1
|
Kitoka K, Lends A, Kucinskas G, Bula AL, Krasauskas L, Smirnovas V, Zilkova M, Kovacech B, Skrabana R, Hritz J, Jaudzems K. dGAE(297-391) Tau Fragment Promotes Formation of Chronic Traumatic Encephalopathy-Like Tau Filaments. Angew Chem Int Ed Engl 2024; 63:e202407821. [PMID: 39183704 PMCID: PMC11586700 DOI: 10.1002/anie.202407821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 08/27/2024]
Abstract
The microtubule-associated protein tau forms disease-specific filamentous aggregates in several different neurodegenerative diseases. In order to understand how tau undergoes misfolding into a specific filament type and to control this process for drug development purposes, it is crucial to study in vitro tau aggregation methods and investigate the structures of the obtained filaments at the atomic level. Here, we used the tau fragment dGAE, which aggregates spontaneously, to seed the formation of full-length tau filaments. The structures of dGAE and full-length tau filaments were investigated by magic-angle spinning (MAS) solid-state NMR, showing that dGAE allows propagation of a chronic traumatic encephalopathy (CTE)-like fold to the full-length tau. The obtained filaments efficiently seeded tau aggregation in HEK293T cells. This work demonstrates that in vitro preparation of disease-specific types of full-length tau filaments is feasible.
Collapse
Affiliation(s)
- Kristine Kitoka
- Latvian Institute of Organic SynthesisAizkraukles 21Riga LV1006Latvia
| | - Alons Lends
- Latvian Institute of Organic SynthesisAizkraukles 21Riga LV1006Latvia
| | - Gytis Kucinskas
- CEITEC MUMasaryk UniversityKamenice 753/5625 00BrnoCzech Republic
- National Centre for Biomolecular ResearchFaculty of ScienceMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Anna Lina Bula
- Latvian Institute of Organic SynthesisAizkraukles 21Riga LV1006Latvia
| | - Lukas Krasauskas
- Institute of BiotechnologyLife Sciences CenterVilnius UniversitySauletekio 7Vilnius LT10257Lithuania
| | - Vytautas Smirnovas
- Institute of BiotechnologyLife Sciences CenterVilnius UniversitySauletekio 7Vilnius LT10257Lithuania
| | - Monika Zilkova
- Institute of NeuroimmunologySlovak Academy of Sciences Dubravskacesta 9, 845 10BratislavaSlovakia
| | - Branislav Kovacech
- Institute of NeuroimmunologySlovak Academy of Sciences Dubravskacesta 9, 845 10BratislavaSlovakia
| | - Rostislav Skrabana
- Institute of NeuroimmunologySlovak Academy of Sciences Dubravskacesta 9, 845 10BratislavaSlovakia
| | - Jozef Hritz
- CEITEC MUMasaryk UniversityKamenice 753/5625 00BrnoCzech Republic
- Department of ChemistryFaculty of ScienceMasaryk UniversityKamenice 5, 625 00BrnoCzech Republic
| | - Kristaps Jaudzems
- Latvian Institute of Organic SynthesisAizkraukles 21Riga LV1006Latvia
- Department of Organic ChemistryFaculty of ChemistryUniversity of LatviaJelgavas 1Riga LV1004Latvia
| |
Collapse
|
2
|
Klein A, Vasa SK, Linser R. 5D solid-state NMR spectroscopy for facilitated resonance assignment. JOURNAL OF BIOMOLECULAR NMR 2023; 77:229-245. [PMID: 37943392 PMCID: PMC10687145 DOI: 10.1007/s10858-023-00424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023]
Abstract
1H-detected solid-state NMR spectroscopy has been becoming increasingly popular for the characterization of protein structure, dynamics, and function. Recently, we showed that higher-dimensionality solid-state NMR spectroscopy can aid resonance assignments in large micro-crystalline protein targets to combat ambiguity (Klein et al., Proc. Natl. Acad. Sci. U.S.A. 2022). However, assignments represent both, a time-limiting factor and one of the major practical disadvantages within solid-state NMR studies compared to other structural-biology techniques from a very general perspective. Here, we show that 5D solid-state NMR spectroscopy is not only justified for high-molecular-weight targets but will also be a realistic and practicable method to streamline resonance assignment in small to medium-sized protein targets, which such methodology might not have been expected to be of advantage for. Using a combination of non-uniform sampling and the signal separating algorithm for spectral reconstruction on a deuterated and proton back-exchanged micro-crystalline protein at fast magic-angle spinning, direct amide-to-amide correlations in five dimensions are obtained with competitive sensitivity compatible with common hardware and measurement time commitments. The self-sufficient backbone walks enable efficient assignment with very high confidence and can be combined with higher-dimensionality sidechain-to-backbone correlations from protonated preparations into minimal sets of experiments to be acquired for simultaneous backbone and sidechain assignment. The strategies present themselves as potent alternatives for efficient assignment compared to the traditional assignment approaches in 3D, avoiding user misassignments derived from ambiguity or loss of overview and facilitating automation. This will ease future access to NMR-based characterization for the typical solid-state NMR targets at fast MAS.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
| |
Collapse
|
3
|
Burakova E, Vasa SK, Linser R. Characterization of conformational heterogeneity via higher-dimensionality, proton-detected solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2022; 76:197-212. [PMID: 36149571 PMCID: PMC9712413 DOI: 10.1007/s10858-022-00405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Site-specific heterogeneity of solid protein samples can be exploited as valuable information to answer biological questions ranging from thermodynamic properties determining fibril formation to protein folding and conformational stability upon stress. In particular, for proteins of increasing molecular weight, however, site-resolved assessment without residue-specific labeling is challenging using established methodology, which tends to rely on carbon-detected 2D correlations. Here we develop purely chemical-shift-based approaches for assessment of relative conformational heterogeneity that allows identification of each residue via four chemical-shift dimensions. High dimensionality diminishes the probability of peak overlap in the presence of multiple, heterogeneously broadened resonances. Utilizing backbone dihedral-angle reconstruction from individual contributions to the peak shape either via suitably adapted prediction routines or direct association with a relational database, the methods may in future studies afford assessment of site-specific heterogeneity of proteins without site-specific labeling.
Collapse
Affiliation(s)
- Ekaterina Burakova
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Suresh K Vasa
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
4
|
Xue K, Sarkar R, Tošner Z, Reif B. Field and magic angle spinning frequency dependence of proton resonances in rotating solids. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:47-61. [PMID: 36113917 DOI: 10.1016/j.pnmrs.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Proton detection in solid state NMR is continuously developing and allows one to gain new insights in structural biology. Overall, this progress is a result of the synergy between hardware development, new NMR methodology and new isotope labeling strategies, to name a few factors. Even though current developments are rapid, it is worthwhile to summarize what can currently be achieved employing proton detection in biological solids. We illustrate this by analysing the signal-to-noise ratio (SNR) for spectra obtained for a microcrystalline α-spectrin SH3 domain protein sample by (i) employing different degrees of chemical dilution to replace protons by incorporating deuterons in different sites, by (ii) variation of the magic angle spinning (MAS) frequencies between 20 and 110 kHz, and by (iii) variation of the static magnetic field B0. The experimental SNR values are validated with numerical simulations employing up to 9 proton spins. Although in reality a protein would contain far more than 9 protons, in a deuterated environment this is a sufficient number to achieve satisfactory simulations consistent with the experimental data. The key results of this analysis are (i) with current hardware, deuteration is still necessary to record spectra of optimum quality; (ii) 13CH3 isotopomers for methyl groups yield the best SNR when MAS frequencies above 100 kHz are available; and (iii) sensitivity increases with a factor beyond B0 3/2 with the static magnetic field due to a transition of proton-proton dipolar interactions from a strong to a weak coupling limit.
Collapse
Affiliation(s)
- Kai Xue
- Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology, Am Fassberg. 11, Goettingen, Germany
| | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Zdeněk Tošner
- Department of Chemistry, Faculty of Science, Charles University, Hlavova 8, 12842 Praha 2, Czech Republic
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany.
| |
Collapse
|
5
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
6
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
7
|
Klein A, Vasa SK, Söldner B, Grohe K, Linser R. Unambiguous Side-Chain Assignments for Solid-State NMR Structure Elucidation of Nondeuterated Proteins via a Combined 5D/4D Side-Chain-to-Backbone Experiment. J Phys Chem Lett 2022; 13:1644-1651. [PMID: 35147439 DOI: 10.1021/acs.jpclett.1c04075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to fast-magic-angle-spinning technology, proton-detected solid-state NMR has been facilitating the analysis of insoluble, crystalline, sedimented, and membrane proteins. However, potential applications have been largely restricted by limited access to side-chain resonances. The recent availability of spinning frequencies exceeding 100 kHz in principle now allows direct probing of all protons without the need for partial deuteration. This potentiates both the number of accessible target proteins and possibilities to exploit side-chain protons as reporters on distances and interactions. Their low dispersion, however, has severely compromised their chemical-shift assignment, which is a prerequisite for their use in downstream applications. Herein, we show that unambiguous correlations are obtained from 5D methodology by which the side-chain resonances are directly connected with the backbone. When further concatenated with simultaneous 4D intra-side-chain correlations, this yields comprehensive assignments in the side chains and hence allows a high density of distance restraints for high-resolution structure calculation from minimal amounts of protein.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Benedikt Söldner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Kristof Grohe
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| |
Collapse
|
8
|
Kitoka K, Skrabana R, Gasparik N, Hritz J, Jaudzems K. NMR Studies of Tau Protein in Tauopathies. Front Mol Biosci 2021; 8:761227. [PMID: 34859051 PMCID: PMC8632555 DOI: 10.3389/fmolb.2021.761227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Tauopathies, including Alzheimer's disease (AD), are the most troublesome of all age-related chronic conditions, as there are no well-established disease-modifying therapies for their prevention and treatment. Spatio-temporal distribution of tau protein pathology correlates with cognitive decline and severity of the disease, therefore, tau protein has become an appealing target for therapy. Current knowledge of the pathological effects and significance of specific species in the tau aggregation pathway is incomplete although more and more structural and mechanistic insights are being gained using biophysical techniques. Here, we review the application of NMR to structural studies of various tau forms that appear in its aggregation process, focusing on results obtained from solid-state NMR. Furthermore, we discuss implications from these studies and their prospective contribution to the development of new tauopathy therapies.
Collapse
Affiliation(s)
- Kristine Kitoka
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Norbert Gasparik
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristaps Jaudzems
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| |
Collapse
|
9
|
Chakraborty P, Rivière G, Liu S, de Opakua AI, Dervişoğlu R, Hebestreit A, Andreas LB, Vorberg IM, Zweckstetter M. Co-factor-free aggregation of tau into seeding-competent RNA-sequestering amyloid fibrils. Nat Commun 2021; 12:4231. [PMID: 34244499 PMCID: PMC8270918 DOI: 10.1038/s41467-021-24362-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
Pathological aggregation of the protein tau into insoluble aggregates is a hallmark of neurodegenerative diseases. The emergence of disease-specific tau aggregate structures termed tau strains, however, remains elusive. Here we show that full-length tau protein can be aggregated in the absence of co-factors into seeding-competent amyloid fibrils that sequester RNA. Using a combination of solid-state NMR spectroscopy and biochemical experiments we demonstrate that the co-factor-free amyloid fibrils of tau have a rigid core that is similar in size and location to the rigid core of tau fibrils purified from the brain of patients with corticobasal degeneration. In addition, we demonstrate that the N-terminal 30 residues of tau are immobilized during fibril formation, in agreement with the presence of an N-terminal epitope that is specifically detected by antibodies in pathological tau. Experiments in vitro and in biosensor cells further established that co-factor-free tau fibrils efficiently seed tau aggregation, while binding studies with different RNAs show that the co-factor-free tau fibrils strongly sequester RNA. Taken together the study provides a critical advance to reveal the molecular factors that guide aggregation towards disease-specific tau strains.
Collapse
Affiliation(s)
| | - Gwladys Rivière
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Shu Liu
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Rıza Dervişoğlu
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alina Hebestreit
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Loren B Andreas
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ina M Vorberg
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
10
|
Dregni AJ, Wang HK, Wu H, Duan P, Jin J, DeGrado WF, Hong M. Inclusion of the C-Terminal Domain in the β-Sheet Core of Heparin-Fibrillized Three-Repeat Tau Protein Revealed by Solid-State Nuclear Magnetic Resonance Spectroscopy. J Am Chem Soc 2021; 143:7839-7851. [PMID: 33983722 PMCID: PMC8283780 DOI: 10.1021/jacs.1c03314] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many neurodegenerative diseases such as Alzheimer's disease are characterized by pathological β-sheet filaments of the tau protein, which spread in a prion-like manner in patient brains. To date, high-resolution structures of tau filaments obtained from patient brains show that the β-sheet core only includes portions of the microtubule-binding repeat domains and excludes the C-terminal residues, indicating that the C-terminus is dynamically disordered. Here, we use solid-state NMR spectroscopy to identify the β-sheet core of full-length 0N3R tau fibrillized using heparin. Assignment of 13C and 15N chemical shifts of the rigid core of the protein revealed a single predominant β-sheet conformation, which spans not only the R3, R4, R' repeats but also the entire C-terminal domain (CT) of the protein. This massive β-sheet core qualitatively differs from all other tau fibril structures known to date. Using long-range correlation NMR experiments, we found that the R3 and R4 repeats form a β-arch, similar to that seen in some of the brain-derived tau fibrils, but the R1 and R3 domains additionally stack against the CT, reminiscent of previously reported transient interactions of the CT with the microtubule-binding repeats. This expanded β-sheet core structure suggests that the CT may have a protective effect against the formation of pathological tau fibrils by shielding the amyloidogenic R3 and R4 domains, preventing side-on nucleation. Truncation and post-translational modification of the CT in vivo may thus play an important role in the progression of tauopathies.
Collapse
Affiliation(s)
- Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Harrison K. Wang
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Haifan Wu
- Department of Pharmaceutical Chemistry, 555 Mission Bay Blvd. South, CVRB, Room 452V, University of California, San Francisco, CA 94158-9001
| | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Jia Jin
- Department of Pharmaceutical Chemistry, 555 Mission Bay Blvd. South, CVRB, Room 452V, University of California, San Francisco, CA 94158-9001
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, 555 Mission Bay Blvd. South, CVRB, Room 452V, University of California, San Francisco, CA 94158-9001
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
11
|
Savastano A, Jaipuria G, Andreas L, Mandelkow E, Zweckstetter M. Solid-state NMR investigation of the involvement of the P2 region in tau amyloid fibrils. Sci Rep 2020; 10:21210. [PMID: 33273615 PMCID: PMC7712923 DOI: 10.1038/s41598-020-78161-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/20/2020] [Indexed: 11/08/2022] Open
Abstract
The aggregation of hyperphosphorylated tau into amyloid fibrils is closely linked to the progression of Alzheimer's disease. To gain insight into the link between amyloid structure and disease, the three-dimensional structure of tau fibrils has been studied using solid-state NMR (ssNMR) and cryogenic electron microscopy (cryo-EM). The proline-rich region of tau remains poorly defined in the context of tau amyloid structures, despite the clustering of several phosphorylation sites, which have been associated with Alzheimer's disease. In order to gain insight into the contribution of the proline-rich region P2 of tau to amyloid fibrils, we studied in vitro aggregated amyloid fibrils of tau constructs, which contain both the proline-rich region P2 and the pseudo-repeats. Using ssNMR we show that the sequence [Formula: see text], the most hydrophobic patch within the P2 region, loses its flexibility upon formation of amyloid fibrils. The data suggest a contribution of the P2 region to tau amyloid fibril formation, which might account for some of the unassigned electron density in cryo-EM studies of tau fibrils and could be modulated by tau phosphorylation at the disease-associated AT180 epitope T231/S235.
Collapse
Affiliation(s)
- Adriana Savastano
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Garima Jaipuria
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Loren Andreas
- Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127, Bonn, Germany
- CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany.
- Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
12
|
Karikari TK, Keeling S, Hill E, Lantero Rodrı́guez J, Nagel DA, Becker B, Höglund K, Zetterberg H, Blennow K, Hill EJ, Moffat KG. Extensive Plasmid Library to Prepare Tau Protein Variants and Study Their Functional Biochemistry. ACS Chem Neurosci 2020; 11:3117-3129. [PMID: 32833429 DOI: 10.1021/acschemneuro.0c00469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tau neurofibrillary tangles are key pathological features of Alzheimer's disease and other tauopathies. Recombinant protein technology is vital for studying the structure and function of tau in physiology and aggregation in pathophysiology. However, open-source and well-characterized plasmids for efficiently expressing and purifying different tau variants are lacking. We generated 44 sequence-verified plasmids including those encoding full length (FL) tau-441, its four-repeat microtubule-binding (K18) fragment, and their respective selected familial pathological variants (N279K, V337M, P301L, C291R, and S356T). Moreover, plasmids for expressing single (C291A), double (C291A/C322A), and triple (C291A/C322A/I260C) cysteine-modified variants were generated to study alterations in cysteine content and locations. Furthermore, protocols for producing representative tau forms were developed. We produced and characterized the aggregation behavior of the triple cysteine-modified tau-K18, often used in real-time cell internalization and aggregation studies because it can be fluorescently labeled on a cysteine outside the microtubule-binding core. Similar to the wild type (WT), triple cysteine-modified tau-K18 aggregated by progressive β-sheet enrichment, albeit at a slower rate. On prolonged incubation, cysteine-modified K18 formed paired helical filaments similar to those in Alzheimer's disease, sharing morphological phenotypes with WT tau-K18 filaments. Nonetheless, cysteine-modified tau-K18 filaments were significantly shorter (p = 0.002) and mostly wider than WT filaments, explainable by their different principal filament elongation pathways: vertical (end-to-end) and lateral growth for WT and cysteine-modified, respectively. Cysteine rearrangement may therefore induce filament polymorphism. Together, the plasmid library, the protein production methods, and the new insights into cysteine-dependent aggregation should facilitate further studies and the design of antiaggregation agents.
Collapse
Affiliation(s)
- Thomas K. Karikari
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry CV4 7AL, U.K
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg SE 43180, Sweden
| | - Sophie Keeling
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Emily Hill
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Juan Lantero Rodrı́guez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg SE 43180, Sweden
| | - David A. Nagel
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, U.K
| | - Bruno Becker
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg SE 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
| | - Kina Höglund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg SE 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg SE 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, U.K
- UK Dementia Research Institute at UCL, London WC1E 6BT, U.K
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg SE 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
| | - Eric J. Hill
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, U.K
| | - Kevin G. Moffat
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
13
|
Niu Z, Sarkar R, Aichler M, Wester H, Yousefi BH, Reif B. Mapping the Binding Interface of PET Tracer Molecules and Alzheimer Disease Aβ Fibrils by Using MAS Solid-State NMR Spectroscopy. Chembiochem 2020; 21:2495-2502. [PMID: 32291951 PMCID: PMC7496087 DOI: 10.1002/cbic.202000143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Positron emission tomography (PET) tracer molecules like thioflavin T specifically recognize amyloid deposition in brain tissue by selective binding to hydrophobic or aromatic surface grooves on the β-sheet surface along the fibril axis. The molecular basis of this interaction is, however, not well understood. We have employed magic angle spinning (MAS) solid-state NMR spectroscopy to characterize Aβ-PET tracer complexes at atomic resolution. We established a titration protocol by using bovine serum albumin as a carrier to transfer hydrophobic small molecules to Aβ(1-40) fibrillar aggregates. The same Aβ(1-40) amyloid fibril sample was employed in subsequent titrations to minimize systematic errors that potentially arise from sample preparation. In the experiments, the small molecules 13 C-methylated Pittsburgh compound B (PiB) as well as a novel Aβ tracer based on a diarylbithiazole (DABTA) scaffold were employed. Classical 13 C-detected as well as proton-detected spectra of protonated and perdeuterated samples with back-substituted protons, respectively, were acquired and analyzed. After titration of the tracers, chemical-shift perturbations were observed in the loop region involving residues Gly25-Lys28 and Ile32-Gly33, thus suggesting that the PET tracer molecules interact with the loop region connecting β-sheets β1 and β2 in Aβ fibrils. We found that titration of the PiB derivatives suppressed fibril polymorphism and stabilized the amyloid fibril structure.
Collapse
Affiliation(s)
- Zheng Niu
- Munich Center for Integrated Protein Science (CIPS−M) Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
- Helmholtz-Zentrum MünchenInstitute of Structural Biology (STB)Ingolstädter Landstrasse 185764NeuherbergGermany
| | - Riddhiman Sarkar
- Munich Center for Integrated Protein Science (CIPS−M) Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
- Helmholtz-Zentrum MünchenInstitute of Structural Biology (STB)Ingolstädter Landstrasse 185764NeuherbergGermany
| | - Michaela Aichler
- Helmholtz Zentrum MünchenResearch Unit Analytical Pathology (AAP)Ingolstädter Landstrasse 185764NeuherbergGermany
| | - Hans‐Jürgen Wester
- Technische Universität MünchenDepartment of Pharmaceutical RadiochemistryWalther-Meißner-Strasse 385748GarchingGermany
| | - Behrooz Hooshyar Yousefi
- Technische Universität MünchenDepartment of Pharmaceutical RadiochemistryWalther-Meißner-Strasse 385748GarchingGermany
- Philipps University of MarburgDepartment of Nuclear MedicineBaldingerstrasse. 135043MarburgGermany
| | - Bernd Reif
- Munich Center for Integrated Protein Science (CIPS−M) Department ChemieTechnische Universität MünchenLichtenbergstrasse 485747GarchingGermany
- Helmholtz-Zentrum MünchenInstitute of Structural Biology (STB)Ingolstädter Landstrasse 185764NeuherbergGermany
| |
Collapse
|
14
|
Burakova E, Vasa SK, Klein A, Linser R. Non-uniform sampling in quantitative assessment of heterogeneous solid-state NMR line shapes. JOURNAL OF BIOMOLECULAR NMR 2020; 74:71-82. [PMID: 31834579 DOI: 10.1007/s10858-019-00291-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Non-uniform sampling has been successfully used for solution and solid-state NMR of homogeneous samples. In the solid state, protein samples are often dominated by inhomogeneous contributions to the homogeneous line widths. In spite of different technical strategies for peak reconstruction by different methods, we validate that NUS can generally be used also for such situations where spectra are made up of complex peak shapes rather than Lorentian lines. Using the RMSD between subsampled and reconstructed data and those spectra obtained with uniform sampling for a sample comprising a wide conformational distribution, we quantitatively evaluate the identity of inhomogeneous peak patterns. The evaluation comprises Iterative Soft Thresholding (hmsIST implementation) as a method explicitly not assuming Lorentian lineshapes, as well as Sparse Multidimensional Iterative Lineshape Enhanced (SMILE) algorithm and Signal Separation Algorithm (SSA) reconstruction, which do work on the basis of Lorentian lineshape models, with different sampling densities. Even though individual peculiarities are apparent, all methods turn out principally viable to reconstruct the heterogeneously broadened peak shapes.
Collapse
Affiliation(s)
- Ekaterina Burakova
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Suresh K Vasa
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Alexander Klein
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Rasmus Linser
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany.
| |
Collapse
|
15
|
Jaroniec CP. Two decades of progress in structural and dynamic studies of amyloids by solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:42-47. [PMID: 31311708 PMCID: PMC6703944 DOI: 10.1016/j.jmr.2019.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 05/09/2023]
Abstract
In this perspective article I briefly highlight the rapid progress made over the past two decades in atomic level structural and dynamic studies of amyloids, which are representative of non-crystalline biomacromolecular assemblies, by magic-angle spinning solid-state NMR spectroscopy. Given new and continuing developments in solid-state NMR instrumentation and methodology, ongoing research in this area promises to contribute to an improved understanding of amyloid structure, polymorphism, interactions, assembly mechanisms, and biological function and toxicity.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
In vitro 0N4R tau fibrils contain a monomorphic β-sheet core enclosed by dynamically heterogeneous fuzzy coat segments. Proc Natl Acad Sci U S A 2019; 116:16357-16366. [PMID: 31358628 DOI: 10.1073/pnas.1906839116] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Misfolding of the microtubule-binding protein tau into filamentous aggregates is characteristic of many neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. Determining the structures and dynamics of these tau fibrils is important for designing inhibitors against tau aggregation. Tau fibrils obtained from patient brains have been found by cryo-electron microscopy to adopt disease-specific molecular conformations. However, in vitro heparin-fibrillized 2N4R tau, which contains all four microtubule-binding repeats (4R), was recently found to adopt polymorphic structures. Here we use solid-state NMR spectroscopy to investigate the global fold and dynamics of heparin-fibrillized 0N4R tau. A single set of 13C and 15N chemical shifts was observed for residues in the four repeats, indicating a single β-sheet conformation for the fibril core. This rigid core spans the R2 and R3 repeats and adopts a hairpin-like fold that has similarities to but also clear differences from any of the polymorphic 2N4R folds. Obtaining a homogeneous fibril sample required careful purification of the protein and removal of any proteolytic fragments. A variety of experiments and polarization transfer from water and mobile side chains indicate that 0N4R tau fibrils exhibit heterogeneous dynamics: Outside the rigid R2-R3 core, the R1 and R4 repeats are semirigid even though they exhibit β-strand character and the proline-rich domains undergo large-amplitude anisotropic motions, whereas the two termini are nearly isotropically flexible. These results have significant implications for the structure and dynamics of 4R tau fibrils in vivo.
Collapse
|
17
|
Selenko P. Quo Vadis Biomolecular NMR Spectroscopy? Int J Mol Sci 2019; 20:ijms20061278. [PMID: 30875725 PMCID: PMC6472163 DOI: 10.3390/ijms20061278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) spectroscopy offers the possibility to study proteins and other biomolecules at atomic resolution directly in cells. As such, it provides compelling means to complement existing tools in cellular structural biology. Given the dominance of electron microscopy (EM)-based methods in current structure determination routines, I share my personal view about the role of biomolecular NMR spectroscopy in the aftermath of the revolution in resolution. Specifically, I focus on spin-off applications that in-cell NMR has helped to develop and how they may provide broader and more generally applicable routes for future NMR investigations. I discuss the use of ‘static’ and time-resolved solution NMR spectroscopy to detect post-translational protein modifications (PTMs) and to investigate structural consequences that occur in their response. I argue that available examples vindicate the need for collective and systematic efforts to determine post-translationally modified protein structures in the future. Furthermore, I explain my reasoning behind a Quinary Structure Assessment (QSA) initiative to interrogate cellular effects on protein dynamics and transient interactions present in physiological environments.
Collapse
Affiliation(s)
- Philipp Selenko
- Weizmann Institute of Science, Department of Biological Regulation, 234 Herzl Street, Rehovot 76100, Israel.
| |
Collapse
|
18
|
Zhang W, Falcon B, Murzin AG, Fan J, Crowther RA, Goedert M, Scheres SH. Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer's and Pick's diseases. eLife 2019; 8:43584. [PMID: 30720432 PMCID: PMC6375701 DOI: 10.7554/elife.43584] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/31/2019] [Indexed: 12/17/2022] Open
Abstract
Assembly of microtubule-associated protein tau into filamentous inclusions underlies a range of neurodegenerative diseases. Tau filaments adopt different conformations in Alzheimer’s and Pick’s diseases. Here, we used cryo- and immuno- electron microscopy to characterise filaments that were assembled from recombinant full-length human tau with four (2N4R) or three (2N3R) microtubule-binding repeats in the presence of heparin. 2N4R tau assembles into multiple types of filaments, and the structures of three types reveal similar ‘kinked hairpin’ folds, in which the second and third repeats pack against each other. 2N3R tau filaments are structurally homogeneous, and adopt a dimeric core, where the third repeats of two tau molecules pack in a parallel manner. The heparin-induced tau filaments differ from those of Alzheimer’s or Pick’s disease, which have larger cores with different repeat compositions. Our results illustrate the structural versatility of amyloid filaments, and raise questions about the relevance of in vitro assembly.
Collapse
Affiliation(s)
- Wenjuan Zhang
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Benjamin Falcon
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Alexey G Murzin
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Juan Fan
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
19
|
Vasa SK, Rovó P, Linser R. Protons as Versatile Reporters in Solid-State NMR Spectroscopy. Acc Chem Res 2018; 51:1386-1395. [PMID: 29763290 DOI: 10.1021/acs.accounts.8b00055] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopic technique that is used for characterization of molecular properties in the solid phase at atomic resolution. In particular, using the approach of magic-angle spinning (MAS), ssNMR has seen widespread applications for topics ranging from material sciences to catalysis, metabolomics, and structural biology, where both isotropic and anisotropic parameters can be exploited for a detailed assessment of molecular properties. High-resolution detection of protons long represented the holy grail of the field. With its high natural abundance and high gyromagnetic ratio, 1H has naturally been the most important nucleus type for the solution counterpart of NMR spectroscopy. In the solid state, similar benefits are obtained over detection of heteronuclei, however, a rocky road led to its success as their high gyromagnetic ratio has also been associated with various detrimental effects. Two exciting approaches have been developed in recent years that enable proton detection: After partial deuteration of the sample to reduce the proton spin density, the exploitation of protons could begin. Also, faster MAS, nowadays using tiny rotors with frequencies up to 130 kHz, has relieved the need for expensive deuteration. Apart from the sheer gain in sensitivity from choosing protons as the detection nucleus, the proton chemical shift and several other useful aspects of protons have revolutionized the field. In this Account, we are describing the fundamentals of proton detection as well as the arising possibilities for characterization of biomolecules as associated with the developments in our own lab. In particular, we focus on facilitated chemical-shift assignment, structure calculation based on protons, and on assessment of dynamics in solid proteins. For example, the proton chemical-shift dimension adds additional information for resonance assignments in the protein backbone and side chains. Chemical shifts and high gyromagnetic ratio of protons enable direct readout of spatial information over large distances. Dynamics in the protein backbone or side chains can be characterized efficiently using protons as reporters. For all of this, the sample amounts necessary for a given signal-to-noise have drastically shrunk, and new methodology enables assessment of molecules with increasing monomer molecular weight and complexity. Taken together, protons are able to overcome previous limitations, by speeding up processes, enhancing accuracies, and increasing the accessible ranges of ssNMR spectroscopy, as we shall discuss in detail in the following. In particular, these methodological developments have been pushing solid-state NMR into a new regime of biological topics as they realistically allow access to complex cellular molecules, elucidating their functions and interactions in a multitude of ways.
Collapse
Affiliation(s)
- Suresh K. Vasa
- Department Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Petra Rovó
- Department Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Rasmus Linser
- Department Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| |
Collapse
|
20
|
Higman VA. Solid-state MAS NMR resonance assignment methods for proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:37-65. [PMID: 31047601 DOI: 10.1016/j.pnmrs.2018.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 06/09/2023]
Abstract
The prerequisite to structural or functional studies of proteins by NMR is generally the assignment of resonances. Since the first assignment of proteins by solid-state MAS NMR was conducted almost two decades ago, a wide variety of different pulse sequences and methods have been proposed and continue to be developed. Traditionally, a variety of 2D and 3D 13C-detected experiments have been used for the assignment of backbone and side-chain 13C and 15N resonances. These methods have found widespread use across the field. But as the hardware has changed and higher spinning frequencies and magnetic fields are becoming available, the ability to use direct proton detection is opening up a new set of assignment methods based on triple-resonance experiments. This review describes solid-state MAS NMR assignment methods using carbon detection and proton detection at different deuteration levels. The use of different isotopic labelling schemes as an aid to assignment in difficult cases is discussed as well as the increasing number of software packages that support manual and automated resonance assignment.
Collapse
Affiliation(s)
- Victoria A Higman
- Department of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TU, UK.
| |
Collapse
|
21
|
Hwang S, Fricke P, Zinke M, Giller K, Wall JS, Riedel D, Becker S, Lange A. Comparison of the 3D structures of mouse and human α-synuclein fibrils by solid-state NMR and STEM. J Struct Biol 2018; 206:43-48. [PMID: 29678776 PMCID: PMC6470123 DOI: 10.1016/j.jsb.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/05/2018] [Accepted: 04/15/2018] [Indexed: 01/23/2023]
Abstract
Intra-neuronal aggregation of α-synuclein into fibrils is the molecular basis for α-synucleinopathies, such as Parkinson's disease. The atomic structure of human α-synuclein (hAS) fibrils was recently determined by Tuttle et al. using solid-state NMR (ssNMR). The previous study found that hAS fibrils are composed of a single protofilament. Here, we have investigated the structure of mouse α-synuclein (mAS) fibrils by STEM and isotope-dilution ssNMR experiments. We found that in contrast to hAS, mAS fibrils consist of two or even three protofilaments which are connected by rather weak interactions in between them. Although the number of protofilaments appears to be different between hAS and mAS, we found that they have a remarkably similar secondary structure and protofilament 3D structure as judged by secondary chemical shifts and intra-molecular distance restraints. We conclude that the two mutant sites between hAS and mAS (positions 53 and 87) in the fibril core region are crucial for determining the quaternary structure of α-synuclein fibrils.
Collapse
Affiliation(s)
- Songhwan Hwang
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Pascal Fricke
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Maximilian Zinke
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Joseph S Wall
- Brookhaven National Laboratory, Upton, 11967 NY, USA
| | - Dietmar Riedel
- Electron Microscopy Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
22
|
Linser R. Solid-state NMR spectroscopic trends for supramolecular assemblies and protein aggregates. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:45-53. [PMID: 28869877 DOI: 10.1016/j.ssnmr.2017.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Solid-state NMR is able to generate structural data on sample preparations that are explicitly non-crystalline. In particular, for amyloid fibril samples, which can comprise significant degrees of sample disorder, solid-state NMR has been used very successfully. But also solid-state NMR studies of other supramolecular assemblies that have resisted assessment by more standard methods are being performed with increasing ease and biological impact, many of which are briefly reviewed here. New technical trends with respect to structure calculation, protein dynamics and smaller sample amounts have reshaped the field of solid-state NMR recently. In particular, proton-detected approaches based on fast Magic-Angle Spinning (MAS) were demonstrated for crystalline systems initially. Currently, such approaches are being expanded to the above-mentioned non-crystalline targets, the characterization of which can now be pursued with sample amounts on the order of a milligram. In this Trends article, I am giving a brief overview about achievements of the last years as well as the directions that the field has been heading into and delineate some satisfactory perspectives for solid-state NMR's future striving.
Collapse
Affiliation(s)
- Rasmus Linser
- Department Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
23
|
Zinke M, Fricke P, Samson C, Hwang S, Wall JS, Lange S, Zinn‐Justin S, Lange A. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR. Angew Chem Int Ed Engl 2017; 56:9497-9501. [PMID: 28644511 PMCID: PMC5582604 DOI: 10.1002/anie.201706060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 01/03/2023]
Abstract
Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH, (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.
Collapse
Affiliation(s)
- Maximilian Zinke
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Pascal Fricke
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Camille Samson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris-Sud, Université Paris-SaclayGif-sur-Yvette CedexFrance
| | - Songhwan Hwang
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | | | - Sascha Lange
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Sophie Zinn‐Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris-Sud, Université Paris-SaclayGif-sur-Yvette CedexFrance
| | - Adam Lange
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für BiologieHumboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
24
|
Zinke M, Fricke P, Samson C, Hwang S, Wall JS, Lange S, Zinn-Justin S, Lange A. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maximilian Zinke
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Pascal Fricke
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Camille Samson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris-Sud, Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Songhwan Hwang
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | | | - Sascha Lange
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris-Sud, Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Adam Lange
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
- Institut für Biologie; Humboldt-Universität zu Berlin; Berlin Germany
| |
Collapse
|