1
|
Cheng H, Wang W, Zeng Y, Zhang H, Huang X, Pu F, Zhang X, Hu A, Ding Y. Thermal C α-C 6 Cyclization of Enediynes. J Org Chem 2025; 90:5828-5837. [PMID: 40261941 DOI: 10.1021/acs.joc.4c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Canonical thermal cycloaromatizations (Bergman, C1-C6; Myers-Saito, C2-C7; Schmittel, C2-C6; Schreiner-Pascal, C1-C5) are limited to the formation of five- or six-membered rings, while the formation of larger rings from enediyne (or enyne-allenes) has no precedent experimental exploration. Herein, we present a novel thermal cyclization of enediyne, leading to the formation of a stable seven-membered cyclization product. The structure of this product was elucidated by using NMR and single-crystal X-ray diffraction techniques. The presence of a maleic hydrazide moiety is postulated to facilitate the proton transfer, resulting in the rearrangement of enediyne to enyne-allene, culminating in ring closure through Cα-C6 cyclization. The reaction mechanism was further explored by using density functional theory (DFT), revealing a low activation barrier for the Cα-C6 cyclization at 19.6 kcal/mol. The newly formed seven-membered ring exhibits strong Möbius aromaticity, as confirmed by calculations of the nucleus-independent chemical shift (NICS) and anisotropy of the induced current density (ACID). In the subsequent reaction, the fusion of the oxazolidin-2-one ring and the elimination of the isobutene molecule release a significant amount of energy, further driving the formation of the final product.
Collapse
Affiliation(s)
- Haonan Cheng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenbo Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Zeng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Houjun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohua Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fangxu Pu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaofan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Zhu J, Yang L, Liu H, Sun S, Li J, Zhang L, Sun H, Cheng M, Lin B, Liu Y. Syntheses of Tetracyclic Indoline Derivatives Via Gold(I)-Catalyzed Hydroamination/Cycloisomerization Cascade of 2-Ethynyltryptamides. J Org Chem 2024; 89:3331-3344. [PMID: 38363745 DOI: 10.1021/acs.joc.3c02784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
A gold(I)-catalyzed hydroamination/cycloisomerization cascade reaction was developed to yield indolizino[8,7-b]indole and indolo[2,3-a]-quinolizine derivatives from 2-ethynyltryptamides. The optimal conditions were determined by condition screening, and the functional group tolerances of these reactions were explored based on synthetic substrates. An insight into the explanation on the selectivity of the ring closure was obtained by density functional theory calculations. A plausible mechanism for the cascade reactions was proposed. Derivatization of the indolizino[8,7-b]indole and total synthesis of nauclefidine demonstrated the practicality of this strategy.
Collapse
Affiliation(s)
- Jiang Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Hairui Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Shitao Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Jiaji Li
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lianjie Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Hanyang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
3
|
Zhao C, Bhagwandin DD, Xu W, Ruffieux P, Khan SI, Pignedoli CA, Fasel R, Rubin Y. Dramatic Acceleration of the Hopf Cyclization on Gold(111): From Enediynes to Peri-Fused Diindenochrysene Graphene Nanoribbons. J Am Chem Soc 2024; 146:2474-2483. [PMID: 38227949 PMCID: PMC10835731 DOI: 10.1021/jacs.3c10144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hopf et al. reported the high-temperature 6π-electrocyclization of cis-hexa-1,3-diene-5-yne to benzene in 1969. Subsequent studies using this cyclization have been limited by its very high reaction barrier. Here, we show that the reaction barrier for two model systems, (E)-1,3,4,6-tetraphenyl-3-hexene-1,5-diyne (1a) and (E)-3,4-bis(4-iodophenyl)-1,6-diphenyl-3-hexene-1,5-diyne (1b), is decreased by nearly half on a Au(111) surface. We have used scanning tunneling microscopy (STM) and noncontact atomic force microscopy (nc-AFM) to monitor the Hopf cyclization of enediynes 1a,b on Au(111). Enediyne 1a undergoes two sequential, quantitative Hopf cyclizations, first to naphthalene derivative 2, and finally to chrysene 3. Density functional theory (DFT) calculations reveal that a gold atom from the Au(111) surface is involved in all steps of this reaction and that it is crucial to lowering the reaction barrier. Our findings have important implications for the synthesis of novel graphene nanoribbons. Ullmann-like coupling of enediyne 1b at 20 °C on Au(111), followed by a series of Hopf cyclizations and aromatization reactions at higher temperatures, produces nanoribbons 12 and 13. These results show for the first time that graphene nanoribbons can be synthesized on a Au(111) surface using the Hopf cyclization mechanism.
Collapse
Affiliation(s)
- Chenxiao Zhao
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Dayanni D Bhagwandin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Wangwei Xu
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Pascal Ruffieux
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Saeed I Khan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Carlo A Pignedoli
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roman Fasel
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Yves Rubin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| |
Collapse
|
4
|
Yang D, Zhang S, Zeng G, Chen ZX. Metal-free catalytic hydroboration of imine with pinacolborane using a pincer-type phosphorus compound: mechanistic insight and improvement of the reaction. Phys Chem Chem Phys 2023. [PMID: 37378853 DOI: 10.1039/d3cp01709e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
A mechanistic study of the catalytic hydroboration of imine using a pincer-type phosphorus compound 1NP was performed through the combination of DFT and DLPNO-CCSD(T) calculations. The reaction proceeds through a phosphorus-ligand cooperative catalytic cycle, where the phosphorus center and triamide ligand work in a synergistic manner. First, the pinB-H bond activation by 1NP occurs through the cooperative functions of the phosphorus center and the triamide ligand, leading to a phosphorus-hydride intermediate 2NP. This is the rate-determining step, with the Gibbs energy barrier and Gibbs reaction energy of 25.3 and -17.0 kcal mol-1, respectively. Subsequently, the hydroboration of phenylmethanimine takes place through a concerted transition state through the cooperative function of the phosphorus center and the triamide ligand. It leads to the final hydroborated product 4 with the regeneration of 1NP. Our computational results reveal that the experimentally isolated intermediate 3NP is a resting state of the reaction. It is formed through the B-N bond activation of 4 by 1NP, rather than via the insertion of the CN double bond of phenylmethanimine into the P-H bond of 2NP. However, this side reaction can be suppressed by utilizing a planar phosphorus compound AcrDipp-1NP as the catalyst, which features steric-demanding substituents on the chelated N atom of the ligand.
Collapse
Affiliation(s)
- Deshuai Yang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Shuoqi Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Guixiang Zeng
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Zhao-Xu Chen
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
5
|
Laconsay CJ, Tantillo DJ. Modulating Escape Channels of Cycloheptatrienyl Rhodium Carbenes To Form Semibullvalene. J Org Chem 2023. [PMID: 37335974 DOI: 10.1021/acs.joc.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
We describe the various escape channels available to dirhodium carbene intermediates from cycloheptatrienyl diazo compounds located with density functional theory. An intramolecular cyclopropanation would, in principle, provide a new route to semibullvalenes (SBVs). A detailed exploration of the potential energy surface reveals that methylating carbon-7 suppresses a competing β-hydride migration pathway to heptafulvene products, giving SBV formation a reasonable chance. During our explorations, we additionally discovered unusual spirononatriene, spironorcaradiene, and metal-stabilized 9-barbaralyl cation structures as local minima.
Collapse
Affiliation(s)
- Croix J Laconsay
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| |
Collapse
|
6
|
Vidhani DV, Ubeda R, Sautie T, Vidhani D, Mariappan M. Zwitterionic Bergman cyclization triggered polymerization gives access to metal-graphene nanoribbons using a boron metal couple. Commun Chem 2023; 6:66. [PMID: 37029210 PMCID: PMC10082089 DOI: 10.1038/s42004-023-00866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
With the rapid growth in artificial intelligence, designing high-speed and low-power semiconducting materials is of utmost importance. This investigation provides a theoretical basis to access covalently bonded transition metal-graphene nanoribbon (TM-GNR) hybrid semiconductors whose DFT-computed bandgaps were much narrower than the commonly used pentacene. Systematic optimization of substrates containing remotely placed boryl groups and the transition metals produced the zwitterions via ionic Bergman cyclization (i-BC) and unlocked the polymerization of metal-substituted polyenynes. Aside from i-BC, the subsequent steps were barrierless, which involved structureless transition regions. Multivariate analysis revealed the strong dependence of activation energy and the cyclization mode on the electronic nature of boron and Au(I). Consequently, three regions corresponding to radical Bergman (r-BC), ionic Bergman (i-BC), and ionic Schreiner-Pascal (i-SP) cyclizations were identified. The boundaries between these regions corresponded to the mechanistic shift induced by the three-center-three-electron (3c-3e) hydrogen bond, three-center-four-electron (3c-4e) hydrogen bond, and vacant p-orbital on boron. The ideal combination for cascade polymerization was observed near the boundary between i-BC and i-SP.
Collapse
Affiliation(s)
- Dinesh V Vidhani
- Department of Math & Natural Science, Miami Dade College, Miami Dade College, 627 SW 27th Ave, Miami, FL, 33135, USA.
| | - Rosemary Ubeda
- Department of Math & Natural Science, Miami Dade College, Miami Dade College, 627 SW 27th Ave, Miami, FL, 33135, USA
| | - Thalia Sautie
- Department of Math & Natural Science, Miami Dade College, Miami Dade College, 627 SW 27th Ave, Miami, FL, 33135, USA
| | - Diana Vidhani
- Miami Dade Virtual School, 560 NW 151st, Miami, FL, 33169, USA
| | - Manoharan Mariappan
- Department of Natural Science North Florida College, 325 Turner Davis Dr, Madison, FL, 32340, USA
| |
Collapse
|
7
|
Le A, Gupta S, Xu M, Xia Y, Lee D. Development of an Allenyne-Alkyne [4+2] Cycloaddition and its Application to Total Synthesis of Selaginpulvilin A. Chemistry 2022; 28:e202202015. [PMID: 35771213 PMCID: PMC9805236 DOI: 10.1002/chem.202202015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 01/09/2023]
Abstract
A new [4+2] cycloaddition of allenyne-alkyne is developed. The reaction is believed to proceed with forming an α,3-dehydrotoluene intermediate. This species behaves as a σπ-diradical to react with a hydrogen atom donor, whereas it displays a zwitterionic reactivity toward weak nucleophiles. The efficiency of trapping α,3-dehydrotoluene depends not only on its substituents but also the trapping agents. Notable features of the reaction are the activating role of the extra alkyne of the 1,3-diyne that reacts with the allenyne moiety and the opposite mode of trapping with oxygen and nitrogen nucleophiles. Oxygen nucleophiles result in the oxygen-end incorporation at the benzylic position of the α,3-dehydrotoluene, whereas with amine nucleophiles the nitrogen-end is incorporated into the aromatic core. Relying on the allenyne-alkyne cycloaddition as an enabling strategy, a concise total synthesis of phosphodiesterase-4 inhibitory selaginpulvilin A is realized.
Collapse
Affiliation(s)
- Anh Le
- Department of ChemistryUniversity of Illinois Chicago845 West Taylor Street60607ChicagoIllinoisUSA
| | - Saswata Gupta
- Department of ChemistryUniversity of Illinois Chicago845 West Taylor Street60607ChicagoIllinoisUSA
| | - Man Xu
- College of Chemistry and Materials EngineeringWenzhou University325035WenzhouZhejiang ProvinceP. R. China
| | - Yuanzhi Xia
- College of Chemistry and Materials EngineeringWenzhou University325035WenzhouZhejiang ProvinceP. R. China
| | - Daesung Lee
- Department of ChemistryUniversity of Illinois Chicago845 West Taylor Street60607ChicagoIllinoisUSA
| |
Collapse
|
8
|
Saunthwal RK, Saini KM, Grimblat N, Danodia AK, Kumar S, Gandon V, Verma AK. Expedient Access to Polyaromatic Biaryls by Unconventional Ag-Catalyzed Cycloaromatization of Alkynylthiophenes and Au-Catalyzed Double C-H Activation. Org Lett 2022; 24:5018-5022. [PMID: 35799326 DOI: 10.1021/acs.orglett.2c01665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An unconventional approach for the regioselective synthesis of polyaromatic biaryls via site-selective Ag-catalyzed twofold electrophilic cycloisomerization followed by Au-catalyzed double C-H activation is described. The developed process allows the synthesis of highly decorated biaryls with excellent regioselectivity. As revealed by DFT computations, the reaction represents a rare example of C1-C5 endo-exo and C1-C6 endo-endo cycloaromatization. The formation of the 6-membered ring is predicted to be the fruit of an uncommon SEAr on a vinyl carbocation.
Collapse
Affiliation(s)
| | | | - Nicolas Grimblat
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France.,Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2002LRK), Rosario, República Argentina
| | | | - Sushil Kumar
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Vincent Gandon
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France.,Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi-110007, India.,Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
9
|
Computational investigation on potential energy surface evolution: The tautomerization from enediyne to enyne-allene. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Abstract
Enediynes are widely studied to understand their cycloaromatization and the trapping of the resulting p-dehydrobenzene diradical. However, few model substrates are known, and they are hard to synthesize and difficult to handle. Herein we report cyclohexeno[3,4]cyclodec-1,5-diyne-3-ene as a convenient model for studying the reactivity of enediynes. It can be easily synthesized from 1,2-diethynylcyclohexene and 1,4-diiodobutane. It is a solid that is stable at room temperature. In solution the p-dehydrobenzene diradical derived from its cycloaromatization can be trapped by nucleophiles. The rate-limiting step is the cyclization, which is slightly slower than that of the parent cyclodec-1,5-diyne-3-ene but faster than that of its benzo analogue, consistent with the distances between the reacting carbon atoms.
Collapse
Affiliation(s)
- Annadka Shrinidhi
- Department of Chemistry, University of California-San Diego, La Jolla, California 92093-0358, United States
| | - Charles L Perrin
- Department of Chemistry, University of California-San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
11
|
Sorbelli D, Belanzoni P, Belpassi L. Tuning the Gold(I)‐Carbon σ Bond in Gold‐Alkynyl Complexes through Structural Modifications of the NHC Ancillary Ligand: Effect on Spectroscopic Observables and Reactivity. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Diego Sorbelli
- Department of Chemistry Biology and Biotechnology University of Perugia Via Elce di Sotto 8 I-06123 Perugia Italy
| | - Paola Belanzoni
- Department of Chemistry Biology and Biotechnology University of Perugia Via Elce di Sotto 8 I-06123 Perugia Italy
- CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR-SCITEC) c/o Department of Chemistry Biology and Biotechnology University of Perugia Via Elce di Sotto 8 I-06123 Perugia Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR-SCITEC) c/o Department of Chemistry Biology and Biotechnology University of Perugia Via Elce di Sotto 8 I-06123 Perugia Italy
| |
Collapse
|
12
|
Zhang M, Ma H, Li B, Sun K, Lu H, Wang W, Cheng X, Li X, Ding Y, Hu A. Nucleophilic Addition to Diradicals Derived From Cycloaromatization of Maleimide‐Based Enediynes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mengsi Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Hailong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Baojun Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ke Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Haotian Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Wenbo Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xiaoyu Cheng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xiaoxuan Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
13
|
Kumar K, Kumar P, Singh B, Yadav S, Mishra UK, Ansari AJ, Ramasastry SSV. Hypothesis-Driven Palladium-Catalyzed Transformations for the Construction of New Molecular Architectures. CHEMICAL RECORD (NEW YORK, N.Y.) 2021; 21:3470-3482. [PMID: 33971073 DOI: 10.1002/tcr.202100095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/09/2022]
Abstract
The development of new synthetic protocols to access diverse molecular scaffolds from readily available starting compounds is of significance in both academia and industry. Towards this, the catalysis by transition metals has been employed as a powerful tool to access molecules with broad structural and functional diversity. An overview of the recent literature manifested the tremendous potential of transition metal-catalyzed processes in advancing organic synthesis in a new direction. This account compiles new conceptual advancements in the palladium-catalyzed Alder-ene type cycloisomerization reactions, C-H functionalizations, and one-pot multicatalytic processes, which have become essential tools to access new classes of molecules.
Collapse
Affiliation(s)
- Ketan Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - Prashant Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - Bara Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - Sonu Yadav
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - Uttam K Mishra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - Arshad J Ansari
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India
| |
Collapse
|
14
|
Mapping C−H⋅⋅⋅M Interactions in Confined Spaces: (α‐ICyD
Me
)Au, Ag, Cu Complexes Reveal “Contra‐electrostatic H Bonds” Masquerading as Anagostic Interactions**. Chemistry 2021; 27:8127-8142. [DOI: 10.1002/chem.202100263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 12/18/2022]
|
15
|
Yang S, Alix A, Bour C, Gandon V. Alkynophilicity of Group 13 MX 3 Salts: A Theoretical Study. Inorg Chem 2021; 60:5507-5522. [PMID: 33769800 DOI: 10.1021/acs.inorgchem.0c03302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The concept of alkynophilicity is revisited with group 13 MX3 metal salts (M = In, Ga, Al, B; X = Cl, OTf) using M06-2X/6-31+G(d,p) calculations. This study aims at answering why some of these salts show reactivity toward enynes that is similar to that observed with late-transition-metal complexes, notably Au(I) species, and why some of them are inactive. For this purpose, the mechanism of the skeletal reorganization of 1,6-enynes into 1-vinylcyclopentenes has been computed, including monomeric ("standard") and dimeric (superelectrophilic) activation. Those results are confronted with deactivation pathways based on the dissociation of the M-X bond. The role of the X ligand in the stabilization of the intermediate nonclassical carbocation is revealed, and the whole features required to make a good π-Lewis acid are discussed.
Collapse
Affiliation(s)
- Shengwen Yang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
| | - Aurélien Alix
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
| |
Collapse
|
16
|
Ring-Forming Polymerization toward Perfluorocyclobutyl and Ortho-Diynylarene-Derived Materials: From Synthesis to Practical Applications. MATERIALS 2021; 14:ma14061486. [PMID: 33803591 PMCID: PMC8003021 DOI: 10.3390/ma14061486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Many desirable characteristics of polymers arise from the method of polymerization and structural features of their repeat units, which typically are responsible for the polymer’s performance at the cost of processability. While linear alternatives are popular, polymers composed of cyclic repeat units across their backbones have generally been shown to exhibit higher optical transparency, lower water absorption, and higher glass transition temperatures. These specifically include polymers built with either substituted alicyclic structures or aromatic rings, or both. In this review article, we highlight two useful ring-forming polymer groups, perfluorocyclobutyl (PFCB) aryl ether polymers and ortho-diynylarene- (ODA) based thermosets, both demonstrating outstanding thermal stability, chemical resistance, mechanical integrity, and improved processability. Different synthetic routes (with emphasis on ring-forming polymerization) and properties for these polymers are discussed, followed by their relevant applications in a wide range of aspects.
Collapse
|
17
|
Wang W, Lu H, Zhang M, Ma H, Cheng X, Ding Y, Hu A. Synthesis of maleimide-based enediynes with cyclopropane moieties for enhanced cytotoxicity under normoxic and hypoxic conditions. J Mater Chem B 2021; 9:4502-4509. [PMID: 34019610 DOI: 10.1039/d1tb00142f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myers-Saito cycloaromatization (MSC) is the working mechanism of many natural enediyne antibiotics with high antitumor potency. However, the presence of the equilibrium between diradical and zwitterionic intermediates in MSC severely hinders further improvement in cytotoxicity toward tumor cells. To this end, a series of maleimide-based enediynes with cyclopropane moieties were synthesized for enhanced cytotoxicity toward tumor cells. By taking advantage of radical clock reactions, the diradical intermediates generated from MSC would rearrange to new diradicals with much longer separation and weaker interactions between two radical centers. The computational study suggested a low energy barrier (4.4 kcal mol-1) for the radical rearrangement through the cyclopropane ring-opening process. Thermolysis experiments confirmed that this radical rearrangement results in the formation of a new diradical intermediate, followed by abstracting hydrogen atoms from 1,4-cyclohexadiene. Interestingly, the DNA cleavage ability and cytotoxicity of enediynes were significantly enhanced after the introduction of cyclopropane moieties. In addition, these maleimide-based enediynes exhibited a similar cytotoxicity under hypoxic conditions to that under normoxic conditions, which is beneficial for treating solid tumors where hypoxic environments frequently lead to deteriorated efficiency of many antitumor drugs. Docking studies indicated that the diradical intermediate was located between the minor groove of DNA with a binding energy of -7.40 kcal mol-1, which is in favor of intracellular DNA damage, and thereby inducing cell death via an apoptosis pathway as suggested by immunofluorescence analysis.
Collapse
Affiliation(s)
- Wenbo Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Haotian Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Mengsi Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Hailong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaoyu Cheng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
18
|
Xu LP, Roque JB, Sarpong R, Musaev DG. Reactivity and Selectivity Controlling Factors in the Pd/Dialkylbiarylphosphine-Catalyzed C–C Cleavage/Cross-Coupling of an N-Fused Bicyclo α-Hydroxy-β-Lactam. J Am Chem Soc 2020; 142:21140-21152. [DOI: 10.1021/jacs.0c10220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Li-Ping Xu
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Jose B. Roque
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Laconsay CJ, Mallick D, Shaik S. External Electric Fields Interrupt the Concerted Cope Rearrangement of Semibullvalene. J Org Chem 2020; 86:731-738. [PMID: 33280381 DOI: 10.1021/acs.joc.0c02322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The topic of this paper is whether the mechanism of the degenerate Cope rearrangement of semibullvalene can be affected by the presence of electrostatic fields. Herein, we report that the shape of the energy surface, as demonstrated by an "interrupted" (stepwise) mechanism, is altered in the presence of a copper cation, Cu+. Natural bond-orbital and block-localized wave-function energy decomposition analyses suggest that orbital and electrostatic interactions play a major role in altering the shape of the energy surface. Applying additional external electric fields (EEFs) induces a significant change to the energy surface with Cu+ present but negligible effects in the absence of Cu+. These findings are consistent with recent studies that demonstrate that EEFs more readily stabilize/destabilize systems with larger, more polarizable, dipole moments.
Collapse
Affiliation(s)
- Croix J Laconsay
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.,Department of Chemistry, University of California-Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Dibyendu Mallick
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.,Department of Chemistry, Presidency University, Kolkata 700073, India
| | - Sason Shaik
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
20
|
Mandal M, Sakthivel S, Balamurugan R. Brønsted/Lewis Acid-Promoted Site-Selective Intramolecular Cycloisomerizations of Aryl-Fused 1,6-Diyn-3-ones for Diversity-Oriented Synthesis of Benzo-Fused Fluorenes and Fluorenones and Naphthyl Ketones. J Org Chem 2020; 86:333-351. [PMID: 33253563 DOI: 10.1021/acs.joc.0c02131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, a facile diversity-oriented approach to access functionalized benzo[a]fluorenes, benzo[b]fluorenones, and naphthyl ketones has been demonstrated via site-selective intramolecular cyclization of aryl-fused 1,6-diyn-3-ones. Synthesis of benzo[a]fluorenes and naphthyl ketones has been achieved selectively using TfOH and AgBF4, respectively, via in situ-formed acetals. Aryl-fused 1,6-diyn-3-ones undergo triflic acid-mediated intramolecular cyclization, leading to benzo[b]fluorenone derivatives via a radical intermediate as supported by EPR studies. Kinetic studies of these transformations have also been performed by UV-visible spectroscopic analysis to shed light on the reaction profile.
Collapse
Affiliation(s)
- Mou Mandal
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Mark Aldren M. Feliciano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Brian Gold
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
22
|
Solel E, Pappo D, Reany O, Mejuch T, Gershoni-Poranne R, Botoshansky M, Stanger A, Keinan E. Flat corannulene: when a transition state becomes a stable molecule. Chem Sci 2020; 11:13015-13025. [PMID: 34094486 PMCID: PMC8163244 DOI: 10.1039/d0sc04566g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Flat corannulene has been considered so far only as a transition state of the bowl-to-bowl inversion process. This study was driven by the prediction that substituents with strong steric repulsion could destabilize the bowl-shaped conformation of this molecule to such an extent that the highly unstable planar geometry would become an isolable molecule. To examine the substituents' effect on the corannulene bowl depth, optimized structures for the highly-congested decakis(t-butylsulfido)corannulene were calculated. The computations, performed with both the M06-2X/def2-TZVP and the B3LYP/def2-TZVP methods (the latter with and without Grimme's D3 dispersion correction), predict that this molecule can achieve two minimum structures: a flat carbon framework and a bowl-shaped structure, which are very close in energy. This rather unusual compound was easily synthesized from decachlorocorannulene under mild reaction conditions, and X-ray crystallographic studies gave similar results to the theoretical predictions. This compound crystallized in two different polymorphs, one exhibiting a completely flat corannulene core and the other having a bowl-shaped conformation.
Collapse
Affiliation(s)
- Ephrath Solel
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Doron Pappo
- Department of Chemistry, Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Ofer Reany
- Avinoam Adam Department of Natural Sciences, The Open University of Israel 1 University Road, P.O. Box 808 Ra'anana 4353701 Israel
| | - Tom Mejuch
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Renana Gershoni-Poranne
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Mark Botoshansky
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Amnon Stanger
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Ehud Keinan
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| |
Collapse
|
23
|
Sanders JN, Jun H, Yu RA, Gleason JL, Houk KN. Mechanism of an Organocatalytic Cope Rearrangement Involving Iminium Intermediates: Elucidating the Role of Catalyst Ring Size. J Am Chem Soc 2020; 142:16877-16886. [PMID: 32865415 DOI: 10.1021/jacs.0c08427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mechanism of the organocatalytic Cope rearrangement is elucidated through a combined computational and experimental approach. As reported previously, hydrazides catalyze the Cope rearrangement of 1,5-hexadiene-2-carboxaldehydes via iminium ion formation, and seven- and eight-membered ring catalysts are more active than smaller ring sizes. In the present work, quantum mechanical computations and kinetic isotope effect experiments demonstrate that the Cope rearrangement step, rather than iminium formation, is rate-limiting. The computations further explain how the hydrazide catalyst lowers the free-energy barrier of the Cope rearrangement via an associative transition state that is stabilized by enehydrazine character. The computations also explain the catalyst ring size effect, as larger hydrazide rings are able to accommodate optimal transition-state geometries that minimize the unfavorable lone-pair repulsion between neighboring nitrogen atoms and maximize the favorable hyperconjugative donation from each nitrogen atom into neighboring electron-poor sigma bonds, with the seven-membered catalyst achieving a nearly ideal transition-state geometry that is comparable to that of an unconstrained acyclic catalyst. Experimental kinetics studies support the computations, showing that the seven-membered and acyclic hydrazide catalysts react 10 times faster than the six-membered catalyst. Unraveling the mechanism of this reaction is an important step in understanding other reactions catalyzed by hydrazides, and explaining the ring size effect is critical because cyclic catalysts provide a constrained scaffold, enabling the development of asymmetric variants of these reactions.
Collapse
Affiliation(s)
- Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - HyunJune Jun
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Roland A Yu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - James L Gleason
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
24
|
Kreuzahler M, Haberhauer G. Cyclopropenylmethyl Cation: A Concealed Intermediate in Gold(I)-Catalyzed Reactions. Angew Chem Int Ed Engl 2020; 59:17739-17749. [PMID: 32515893 PMCID: PMC7540476 DOI: 10.1002/anie.202006245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 11/11/2022]
Abstract
The last years have witnessed many gold-catalyzed reactions of alkynes. One of the most prominent species in the reaction of two alkyne units is the vinyl-substituted gold vinylidene intermediate. Here, we were able to show that the reaction of a haloacetylene and an alkyne proceeds via a hitherto overlooked intermediate, namely the cyclopropenylmethyl cation. The existence and relative stability of this concealed intermediate is verified by quantum chemical calculations and 13 C-labeling experiments. A comparison between the cyclopropenylmethyl cation and the well-known vinylidene intermediate reveals that the latter is more stable only for smaller cycles. However, this stability reverses in larger cycles. In the case of the smallest representative of both species, the vinylidene cation is the transition state en route to the cyclopropenylmethyl cation. The discovery of this intermediate should help to get a deeper understanding for gold-catalyzed carbon-carbon bond-forming reactions of alkynes. Furthermore, since enynes can be formed from the cyclopropenylmethyl cation, the inclusion of this intermediate should enable the development of new synthetic methods for the construction of larger cyclic halogenated and non-halogenated conjugated enyne systems.
Collapse
Affiliation(s)
- Mathis Kreuzahler
- Institut für Organische ChemieUniversität Duisburg-EssenUniversitätsstraße 745117EssenGermany
| | - Gebhard Haberhauer
- Institut für Organische ChemieUniversität Duisburg-EssenUniversitätsstraße 745117EssenGermany
| |
Collapse
|
25
|
Saadat K, Villar López R, Shiri A, Nieto Faza O, Silva López C. The effect of solvation in torquoselectivity: ring opening of monosubstituted cyclobutenes. Org Biomol Chem 2020; 18:6287-6296. [PMID: 32734984 DOI: 10.1039/d0ob01229g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The paradigmatic electrocyclic ring opening of monosubstituted cyclobutenes has been used to diagnose possible solvation effects tuning the torquoselectivity observed in these reactions. This kind of selectivity in electrocyclic reactions is mostly due to strong orbital interactions, particularly when they involve powerful electron donors and acceptors, which also combine with usually milder steric effects. Orbital interactions are established between the cleaving C-C bond and the HOMO/LUMO of the EDG/EWG substituent. This implies that the larger torquoselectivity-featuring substrates may also suffer stronger solvation effects due to the higher polarity imposed by the substituent. This premise is tested and the source of solvation effects as a consequence of substitution analyzed.
Collapse
Affiliation(s)
- Kayvan Saadat
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436, Azadi Int., Mashhad, Iran
| | - Roberto Villar López
- Departamento de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende and CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, 32004-Ourense, Spain.
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436, Azadi Int., Mashhad, Iran
| | - Olalla Nieto Faza
- Departamento de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende and CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, 32004-Ourense, Spain.
| | - Carlos Silva López
- Departamento de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende and CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, 32004-Ourense, Spain.
| |
Collapse
|
26
|
Singh B, Bankar SK, Kumar K, Ramasastry SSV. Correction: Palladium-catalysed 5- endo-trig allylic (hetero)arylation. Chem Sci 2020; 11:9026-9027. [PMID: 34125119 PMCID: PMC8163341 DOI: 10.1039/d0sc90169e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Correction for ‘Palladium-catalysed 5-endo-trig allylic (hetero)arylation’ by Bara Singh et al., Chem. Sci., 2020, 11, 4948–4953, DOI: 10.1039/D0SC01932A.
Collapse
Affiliation(s)
- Bara Singh
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, Manauli PO, S. A. S. Nagar Punjab 140306 India
| | - Siddheshwar K Bankar
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, Manauli PO, S. A. S. Nagar Punjab 140306 India
| | - Ketan Kumar
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, Manauli PO, S. A. S. Nagar Punjab 140306 India
| | - S S V Ramasastry
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, Manauli PO, S. A. S. Nagar Punjab 140306 India
| |
Collapse
|
27
|
Kreuzahler M, Haberhauer G. Cyclopropenylmethylkation – Ein verborgenes Intermediat in Gold(I)‐katalysierten Reaktionen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mathis Kreuzahler
- Institut für Organische Chemie Universität Duisburg-Essen Universitätsstraße 7 45117 Essen Deutschland
| | - Gebhard Haberhauer
- Institut für Organische Chemie Universität Duisburg-Essen Universitätsstraße 7 45117 Essen Deutschland
| |
Collapse
|
28
|
Zhang M, Li B, Chen H, Lu H, Ma H, Cheng X, Wang W, Wang Y, Ding Y, Hu A. Triggering the Antitumor Activity of Acyclic Enediyne through Maleimide-Assisted Rearrangement and Cycloaromatization. J Org Chem 2020; 85:9808-9819. [DOI: 10.1021/acs.joc.0c01124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mengsi Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baojun Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huimin Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haotian Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hailong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyu Cheng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenbo Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
29
|
Vidhani DV, Gillett JR, Cusido Y, Alabugin IV. [1,5]-Sigmatropic Shifts Regulated by Built-in Frustration. J Phys Chem A 2020; 124:6016-6028. [DOI: 10.1021/acs.jpca.0c03933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dinesh V. Vidhani
- Department of Math & Natural Science, Miami Dade College, Miami, Florida, United States
| | - Jared R. Gillett
- Department of Chemistry & Biochemistry, University of Wisconsin, La Crosse, Wisconsin, United States
| | - Yanet Cusido
- Department of Math & Natural Science, Miami Dade College, Miami, Florida, United States
| | - Igor V. Alabugin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
30
|
Ageshina AA, Chesnokov GA, Topchiy MA, Alabugin IV, Nechaev MS, Asachenko AF. Making endo-cyclizations favorable again: a conceptually new synthetic approach to benzotriazoles via azide group directed lithiation/cyclization of 2-azidoaryl bromides. Org Biomol Chem 2019; 17:4523-4534. [PMID: 30994147 DOI: 10.1039/c9ob00615j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although benzotriazoles are important and ubiquitous, currently there is only one conceptual approach to their synthesis: bridging the two ortho-amino groups with an electrophilic nitrogen atom. Herein, we disclose a new practical alternative - the endo-cyclization of 2-azidoaryl lithiums obtained in situ from 2-azido-aryl bromides. The scope of the reaction is illustrated using twenty-four examples with a variety of alkyl, alkoxy, perfluoroalkyl, and halogen substituents. We found that the directing effect of the azide group allows selective metal-halogen exchange in aryl azides containing several bromine atoms. Furthermore, (2-bromophenyl)diazomethane undergoes similar cyclization to give an indazole. Thus, cyclizations of aryl lithiums containing an ortho-X = Y = Z group emerge as a new general approach for the synthesis of aromatic heterocycles. DFT computations suggested that the observed endo-selectivity applies to the anionic cyclizations of other functionalities that undergo "1,1-additions" (i.e., azides, diazo compounds, and isonitriles). In contrast, cyclizations with the heteroatomic functionalities that follow the "1,2-addition" pattern (cyanates, thiocyanates, isocyanates, isothiocyanates, and nitriles) prefer the exo-cyclization path. Hence, such reactions expand the current understanding of stereoelectronic factors in anionic cyclizations.
Collapse
Affiliation(s)
- Alexandra A Ageshina
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Leninskiy prospect 29, Russian Federation.
| | | | | | | | | | | |
Collapse
|
31
|
Li B, Zhang M, Lu H, Ma H, Wang Y, Chen H, Ding Y, Hu A. Coordination‐Accelerated Radical Formation from Acyclic Enediynes for Tumor Cell Suppression. Chem Asian J 2019; 14:4352-4357. [DOI: 10.1002/asia.201901182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Baojun Li
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Mengsi Zhang
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Haotian Lu
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Hailong Ma
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yue Wang
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Huimin Chen
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
32
|
Vidhani DV, Alabugin IV. Controlled Evolution of the Cope Rearrangement: Transition from Concerted to Interrupted and Aborted Pericyclic Reactions Regulated by a Switch Built from an Intramolecular Frustrated Lewis Pair. J Org Chem 2019; 84:14844-14853. [DOI: 10.1021/acs.joc.9b02633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Igor V. Alabugin
- Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
33
|
Harris T, Chenoweth DM. Sterics and Stereoelectronics in Aza-Glycine: Impact of Aza-Glycine Preorganization in Triple Helical Collagen. J Am Chem Soc 2019; 141:18021-18029. [DOI: 10.1021/jacs.9b05524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Trevor Harris
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - David M. Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
34
|
Abstract
This review summarizes the recent developments in the field of dual gold activation chemistry. New developments including synthetic strategies, latest mechanistic insights, computational studies and the identification and isolation of key intermediates, are discussed.
Collapse
Affiliation(s)
- Ximei Zhao
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany. and Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), 21589 Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Kreuzahler M, Haberhauer G. Gold(I)-Catalyzed Chloroalkynylation of 1,1-Disubstituted Alkenes via 1,3-Chlorine Shift: A Combined Experimental and Theoretical Study. J Org Chem 2019; 84:8210-8224. [PMID: 31192596 DOI: 10.1021/acs.joc.9b01371] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mathis Kreuzahler
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstr. 7, D-45117 Essen, Germany
| | - Gebhard Haberhauer
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstr. 7, D-45117 Essen, Germany
| |
Collapse
|
36
|
Harris T, Alabugin IV. Strain and stereoelectronics in cycloalkyne click chemistry. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Alkynes as Synthetic Equivalents of Ketones and Aldehydes: A Hidden Entry into Carbonyl Chemistry. Molecules 2019; 24:molecules24061036. [PMID: 30875972 PMCID: PMC6471418 DOI: 10.3390/molecules24061036] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022] Open
Abstract
The high energy packed in alkyne functional group makes alkyne reactions highly thermodynamically favorable and generally irreversible. Furthermore, the presence of two orthogonal π-bonds that can be manipulated separately enables flexible synthetic cascades stemming from alkynes. Behind these "obvious" traits, there are other more subtle, often concealed aspects of this functional group's appeal. This review is focused on yet another interesting but underappreciated alkyne feature: the fact that the CC alkyne unit has the same oxidation state as the -CH2C(O)- unit of a typical carbonyl compound. Thus, "classic carbonyl chemistry" can be accessed through alkynes, and new transformations can be engineered by unmasking the hidden carbonyl nature of alkynes. The goal of this review is to illustrate the advantages of using alkynes as an entry point to carbonyl reactions while highlighting reports from the literature where, sometimes without full appreciation, the concept of using alkynes as a hidden entry into carbonyl chemistry has been applied.
Collapse
|
38
|
Gold-catalyzed cyclization of enediynes and arenediynes to 6H-benzo[c]chromen-6-one and dibenzo[c,h]chromen-6-one derivatives. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Kreuzahler M, Daniels A, Wölper C, Haberhauer G. 1,3-Chlorine Shift to a Vinyl Cation: A Combined Experimental and Theoretical Investigation of the E-Selective Gold(I)-Catalyzed Dimerization of Chloroacetylenes. J Am Chem Soc 2019; 141:1337-1348. [PMID: 30588811 DOI: 10.1021/jacs.8b11501] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-catalyzed dimerization reactions of terminal acetylenes are well known in the literature. However, only a few examples of the dimerization of halogen-substituted acetylenes are described. The products of the latter metal-catalyzed dimerization are the branched head-to-tail enynes. The formation of the corresponding linear head-to-head enynes has not been reported yet. Herein, we demonstrate by means of quantum chemical methods and experiments that the head-to-head dimerization of chloroarylacetylenes can be achieved via mono gold catalysis. Under the optimized conditions, a clean and complete conversion of the starting materials is observed and the dimeric products are obtained up to 75% NMR yield. A mechanistic investigation of the dimerization reaction reveals that the branched head-to-tail vinyl cation is energetically more stable than the corresponding linear head-to-head cation. However, the latter can rearrange by an unusual 1,3-chlorine shift, resulting in the highly stereoselective formation of the trans product, which corresponds to the gold complex of the head-to-head E-enyne. The activation barrier for this rearrangement is extremely low (ca. 2 kcal/mol). As the mono gold-catalyzed dimerization can be conducted in a preparative scale, this simple synthesis of trans-1,2-dichloroenynes makes the gold(I)-catalyzed head-to-head dimerization of chloroarylacetylenes an attractive method en route to more complex conjugated enyne systems and their congeners.
Collapse
Affiliation(s)
- Mathis Kreuzahler
- Institut für Organische Chemie , Universität Duisburg-Essen , Universitätsstraße 7 , D-45117 Essen , Germany
| | - Alyssa Daniels
- Institut für Organische Chemie , Universität Duisburg-Essen , Universitätsstraße 7 , D-45117 Essen , Germany
| | - Christoph Wölper
- Institut für Organische Chemie , Universität Duisburg-Essen , Universitätsstraße 7 , D-45117 Essen , Germany
| | - Gebhard Haberhauer
- Institut für Organische Chemie , Universität Duisburg-Essen , Universitätsstraße 7 , D-45117 Essen , Germany
| |
Collapse
|
40
|
Janiszewski A, Fax J, Haberhauer G. Dimerization of substituted 4-aryl-1,3-diacetylenes – quantum chemical calculations and kinetic studies. Org Chem Front 2019. [DOI: 10.1039/c9qo00119k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thermal dimerization of 4-aryl-1,3-diacetylenes resulting in diradical intermediates were investigated by experimental and quantum chemical studies.
Collapse
Affiliation(s)
| | - Jonas Fax
- Institut für Organische Chemie
- Universität Duisburg-Essen
- D-45117 Essen
- Germany
| | - Gebhard Haberhauer
- Institut für Organische Chemie
- Universität Duisburg-Essen
- D-45117 Essen
- Germany
| |
Collapse
|
41
|
Xie Q, Sun T, Orozco‐Ic M, Barroso J, Zhao Y, Merino G, Zhu J. Probing Hyperconjugative Aromaticity of Monosubstituted Cyclopentadienes. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Tingting Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Mesías Orozco‐Ic
- Departamento de FísicaAplicada, Centro de Investigación y de EstudiosAvanzadosUnidad Mérida, Km. 6 Antigua Carretera a Progreso, A.P. 73, Cordemex Mérida 97310 Mexico
| | - Jorge Barroso
- Departamento de FísicaAplicada, Centro de Investigación y de EstudiosAvanzadosUnidad Mérida, Km. 6 Antigua Carretera a Progreso, A.P. 73, Cordemex Mérida 97310 Mexico
| | - Yu Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Gabriel Merino
- Departamento de FísicaAplicada, Centro de Investigación y de EstudiosAvanzadosUnidad Mérida, Km. 6 Antigua Carretera a Progreso, A.P. 73, Cordemex Mérida 97310 Mexico
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
42
|
Jangra H, Chen Q, Fuks E, Zenz I, Mayer P, Ofial AR, Zipse H, Mayr H. Nucleophilicity and Electrophilicity Parameters for Predicting Absolute Rate Constants of Highly Asynchronous 1,3-Dipolar Cycloadditions of Aryldiazomethanes. J Am Chem Soc 2018; 140:16758-16772. [DOI: 10.1021/jacs.8b09995] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Harish Jangra
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Quan Chen
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Elina Fuks
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Ivo Zenz
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Peter Mayer
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Armin R. Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Hendrik Zipse
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Herbert Mayr
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| |
Collapse
|
43
|
Li B, Duan B, Li J, Zhang M, Yuan Y, Ding Y, Hu A. An acyclic enediyne anticancer compound attributed to a Bergman cyclization at physiological temperature. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.08.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Gomes GDP, Loginova Y, Vatsadze SZ, Alabugin IV. Isonitriles as Stereoelectronic Chameleons: The Donor-Acceptor Dichotomy in Radical Additions. J Am Chem Soc 2018; 140:14272-14288. [PMID: 30270623 DOI: 10.1021/jacs.8b08513] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond. Only after the TS has been passed, the spin density moves to the α-carbon to form the imidoyl radical, the hallmark intermediate of the 1,1-addition-mediated cascades. Addition of alkyl, aryl, heteroatom-substituted, and heteroatom-centered radicals reveals a number of electronic, supramolecular, and conformational effects potentially useful for the practical control of isonitrile-mediated radical cascade transformations. Addition of alkyl radicals reveals two stereoelectronic preferences. First, the radical attack aligns the incipient C···C bond with the aromatic π-system. Second, one of the C-H/C-C bonds at the radical carbon eclipses the isonitrile N-C bond. Combination of these stereoelectronic preferences with entropic penalty explains why the least exergonic reaction (addition of the t-Bu radical) is also the fastest. Heteroatomic radicals reveal further unusual trends. In particular, the Sn radical addition to the PhNC is much faster than addition of the other group IV radicals, despite forming the weakest bond. This combination of kinetic and thermodynamic properties is ideal for applications in control of radical reactivity via dynamic covalent chemistry and may be responsible for the historically broad utility of Sn radicals ("the tyranny of tin"). In addition to polarity and low steric hindrance, radical attack at the relatively strong π-bond of isonitriles is assisted by "chameleonic" supramolecular interactions of the radical center with both the isonitrile π*-system and lone pair. These interactions are yet another manifestation of supramolecular control of radical chemistry.
Collapse
Affiliation(s)
- Gabriel Dos Passos Gomes
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32309 , United States
| | - Yulia Loginova
- Department of Organic Chemistry, Faculty of Chemistry , Lomonosov Moscow State University , 1-3 Leninskiye Gory , Moscow 119991 , Russia
| | - Sergey Z Vatsadze
- Department of Organic Chemistry, Faculty of Chemistry , Lomonosov Moscow State University , 1-3 Leninskiye Gory , Moscow 119991 , Russia
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32309 , United States
| |
Collapse
|
45
|
Xie Q, Sun T, Zhu J. Probing the Strongest Aromatic Cyclopentadiene Ring by Hyperconjugation. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Tingting Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
46
|
Yang W, Bam R, Catalano VJ, Chalifoux WA. Highly Regioselective Domino Benzannulation Reaction of Buta-1,3-diynes To Construct Irregular Nanographenes. Angew Chem Int Ed Engl 2018; 57:14773-14777. [PMID: 30117244 DOI: 10.1002/anie.201808043] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/13/2018] [Indexed: 11/08/2022]
Abstract
The properties of nanographenes can be tuned by changing their shapes, therefore the development of new methods suitable for the synthesis of various nanographenes is highly desirable. Described herein is an intramolecular InCl3 /AgNTf2 -catalyzed regioselective domino benzannulation reaction of buta-1,3-diynes to build irregular nanographenes. Different nanographene compounds were easily obtained in moderate to high yields through careful design of the precursor compounds. This new domino reaction was successfully applied to a fourfold alkyne benzannulation of dimethoxy-1,1'-binaphthalene derivatives to arrive at novel chiral butterfly ligand precursors. The regioselectivity of the benzannulation reaction was unambiguously confirmed by X-ray crystallography. Moreover, this new method enables us to synthesize different nanographene isomers and study their optical properties as a function of shape.
Collapse
Affiliation(s)
- Wenlong Yang
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA
| | - Radha Bam
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA
| | - Vincent J Catalano
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA
| | - Wesley A Chalifoux
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557, USA
| |
Collapse
|
47
|
Yang W, Bam R, Catalano VJ, Chalifoux WA. Highly Regioselective Domino Benzannulation Reaction of Buta‐1,3‐diynes To Construct Irregular Nanographenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Wenlong Yang
- Department of Chemistry University of Nevada, Reno 1664 N. Virginia St. Reno NV 89557 USA
| | - Radha Bam
- Department of Chemistry University of Nevada, Reno 1664 N. Virginia St. Reno NV 89557 USA
| | - Vincent J. Catalano
- Department of Chemistry University of Nevada, Reno 1664 N. Virginia St. Reno NV 89557 USA
| | - Wesley A. Chalifoux
- Department of Chemistry University of Nevada, Reno 1664 N. Virginia St. Reno NV 89557 USA
| |
Collapse
|
48
|
Wenthold PG, Winter AH. Nucleophilic Addition to Singlet Diradicals: Homosymmetric Diradicals. J Org Chem 2018; 83:12390-12396. [DOI: 10.1021/acs.joc.8b01413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul G. Wenthold
- The Department of Chemistry and Biochemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Arthur H. Winter
- The Department of Chemistry and Biochemistry, Iowa State University, Ames, Iowa 52101, United States
| |
Collapse
|
49
|
Wenthold PG, Winter AH. Nucleophilic Addition to Singlet Diradicals: Heterosymmetric Diradicals. J Org Chem 2018; 83:12397-12403. [DOI: 10.1021/acs.joc.8b01414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul G. Wenthold
- The Department of Chemistry and Biochemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Arthur H. Winter
- The Department of Chemistry and Biochemistry, Iowa State University, Ames, Iowa 52101, United States
| |
Collapse
|
50
|
Alabugin IV, dos Passos Gomes G, Abdo MA. Hyperconjugation. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1389] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|