: 28798960 PMCID: PMC5544397 DOI: 10.1126/sciadv.1701108] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/30/2017] [Indexed: 05/19/2023]
Abstract
Colloidal-scale assemblies that reconfigure on demand may serve as the next generation of soft "microbots," artificial muscles, and other biomimetic devices. This requires the precise arrangement of particles into structures that are preprogrammed to reversibly change shape when actuated by external fields. The design and making of colloidal-scale assemblies with encoded directional particle-particle interactions remain a major challenge. We show how assemblies of metallodielectric patchy microcubes can be engineered to store energy through magnetic polarization and release it on demand by microscale reconfiguration. The dynamic pattern of folding and reconfiguration of the chain-like assemblies can be encoded in the sequence of the cube orientation. The residual polarization of the metallic facets on the microcubes leads to local interactions between the neighboring particles, which is directed by the conformational restrictions of their shape after harvesting energy from external magnetic fields. These structures can also be directionally moved, steered, and maneuvered by global forces from external magnetic fields. We illustrate these capabilities by examples of assemblies of specific sequences that can be actuated, reoriented, and spatially maneuvered to perform microscale operations such as capturing and transporting live cells, acting as prototypes of microbots, micromixers, and other active microstructures.
Collapse
Affiliation(s)
- Koohee Han
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695–7905, USA
- Research Triangle Materials Research Science and Engineering Center, Durham, NC 27708, USA
| | - C. Wyatt Shields
- Research Triangle Materials Research Science and Engineering Center, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nidhi M. Diwakar
- Research Triangle Materials Research Science and Engineering Center, Durham, NC 27708, USA
| | - Bhuvnesh Bharti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695–7905, USA
- Research Triangle Materials Research Science and Engineering Center, Durham, NC 27708, USA
| | - Gabriel P. López
- Research Triangle Materials Research Science and Engineering Center, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Corresponding author. (O.D.V.); (G.P.L.)
| | - Orlin D. Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695–7905, USA
- Research Triangle Materials Research Science and Engineering Center, Durham, NC 27708, USA
- Corresponding author. (O.D.V.); (G.P.L.)
| |
Collapse
|
39
|
Roh S, Parekh DP, Bharti B, Stoyanov SD, Velev OD. 3D Printing by Multiphase Silicone/Water Capillary Inks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28590510 DOI: 10.1002/adma.201701554] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/17/2017] [Indexed: 05/09/2023]
Abstract
3D printing of polymers is accomplished easily with thermoplastics as the extruded hot melt solidifies rapidly during the printing process. Printing with liquid polymer precursors is more challenging due to their longer curing times. One curable liquid polymer of specific interest is polydimethylsiloxane (PDMS). This study demonstrates a new efficient technique for 3D printing with PDMS by using a capillary suspension ink containing PDMS in the form of both precured microbeads and uncured liquid precursor, dispersed in water as continuous medium. The PDMS microbeads are held together in thixotropic granular paste by capillary attraction induced by the liquid precursor. These capillary suspensions possess high storage moduli and yield stresses that are needed for direct ink writing. They could be 3D printed and cured both in air and under water. The resulting PDMS structures are remarkably elastic, flexible, and extensible. As the ink is made of porous, biocompatible silicone that can be printed directly inside aqueous medium, it can be used in 3D printed biomedical products, or in applications such as direct printing of bioscaffolds on live tissue. This study demonstrates a number of examples using the high softness, elasticity, and resilience of these 3D printed structures.
Collapse
Affiliation(s)
- Sangchul Roh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dishit P Parekh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Simeon D Stoyanov
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, 6708, WE, The Netherlands
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
40
|
Bradley LC, Chen WH, Stebe KJ, Lee D. Janus and patchy colloids at fluid interfaces. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Whitham K, Hanrath T. Formation of Epitaxially Connected Quantum Dot Solids: Nucleation and Coherent Phase Transition. J Phys Chem Lett 2017; 8:2623-2628. [PMID: 28530835 DOI: 10.1021/acs.jpclett.7b00846] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The formation of epitaxially connected quantum dot solids involves a complex interplay of interfacial assembly, surface chemistry, and irreversible-directed attachment. We describe the basic mechanism in the context of a coherent phase transition with distinct nucleation and propagation steps. The proposed mechanism explains how defects in the preassembled structure influence nucleation and how basic geometric relationships govern the transformation from hexagonal assemblies of isolated dots to interconnected solids with square symmetry. We anticipate that new mechanistic insights will guide future advances in the formation of high-fidelity quantum dot solids with enhanced grain size, interconnectivity, and control over polymorph structures.
Collapse
Affiliation(s)
- Kevin Whitham
- Department of Materials Science and Engineering, and ‡Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University , Ithaca, New York 14853, United States
| | - Tobias Hanrath
- Department of Materials Science and Engineering, and ‡Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
42
|
Shape‐Shifting Patchy Particles. Angew Chem Int Ed Engl 2017; 56:5507-5511. [DOI: 10.1002/anie.201701456] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/09/2017] [Indexed: 11/07/2022]
|
43
|
Affiliation(s)
- Xiaolong Zheng
- Molecular Design Institute Department of Chemistry New York University New York NY 10003 USA
| | - Mingzhu Liu
- Molecular Design Institute Department of Chemistry New York University New York NY 10003 USA
| | - Mingxin He
- Tandon School of Engineering Department of Chemical & Biomolecular Engineering New York University Brooklyn NY 11201 USA
| | - David J. Pine
- Department of Physics Center for Soft Matter Research New York University New York NY 10003 USA
- Tandon School of Engineering Department of Chemical & Biomolecular Engineering New York University Brooklyn NY 11201 USA
| | - Marcus Weck
- Molecular Design Institute Department of Chemistry New York University New York NY 10003 USA
| |
Collapse
|