1
|
Protons in Gating the Kv1.2 Channel: A Calculated Set of Protonation States in Response to Polarization/Depolarization of the Channel, with the Complete Proposed Proton Path from Voltage Sensing Domain to Gate. MEMBRANES 2022; 12:membranes12070718. [PMID: 35877921 PMCID: PMC9318985 DOI: 10.3390/membranes12070718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022]
Abstract
We have in the past proposed that proton motion constitutes the gating current in the potassium channel Kv1.2 and is responsible for the gating mechanism. For this to happen, there must be a proton path between the voltage-sensing domain (VSD) and the channel gate, and here we present quantum calculations that lead to a specific pair of proton paths, defined at the molecular level, with well-defined water molecule linkages, and with hydrogen bonding between residues; there is also at least one interpath crossover, where protons can switch paths. Quantum calculations on the entire 563-atom system give the complete geometry, the energy, and atomic charges. Calculations show that three specific residues (in the pdb 3Lut numbering, H418, E327, R326), and the T1 intracellular moiety, all of which have been shown experimentally to be involved in gating, would necessarily be protonated or deprotonated in the path between the VSD and the gate. Hydroxyl reorientation of serine and threonine residues are shown to provide a means of adjusting proton directions of motion. In the deprotonated state for K312, a low energy state, our calculations come close to reproducing the X-ray structure. The demonstration of the existence of a double proton path between VSD and gate supports the proposed proton gating mechanism; when combined with our earlier demonstration of proton generation in the VSD, and comparison with other systems that are known to move protons, we are close to achieving the definition of a complete gating mechanism in molecular detail. The coupling of the paths to the VSD, and to the PVPV section that essentially forms the gate, can be easily seen from the results of the calculation. The gate itself remains for further computations.
Collapse
|
2
|
Dudev T, Frutos LM, Castaño O. How mechanical forces can modulate the metal affinity and selectivity of metal binding sites in proteins. Metallomics 2020; 12:363-370. [DOI: 10.1039/c9mt00283a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results obtained reveal that applying mechanical forces with a given strength and directionality can modulate the metal affinity and selectivity of metal binding sites in metalloproteins.
Collapse
Affiliation(s)
- Todor Dudev
- Faculty of Chemistry and Pharmacy
- Sofia University
- 1164 Sofia
- Bulgaria
| | - Luis Manuel Frutos
- Departamento de Química Analítica
- Química Física e Ingeniería Química
- Universidad de Alcala
- Madrid
- Spain
| | - Obis Castaño
- Departamento de Química Analítica
- Química Física e Ingeniería Química
- Universidad de Alcala
- Madrid
- Spain
| |
Collapse
|
3
|
Santner P, Martins JMDS, Kampmeyer C, Hartmann-Petersen R, Laursen JS, Stein A, Olsen CA, Arkin IT, Winther JR, Willemoës M, Lindorff-Larsen K. Random Mutagenesis Analysis of the Influenza A M2 Proton Channel Reveals Novel Resistance Mutants. Biochemistry 2018; 57:5957-5968. [PMID: 30230310 DOI: 10.1021/acs.biochem.8b00722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influenza M2 proton channel is a major drug target, but unfortunately, the acquisition of resistance mutations greatly reduces the functional life span of a drug in influenza treatment. New M2 inhibitors that inhibit mutant M2 channels otherwise resistant to the early adamantine-based drugs have been reported, but it remains unclear whether and how easy resistance could arise to such inhibitors. We have combined a newly developed proton conduction assay with an established method for selection and screening, both Escherichia coli-based, to enable the study of M2 function and inhibition. Combining this platform with two groups of structurally different M2 inhibitors allowed us to isolate drug resistant M2 channels from a mutant library. Two groups of M2 variants emerged from this analysis. A first group appeared almost unaffected by the inhibitor, M_089 (N13I, I35L, and F47L) and M_272 (G16C and D44H), and the single-substitution variants derived from these (I35L, L43P, D44H, and L46P). Functionally, these resemble the known drug resistant M2 channels V27A, S31N, and swine flu. In addition, a second group of tested M2 variants were all still inhibited by drugs but to a lesser extent than wild type M2. Molecular dynamics simulations aided in distinguishing the two groups where drug binding to the wild type and the less resistant M2 group showed a stable positioning of the ligand in the canonical binding pose, as opposed to the drug resistant group in which the ligand rapidly dissociated from the complex during the simulations.
Collapse
Affiliation(s)
- Paul Santner
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - João Miguel da Silva Martins
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Caroline Kampmeyer
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Rasmus Hartmann-Petersen
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Jonas S Laursen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Amelie Stein
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Christian A Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark.,Center for Biopharmaceuticals, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Isaiah T Arkin
- Department of Biological Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus , Givat-Ram, Jerusalem 91904 , Israel
| | - Jakob R Winther
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Martin Willemoës
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| |
Collapse
|
4
|
The Role of Proton Transport in Gating Current in a Voltage Gated Ion Channel, as Shown by Quantum Calculations. SENSORS 2018; 18:s18093143. [PMID: 30231473 PMCID: PMC6163810 DOI: 10.3390/s18093143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022]
Abstract
Over two-thirds of a century ago, Hodgkin and Huxley proposed the existence of voltage gated ion channels (VGICs) to carry Na+ and K+ ions across the cell membrane to create the nerve impulse, in response to depolarization of the membrane. The channels have multiple physiological roles, and play a central role in a wide variety of diseases when they malfunction. The first channel structure was found by MacKinnon and coworkers in 1998. Subsequently, the structure of a number of VGICs was determined in the open (ion conducting) state. This type of channel consists of four voltage sensing domains (VSDs), each formed from four transmembrane (TM) segments, plus a pore domain through which ions move. Understanding the gating mechanism (how the channel opens and closes) requires structures. One TM segment (S4) has an arginine in every third position, with one such segment per domain. It is usually assumed that these arginines are all ionized, and in the resting state are held toward the intracellular side of the membrane by voltage across the membrane. They are assumed to move outward (extracellular direction) when released by depolarization of this voltage, producing a capacitive gating current and opening the channel. We suggest alternate interpretations of the evidence that led to these models. Measured gating current is the total charge displacement of all atoms in the VSD; we propose that the prime, but not sole, contributor is proton motion, not displacement of the charges on the arginines of S4. It is known that the VSD can conduct protons. Quantum calculations on the Kv1.2 potassium channel VSD show how; the key is the amphoteric nature of the arginine side chain, which allows it to transfer a proton. This appears to be the first time the arginine side chain has had its amphoteric character considered. We have calculated one such proton transfer in detail: this proton starts from a tyrosine that can ionize, transferring to the NE of the third arginine on S4; that arginine’s NH then transfers a proton to a glutamate. The backbone remains static. A mutation predicted to affect the proton transfer has been qualitatively confirmed experimentally, from the change in the gating current-voltage curve. The total charge displacement in going from a normal closed potential of −70 mV across the membrane to 0 mV (open), is calculated to be approximately consistent with measured values, although the error limits on the calculation require caution in interpretation.
Collapse
|