1
|
Scott NW, Chirila P, Horbaczewskyj CS, Slack ED, Whitwood AC, Fairlamb IJS. Catalyst Activation and Speciation Involving DyadPalladate Precatalysts in Suzuki-Miyaura and Buchwald-Hartwig Cross-Couplings. Organometallics 2025; 44:654-664. [PMID: 40083950 PMCID: PMC11898177 DOI: 10.1021/acs.organomet.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 03/16/2025]
Abstract
Understanding mechanisms underpinning Pd precatalyst activation and formation of active species is important in maximizing catalyst activity and lifetime. DyadPalladate precatalysts, represented by the general formula [R3PH+]2[Pd2Cl6]2- (R3P = tertiary alkylphosphine/arylphosphines), have recently emerged as sustainable, active Pd precatalysts for cross-couplings (e.g., Suzuki-Miyaura {SMCC} and Buchwald-Hartwig aryl amination {BHA}). This study investigates the activation of the [HXPhos]2[Pd2Cl6] 1, as a model precatalyst from the DyadPalladate class, against BHA and SMCC reactions. It was found that BHA and SMCC reactions reached the same active Pd0 catalyst, [Pd0(XPhos)2]. This species is generated efficiently through a reductive activation step involving a dual base/nucleophile chemical trigger. However, the mechanistic path of each is somewhat different based on the selected nucleophile. The active Pd complex participates in oxidative addition with aryl halides, the first committed step in many cross-coupling reactions. The activation pathway and catalytic efficiency of [HXPhos]2[Pd2Cl6] 1 were compared with those of known PdII precatalysts, possessing the XPhos ligand, through both stoichiometric and catalytic studies. Investigating the activation triggers and characterizing the active Pd0 catalyst, under catalytically relevant conditions, provide valuable insight into future catalyst design, targeting optimal efficiency in specific reactions, i.e., knowing that the precatalyst has been fully activated.
Collapse
Affiliation(s)
- Neil W.
J. Scott
- Department
of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, United Kingdom
| | - Paula Chirila
- Johnson
Matthey PLC, 28 Cambridge Science Park, Milton Road, Cambridge CB4 0FP, United
Kingdom
| | | | - Eric D. Slack
- Johnson
Matthey, 2001 Nolte Drive, West Deptford, New Jersey 08066, United States
| | - Adrian C. Whitwood
- Department
of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, United Kingdom
| | - Ian J. S. Fairlamb
- Department
of Chemistry, University of York, Heslington, York, North Yorkshire YO10 5DD, United Kingdom
| |
Collapse
|
2
|
Intelli AJ, Wayment CZ, Lee RT, Yuan K, Altman RA. Palladium and copper co-catalyzed chloro-arylation of gem-difluorostyrenes - use of a nitrite additive to suppress β-F elimination. Chem Sci 2024:d4sc04939j. [PMID: 39386912 PMCID: PMC11456958 DOI: 10.1039/d4sc04939j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
The installation of fluorine and fluorinated functional groups in organic molecules perturbs the physicochemical properties of those molecules and enables the development of new therapeutics, agrichemicals, biological probes and materials. However, current synthetic methodologies cannot access some fluorinated functional groups and fluorinated scaffolds. One such group, the gem-difluorobenzyl motif, might be convergently synthesized by reacting a nucleophilic aryl precursor and an electrophilic gem-difluoroalkene. Previous attempts have relied on forming unstable anionic or organometallic intermediates that rapidly decompose through a β-F elimination process to deliver monofluorovinyl products. In contrast, we report a fluorine-retentive palladium and copper co-catalyzed chloro-arylation of gem-difluorostyrenes that takes advantage of a nitrite (NO2 -) additive to avoid the favorable β-F elimination pathway that forms monofluorinated products, instead delivering difluorinated products.
Collapse
Affiliation(s)
- Andrew J Intelli
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
| | - Coriantumr Z Wayment
- James Tarpo Jr and Margaret Tarpo Department of Chemistry, Purdue University West Lafayette Indiana 47907 USA
| | - Ryan T Lee
- Department of Chemistry and Chemical Biology, Rutgers University Piscataway New Jersey 08854 USA
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target Clinical Pharmacology, Guangzhou Medical University Guangzhou 511436 China
| | - Ryan A Altman
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
- James Tarpo Jr and Margaret Tarpo Department of Chemistry, Purdue University West Lafayette Indiana 47907 USA
| |
Collapse
|
3
|
Jeanmard L, Lodovici G, George I, Bray JTW, Whitwood AC, Thomas GH, Fairlamb IJS, Unsworth WP, Clarke PA. Stereoselective synthesis of an advanced trans-decalin intermediate towards the total synthesis of anthracimycin. Chem Commun (Camb) 2024; 60:5699-5702. [PMID: 38726842 PMCID: PMC11131352 DOI: 10.1039/d4cc01738b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Progress towards the total synthesis of the macrolide natural product anthracimycin is described. This new approach utilises an intermolecular Diels-Alder strategy followed by epimeirsation to form the key trans-decalin framework. The route culminates in the stereoselective synthesis of an advanced tricyclic lactone intermediate, containing five contiguous sterogenic centres with the correct relative and absolute stereochemistry required for the anthracimycin core motif.
Collapse
Affiliation(s)
- Laksamee Jeanmard
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Giacomo Lodovici
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Ian George
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Joshua T W Bray
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Gavin H Thomas
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Ian J S Fairlamb
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Paul A Clarke
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
4
|
Liu X, Gao FF, Xue Y, Luo J, Jiang C. Palladium-Catalyzed C(sp 3)-H Nitrooxylation of Aliphatic Carboxamides with Practical Oxidants. J Org Chem 2024; 89:1417-1424. [PMID: 38235669 DOI: 10.1021/acs.joc.3c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Here we report the palladium-catalyzed β-C(sp3)-H nitrooxylation of aliphatic carboxamides using a modified quinoline auxiliary. Notably, Al(NO3)3·9H2O was used as a nitrate source as well as a practical oxidant. The 5-chloro-8-aminoquinoline auxiliary was nitrated in situ during the reaction, which may enhance its directing ability and help its removal. The reaction has a broad substrate scope with a variety of aliphatic carboxamides. The multiple substituted auxiliary can be easily removed and recovered. Two C-H-insertion palladacycle intermediates were isolated and characterized to elucidate the mechanism.
Collapse
Affiliation(s)
- Xing Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Fang-Fang Gao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Yuan Xue
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
5
|
Platt G, Aguiar PM, Athavan G, Bray JT, Scott NW, Fairlamb IJ, Perutz RN. Opening a Pandora's Flask on a Prototype Catalytic Direct Arylation Reaction of Pentafluorobenzene: The Ag 2CO 3/Pd(OAc) 2/PPh 3 System. Organometallics 2023; 42:2378-2394. [PMID: 37711884 PMCID: PMC10498494 DOI: 10.1021/acs.organomet.3c00309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 09/16/2023]
Abstract
Direct C-H functionalization reactions have opened new avenues in catalysis, removing the need for prefunctionalization of at least one of the substrates. Although C-H functionalization catalyzed by palladium complexes in the presence of a base is generally considered to proceed by the CMD/AMLA-6 mechanism, recent research has shown that silver(I) salts, frequently used as bases, can function as C-H bond activators instead of (or in addition to) palladium(II). In this study, we examine the coupling of pentafluorobenzene 1 to 4-iodotoluene 2a (and its analogues) to form 4-(pentafluorophenyl)toluene 3a catalyzed by palladium(II) acetate with the commonplace PPh3 ligand, silver carbonate as base, and DMF as solvent. By studying the reaction of 1 with Ag2CO3/PPh3 and with isolated silver (triphenylphosphine) carbonate complexes, we show the formation of C-H activation products containing the Ag(C6F5)(PPh3)n unit. However, analysis is complicated by the lability of the Ag-PPh3 bond and the presence of multiple species in the solution. The speciation of palladium(II) is investigated by high-resolution-MAS NMR (chosen for its suitability for suspensions) with a substoichiometric catalyst, demonstrating the formation of an equilibrium mixture of Pd(Ar)(κ1-OAc)(PPh3)2 and [Pd(Ar)(μ-OAc)(PPh3)]2 as resting states (Ar = Ph, 4-tolyl). These two complexes react stoichiometrically with 1 to form coupling products. The catalytic reaction kinetics is investigated by in situ IR spectroscopy revealing a two-term rate law and dependence on [Pdtot/nPPh3]0.5 consistent with the dissociation of an off-cycle palladium dimer. The first term is independent of [1], whereas the second term is first order in [1]. The observed rates are very similar with Pd(PPh3)4, Pd(Ph)(κ1-OAc)(PPh3)2, and [Pd(Ph)(μ-OAc)(PPh3)]2 catalysts. The kinetic isotope effect varied significantly according to conditions. The multiple speciation of both AgI and PdII acts as a warning against specifying the catalytic cycles in detail. Moreover, the rapid dynamic interconversion of AgI species creates a level of complexity that has not been appreciated previously.
Collapse
Affiliation(s)
| | | | | | - Joshua T.W. Bray
- Department of Chemistry, University of York, York YO10 5DD, United
Kingdom
| | - Neil W.J. Scott
- Department of Chemistry, University of York, York YO10 5DD, United
Kingdom
| | - Ian J.S. Fairlamb
- Department of Chemistry, University of York, York YO10 5DD, United
Kingdom
| | - Robin N. Perutz
- Department of Chemistry, University of York, York YO10 5DD, United
Kingdom
| |
Collapse
|
6
|
Kao SC, Bian KJ, Chen XW, Chen Y, Martí AA, West JG. Photochemical iron-catalyzed decarboxylative azidation via the merger of ligand-to-metal charge transfer and radical ligand transfer catalysis. CHEM CATALYSIS 2023; 3:100603. [PMID: 37720729 PMCID: PMC10501478 DOI: 10.1016/j.checat.2023.100603] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Ligand-to-metal charge transfer (LMCT) using stoichiometric copper salts has recently been shown to permit decarboxylative C-N bond formation via an LMCT/radical polar crossover (RPC) mechanism; however, this method is unable to function catalytically and cannot successfully engage unactivated alkyl carboxylic acids, presenting challenges to the general applicability of this approach. Leveraging the concepts of ligand-to-metal charge transfer (LMCT) and radical-ligand-transfer (RLT), we herein report the first photochemical, iron-catalyzed direct decarboxylative azidation. Simply irradiating an inexpensive iron nitrate catalyst in the presence of azidotrimethylsilane allows for a diverse array of carboxylic acids to be converted to corresponding organic azides directly with broad functional group tolerance and mild conditions. Intriguingly, no additional external oxidant is required for this reaction to proceed, simplifying the reaction protocol. Finally, mechanistic studies are consistent with a radical mechanism and suggest that the nitrate counteranion serves as an internal oxidant for turnover of the iron catalyst.
Collapse
Affiliation(s)
- Shih-Chieh Kao
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Kang-Jie Bian
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Xiao-Wei Chen
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Ying Chen
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Angel A. Martí
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Julian G. West
- Department of Chemistry, Rice University, Houston, TX, USA
- Lead contact
| |
Collapse
|
7
|
Dey S, Ghosh P. Accessing Heteroannular Benzoxazole and Benzimidazole Scaffolds via Carbodiimides Using Azide-Isocyanide Cross-Coupling as Catalyzed by Mesoionic Singlet Palladium Carbene Complexes Derived from a Phenothiazine Moiety. ACS OMEGA 2023; 8:11039-11064. [PMID: 37008148 PMCID: PMC10061513 DOI: 10.1021/acsomega.2c07875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
The coupling of aryl and aliphatic azides with isocyanides yielding carbodiimides (8-17) were efficiently catalyzed by well-defined structurally characterized trans-(MIC)PdI2(L) [MIC = 1-CH2Ph-3-Me-4-(CH2N(C6H4)2S)-1,2,3-triazol-5-ylidene, L = NC5H5 (4), MesNC (5)], trans-(MIC)2PdI2 (6), and cis-(MIC)Pd(PPh3)I2 (7) type palladium complexes, which incidentally mark the first instances of the use of mesoionic singlet palladium carbene complexes for the said application. As observed from the product yields, the catalytic activity varied in the order 4 > 5 ∼ 6 > 7 for these complexes. A detailed mechanistic studies indicated that the catalysis proceeded via a palladium(0) (4a-7 a) species. Using a representative palladium precatalyst (4), the azide-isocyanide coupling was successfully extended to synthesizing two different bioactive heteroannular benzoxazole (18-22) and benzimidazole (23-27) derivatives, thereby broadening the scope of the catalytic application.
Collapse
Affiliation(s)
- Shreyata Dey
- Department
of Chemistry Indian Institute of Technology
Bombay Powai, Mumbai 400 076, India
| | - Prasenjit Ghosh
- Department
of Chemistry Indian Institute of Technology
Bombay Powai, Mumbai 400 076, India
| |
Collapse
|
8
|
Qi L, Dong M, Qian J, Yu S, Tong X. Pd 0 -Catalyzed Asymmetric Carbonitratation Reaction Featuring an H-Bonding-Driven Alkyl-Pd II -ONO 2 Reductive Elimination. Angew Chem Int Ed Engl 2023; 62:e202215397. [PMID: 36420824 DOI: 10.1002/anie.202215397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Reductive elimination of alkyl-PdII -O is a synthetically useful yet underdeveloped elementary reaction. Here we report that the combination of an H-bonding donor [PyH][BF4 ] and AgNO3 additive under toluene/H2 O biphasic system can enable such elementary step to form alkyl nitrate. This results in the Pd0 -catalyzed asymmetric carbonitratations of (Z)-1-iodo-1,6-dienes with (R)-BINAP as the chiral ligand, affording alkyl nitrates up to 96 % ee. Mechanistic studies disclose that the reaction consists of oxidative addition of Pd0 catalyst to vinyl iodide, anion ligand exchange between I- and NO3 - , alkene insertion and SN 2-type alkyl-PdII -ONO2 reductive elimination. Evidences suggest that H-bonding interaction of PyH⋅⋅⋅ONO2 can facilitate dissociation of O2 NO- ligand from the alkyl-PdII -ONO2 species, thus enabling the challenging alkyl-PdII -ONO2 reductive elimination to be feasible.
Collapse
Affiliation(s)
- Linjun Qi
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Ming Dong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Shuling Yu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University Jiaojiang, 318000, Zhejiang, China
| |
Collapse
|
9
|
Zhou Z, Pi S, Wang R. Metal‐and Base‐Free Oxidative Cleavage of C(O)−C Bond in Ketones to Access Esters. ChemistrySelect 2022. [DOI: 10.1002/slct.202200842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhengrui Zhou
- School of Materials and Chemical Engineering Hunan Provincial Key Laboratory of Environmental Catalysis&Waste Recycling Hunan Institute of Engineering, Xiangtan 411104 P. R. of China
- Institute of Applied Chemistry Central Central South University of Forestry and Technology, Changsha Hunan 410004 P. R. of China
| | - Shaofeng Pi
- School of Materials and Chemical Engineering Hunan Provincial Key Laboratory of Environmental Catalysis&Waste Recycling Hunan Institute of Engineering, Xiangtan 411104 P. R. of China
- Institute of Applied Chemistry Central Central South University of Forestry and Technology, Changsha Hunan 410004 P. R. of China
| | - Ru Wang
- School of Materials and Chemical Engineering Hunan Provincial Key Laboratory of Environmental Catalysis&Waste Recycling Hunan Institute of Engineering, Xiangtan 411104 P. R. of China
- Institute of Applied Chemistry Central Central South University of Forestry and Technology, Changsha Hunan 410004 P. R. of China
| |
Collapse
|
10
|
Abstract
SignificanceChlorination reactions are widely applied in organic synthesis, with aryl chlorides being key intermediates in the synthesis of many pharmaceutical products. Here, we demonstrate that waste materials such as chlorophenol pollutants can be valorized as chlorination reagents via catalytic transfer of the chloro group during their mineralization for the generation of valuable aryl chlorides. This process adds value to the destruction of chlorophenol pollutants, and the concept could potentially be extended to the valorization of other classes of stockpiles awaiting mineralization.
Collapse
|
11
|
Zhang ML, Zhang XL, Guo RL, Wang MY, Zhao BY, Yang JH, Jia Q, Wang YQ. Switchable, Reagent-Controlled C(sp 3)-H Selective Iodination and Acetoxylation of 8-Methylquinolines. J Org Chem 2022; 87:5730-5743. [PMID: 35471034 DOI: 10.1021/acs.joc.2c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient Pd-catalyzed C(sp3)-H selective iodination of 8-methylquinolines is reported herein for the first time. Because of the versatility of organic iodides, the method offers a facile access to various C8-substituted quinolines. By slightly switching the reaction conditions, an efficient C(sp3)-H acetoxylation of 8-methylquinolines has also been enabled. Both approaches feature mild reaction conditions, good tolerance of functional groups, and a broad substrate scope.
Collapse
Affiliation(s)
- Ming-Lu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xing-Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Rui-Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Bao-Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Jin-Hui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Yinchuan 750021, P. R. China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
12
|
Antonov AA, Bryliakov KP. Recent progress in catalytic acyloxylation of C(sp
3
)‐H bonds. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Artem A. Antonov
- Department of the Mechanisms of Catalytic Reactions Boreskov Institute of Catalysis Novosibirsk Russia
| | - Konstantin P. Bryliakov
- Department of the Mechanisms of Catalytic Reactions Boreskov Institute of Catalysis Novosibirsk Russia
| |
Collapse
|
13
|
Xue Y, Park HS, Jiang C, Yu JQ. Palladium-Catalyzed β-C(sp 3)–H Nitrooxylation of Ketones and Amides Using Practical Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuan Xue
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Han Seul Park
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Kanna W, Harabuchi Y, Takano H, Hayashi H, Maeda S, Mita T. Carboxylation of a Palladacycle Formed via C(sp 3 )-H Activation: Theory-Driven Reaction Design. Chem Asian J 2021; 16:4072-4080. [PMID: 34636155 DOI: 10.1002/asia.202100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Indexed: 11/12/2022]
Abstract
Theory-driven organic synthesis is a powerful tool for developing new organic transformations. A palladacycle(II), generated from 8-methylquinoline via C(sp3 )-H activation, is frequently featured in the scientific literature, albeit that the reactivity toward CO2 , an abundant, inexpensive, and non-toxic chemical, remains elusive. We have theoretically discovered potential carboxylation pathways using the artificial force induced reaction (AFIR) method, a density-functional-theory (DFT)-based automated reaction path search method. The thus obtained results suggest that the reduction of Pd(II) to Pd(I) is key to promote the insertion of CO2 . Based on these computational findings, we employed various one-electron reductants, such as Cp*2 Co, a photoredox catalyst under blue LED irradiation, and reductive electrolysis ((+)Mg/(-)Pt), which afforded the desired carboxylated products in high yields. After screening phosphine ligands under photoredox conditions, we discovered that bidentate ligands such as dppe promoted this carboxylation efficiently, which was rationally interpreted in terms of the redox potential of the Pd(II)-dppe complex as well as on the grounds of DFT calculations. We are convinced that these results could serve as future guidelines for the development of Pd(II)-catalyzed C(sp3 )-H carboxylation reactions with CO2 .
Collapse
Affiliation(s)
- Wataru Kanna
- Department of Chemistry, Faculty of Science, Hokkaido University Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Yu Harabuchi
- Department of Chemistry, Faculty of Science, Hokkaido University Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Hideaki Takano
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Satoshi Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.,Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
15
|
He YG, Huang YK, Fan QQ, Zheng B, Luo YQ, Zhu XL, Shi XX. Copper(ii)-catalyzed and acid-promoted highly regioselective oxidation of tautomerizable C(sp 3)-H bonds adjacent to 3,4-dihydroisoquinolines using air (O 2) as a clean oxidant. RSC Adv 2021; 11:29702-29710. [PMID: 35479555 PMCID: PMC9040818 DOI: 10.1039/d1ra05671a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
A mild, efficient and eco-friendly method for the oxidation of 1-Bn-DHIQs to 1-Bz-DHIQs without concomitant excessive oxidation of 1-Bz-DHIQs to 1-Bz-IQs is very important for the syntheses of 1-Bz-DHIQ alkaloids and analogues. In this article, we developed a novel Cu(ii)-catalyzed and acid-promoted highly regioselective oxidation of tautomerizable C(sp3)-H bonds adjacent to the C-1 positions of various 1-Bn-DHIQs. It was observed that when 0.2 equiv. of Cu(OAc)2·2H2O was used as the catalyst, 3.0 equiv. of AcOH was used as the additive and air (O2) was used as a clean oxidant, various 1-Bn-DHIQs could be efficiently oxidized to corresponding 1-Bz-DHIQs at 25 °C in DMSO. Especially, almost no concomitant excessive oxidation of 1-Bz-DHIQs to 1-Bz-IQs was observed during the above reaction. In addition, this method was successfully applied in the first total synthesis of the alkaloid canelillinoxine.
Collapse
Affiliation(s)
- Yun-Gang He
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Yong-Kang Huang
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Qi-Qi Fan
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Bo Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Yong-Qiang Luo
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Xing-Liang Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| | - Xiao-Xin Shi
- Engineering Research Center of Pharmaceutical Process Chemistry of the Ministry of Education, School of Pharmacy, East China University of Science and Technology Shanghai 200237 People's Republic of China
| |
Collapse
|
16
|
Zhou J, Li M, Li T, Li C, Hu X, Jin L, Sun N, Hu B, Shen Z. Ultraviolet-light-induced aerobic oxidation of benzylic C(sp3)-H of alkylarenes under catalyst- and additive-free conditions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Kim RS, Wegener EC, Yang MC, O'Reilly ME, Oh S, Hendon CH, Miller JT, Surendranath Y. Rapid Electrochemical Methane Functionalization Involves Pd-Pd Bonded Intermediates. J Am Chem Soc 2020; 142:20631-20639. [PMID: 33231440 DOI: 10.1021/jacs.0c05894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-valent Pd complexes are potent agents for the oxidative functionalization of inert C-H bonds, and it was previously shown that rapid electrocatalytic methane monofunctionalization could be achieved by electro-oxidation of PdII to a critical dinuclear PdIII intermediate in concentrated or fuming sulfuric acid. However, the structure of this highly reactive, unisolable intermediate, as well as the structural basis for its mechanism of electrochemical formation, remained elusive. Herein, we use X-ray absorption and Raman spectroscopies to assemble a structural model of the potent methane-activating intermediate as a PdIII dimer with a Pd-Pd bond and a 5-fold O atom coordination by HxSO4(x-2) ligands at each Pd center. We further use EPR spectroscopy to identify a mixed-valent M-M bonded Pd2II,III species as a key intermediate during the PdII-to-PdIII2 oxidation. Combining EPR and electrochemical data, we quantify the free energy of Pd dimerization as <-4.5 kcal/mol for Pd2II,III and <-9.1 kcal/mol for PdIII2. The structural and thermochemical data suggest that the aggregate effect of metal-metal and axial metal-ligand bond formation drives the critical Pd dimerization reaction in between electrochemical oxidation steps. This work establishes a structural basis for the facile electrochemical oxidation of PdII to a M-M bonded PdIII dimer and provides a foundation for understanding its rapid methane functionalization reactivity.
Collapse
Affiliation(s)
- R Soyoung Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Evan C Wegener
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Min Chieh Yang
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Matthew E O'Reilly
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Seokjoon Oh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Xiong X, Mao YJ, Hao HY, He YT, Xu ZY, Luo G, Lou SJ, Xu DQ. Nitrate promoted mild and versatile Pd-catalysed C(sp 2)-H oxidation with carboxylic acids. Org Biomol Chem 2020; 18:6732-6737. [PMID: 32832956 DOI: 10.1039/d0ob01124j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nitrate-promoted Pd-catalysed mild cross-dehydrogenative C(sp2)-H bond oxidation of oximes or azobenzenes with diverse carboxylic acids has been developed. In contrast to the previous catalytic systems, this protocol features mild conditions (close to room temperature for most cases) and a broad substrate scope (up to 64 examples), thus constituting a versatile method to directly prepare diverse O-aryl esters. Moreover, the superiority of the nitrate additive in this mild transformation was further determined by experimental and computational evidence.
Collapse
Affiliation(s)
- Xue Xiong
- College of Chemical Engineering, Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hao HY, Mao YJ, Xu ZY, Lou SJ, Xu DQ. Selective Cross-Dehydrogenative C(sp 3)-H Arylation with Arenes. Org Lett 2020; 22:2396-2402. [PMID: 32124610 DOI: 10.1021/acs.orglett.0c00588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selective C(sp3)-C(sp2) bond construction is of central interest in chemical synthesis. Despite the success of classic cross-coupling reactions, the cross-dehydrogenative coupling between inert C(sp3)-H and C(sp2)-H bonds represents an attractive alternative toward new C(sp3)-C(sp2) bonds. Herein, we establish a selective inter- and intramolecular C(sp3)-H arylation of alcohols with nondirected arenes that thereby provides a general pathway to access a wide range of β-arylated alcohols, including tetrahydronaphthalen-2-ols and benzopyran-3-ols, with high to excellent chemo- and regioselectivity.
Collapse
Affiliation(s)
- Hong-Yan Hao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
20
|
Liu M, Zhang Z, Song J, Liu S, Liu H, Han B. Nitrogen Dioxide Catalyzed Aerobic Oxidative Cleavage of C(OH)–C Bonds of Secondary Alcohols to Produce Acids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyang Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Jinliang Song
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Shuaishuai Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Buxing Han
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| |
Collapse
|
21
|
Liu M, Zhang Z, Song J, Liu S, Liu H, Han B. Nitrogen Dioxide Catalyzed Aerobic Oxidative Cleavage of C(OH)–C Bonds of Secondary Alcohols to Produce Acids. Angew Chem Int Ed Engl 2019; 58:17393-17398. [DOI: 10.1002/anie.201908788] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Mingyang Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Jinliang Song
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Shuaishuai Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Buxing Han
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| |
Collapse
|
22
|
Kim S, Kim Y, Jin H, Park MH, Kim Y, Lee KM, Kim M. Europium‐Catalyzed Aerobic Oxidation of Alcohols to Aldehydes/Ketones and Photoluminescence Tracking. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801499] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Seongwoo Kim
- Department of Chemistry and BK21Plus Program Research TeamChungbuk National University, Cheongju Chungbuk 28644 South Korea
| | - Youngik Kim
- Department of Chemistry and BK21Plus Program Research TeamChungbuk National University, Cheongju Chungbuk 28644 South Korea
| | - Hyomin Jin
- Department of Chemistry, Institute of Molecular Science and Fusion TechnologyKangwon National University, Chuncheon Gangwon 24341 South Korea
| | - Myung Hwan Park
- Department of Chemistry EducationChungbuk National University, Cheongju Chungbuk 28644 South Korea
| | - Youngjo Kim
- Department of Chemistry and BK21Plus Program Research TeamChungbuk National University, Cheongju Chungbuk 28644 South Korea
| | - Kang Mun Lee
- Department of Chemistry, Institute of Molecular Science and Fusion TechnologyKangwon National University, Chuncheon Gangwon 24341 South Korea
| | - Min Kim
- Department of Chemistry and BK21Plus Program Research TeamChungbuk National University, Cheongju Chungbuk 28644 South Korea
| |
Collapse
|
23
|
Mao YJ, Luo G, Hao HY, Xu ZY, Lou SJ, Xu DQ. Anion ligand promoted selective C–F bond reductive elimination enables C(sp2)–H fluorination. Chem Commun (Camb) 2019; 55:14458-14461. [DOI: 10.1039/c9cc07726j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A detailed mechanism study on the anion ligand promoted selective C–H bond fluorination is reported.
Collapse
Affiliation(s)
- Yang-Jie Mao
- College of Chemical Engineering
- Catalytic Hydrogenation Research Center
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Gen Luo
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Hong-Yan Hao
- College of Chemical Engineering
- Catalytic Hydrogenation Research Center
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Zhen-Yuan Xu
- College of Chemical Engineering
- Catalytic Hydrogenation Research Center
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Shao-Jie Lou
- College of Chemical Engineering
- Catalytic Hydrogenation Research Center
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Dan-Qian Xu
- College of Chemical Engineering
- Catalytic Hydrogenation Research Center
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
| |
Collapse
|
24
|
Tian X, Cheng X, Yang X, Ren YL, Yao K, Wang H, Wang J. Aerobic conversion of benzylic sp3 C–H in diphenylmethanes and benzyl ethers to CO bonds under catalyst-, additive- and light-free conditions. Org Chem Front 2019. [DOI: 10.1039/c9qo00004f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalyst-, additive- and light-free aerobic conversion of benzylic C–H to CO bonds is, for the first time, reported.
Collapse
Affiliation(s)
- Xinzhe Tian
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
- School of Chemical Engineering & Pharmaceutics
| | - Xinqiang Cheng
- School of Chemical Engineering & Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Xinzheng Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yun-Lai Ren
- School of Chemical Engineering & Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Kaisheng Yao
- School of Chemical Engineering & Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Huiyong Wang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| | - Jianji Wang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| |
Collapse
|
25
|
Maity S, Das D, Sarkar S, Samanta R. Direct Pd(II)-Catalyzed Site-Selective C5-Arylation of 2-Pyridone Using Aryl Iodides. Org Lett 2018; 20:5167-5171. [DOI: 10.1021/acs.orglett.8b02112] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Saurabh Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souradip Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
26
|
Zhang HJ, Schuppe AW, Pan ST, Chen JX, Wang BR, Newhouse TR, Yin L. Copper-Catalyzed Vinylogous Aerobic Oxidation of Unsaturated Compounds with Air. J Am Chem Soc 2018; 140:5300-5310. [DOI: 10.1021/jacs.8b01886] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hai-Jun Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Alexander W. Schuppe
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Shi-Tao Pan
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jin-Xiang Chen
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bo-Ran Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Timothy R. Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
27
|
Le Bras J, Muzart J. C-O Bonds from Pd-Catalyzed C(sp3)-H Reactions Mediated by Heteroatomic Groups. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701446] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jean Le Bras
- Institut de Chimie Moléculaire de Reims, UMR 7312; CNRS - Université de Reims - Champagne-Ardenne; B.P. 1039 51687 Reims Cedex 2 France
| | - Jacques Muzart
- Institut de Chimie Moléculaire de Reims, UMR 7312; CNRS - Université de Reims - Champagne-Ardenne; B.P. 1039 51687 Reims Cedex 2 France
| |
Collapse
|
28
|
Fu X, Zhao F, Zhao L, Liu Y, Luo F, Jiang Y. Cu(II)-catalyzed acetoxylation of arenes by 1,2,3-triazole-directed C–H activation. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1373297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xuxin Fu
- Department of Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Fen Zhao
- Department of Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Liping Zhao
- No1 Muslim Middle School of Dachang Hui Autonomous County, Langfang, China
| | - Yaowen Liu
- Department of Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Fang Luo
- Department of Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Yubo Jiang
- Department of Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
29
|
Yang QL, Li YQ, Ma C, Fang P, Zhang XJ, Mei TS. Palladium-Catalyzed C(sp 3)-H Oxygenation via Electrochemical Oxidation. J Am Chem Soc 2017; 139:3293-3298. [PMID: 28177235 DOI: 10.1021/jacs.7b01232] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Palladium-catalyzed C-H activation/C-O bond-forming reactions have emerged as attractive tools for organic synthesis. Typically, these reactions require strong chemical oxidants, which convert organopalladium(II) intermediates into the PdIII or PdIV oxidation state to promote otherwise challenging C-O reductive elimination. However, previously reported oxidants possess significant disadvantages, including poor atom economy, high cost, and the formation of undesired byproducts. To overcome these issues, we report an electrochemical strategy that takes advantage of anodic oxidation of PdII to induce selective C-O reductive elimination with a variety of oxyanion coupling partners.
Collapse
Affiliation(s)
- Qi-Liang Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu, Shanghai 200032, China.,Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology , Meilong Road No. 130, Shanghai 200237, China
| | - Yi-Qian Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu, Shanghai 200032, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu, Shanghai 200032, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Jie Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu, Shanghai 200032, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|