1
|
Teschers CS, Cohen A, Marek I. Stereoselective Synthesis of 1,n-Dicarbonyl Compounds Through Palladium-Catalyzed Ring Opening/Isomerization of Densely Substituted Cyclopropanols. Angew Chem Int Ed Engl 2025; 64:e202421476. [PMID: 39563646 PMCID: PMC11795715 DOI: 10.1002/anie.202421476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
We report a highly diastereoselective protocol for the synthesis of 1,4- and 1,5-dicarbonyl compounds from densely substituted cyclopropanols. The methodology involves a palladium-catalyzed ring opening reaction followed by a "metal-walk" and oxidation of a remote hydroxyl group. The methodology represents a new application of cyclopropanols as initiation sites for chain walking remote functionalization. Importantly, this approach provides a straightforward access to highly valuable succinaldehyde derivatives bearing vicinal quaternary and tertiary stereocenters as single diastereomers.
Collapse
Affiliation(s)
- Charlotte S. Teschers
- Schulich Faculty of Chemistry and theResnick Sustainability Center for Catalysis, Technion—Israel Institute of TechnologyHaifa3200009Israel
| | - Anthony Cohen
- Schulich Faculty of Chemistry and theResnick Sustainability Center for Catalysis, Technion—Israel Institute of TechnologyHaifa3200009Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry and theResnick Sustainability Center for Catalysis, Technion—Israel Institute of TechnologyHaifa3200009Israel
| |
Collapse
|
2
|
Kocúrik M, Bartáček J, Drabina P, Váňa J, Svoboda J, Husáková L, Finger V, Hympánová M, Sedlák M. Immobilization of Trifluoromethyl-Substituted Pyridine-Oxazoline Ligand and Its Application in Asymmetric Continuous Flow Synthesis of Benzosultams. J Org Chem 2023; 88:15189-15197. [PMID: 37823216 PMCID: PMC10629231 DOI: 10.1021/acs.joc.3c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 10/13/2023]
Abstract
This study presents an improved synthetic route to ligand (S)-4-(tert-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazole and its application as a highly active and enantioselective catalyst in the addition of arylboronic acids to cyclic N-sulfonylketimines. Immobilization of such a ligand was achieved using a commercially available starting material and a PS-PEG TentaGel S NH2 support, resulting in a stable heterogeneous catalyst. Although the anchored catalyst exhibited a slight reduction in enantioselectivity and a 4-fold decrease in reaction rate, it displayed remarkable stability, enabling 10 consecutive reaction cycles. Furthermore, the successful transition to a continuous flow system demonstrated even higher turnover numbers compared to batch arrangements. These findings provide valuable insights into the development of efficient flow reactors for continuous synthesis of benzosultams, further advancing the field of asymmetric catalysis.
Collapse
Affiliation(s)
- Martin Kocúrik
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Jan Bartáček
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Pavel Drabina
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Jiří Váňa
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Jan Svoboda
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Lenka Husáková
- Department
of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Vladimír Finger
- Faculty
of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203,
50005, Hradec Králové, CZ 500 05, Czech Republic
- Biomedical
Research Center, University Hospital Hradec Králové, Sokolská 581, Hradec Králové, CZ 500 05, Czech Republic
| | - Michaela Hympánová
- Biomedical
Research Center, University Hospital Hradec Králové, Sokolská 581, Hradec Králové, CZ 500 05, Czech Republic
- Faculty
of Military Health Sciences, University
of Defence, Trebešská
1575, Hradec Králové, CZ 500 01, Czech Republic
| | - Miloš Sedlák
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| |
Collapse
|
3
|
Zhang M, Ji Y, Zhang C. Transition Metal Catalyzed Enantioselective Migratory Functionalization Reactions of Alkenes through Chain‐walking. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Min Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
| | - Yuqi Ji
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
4
|
Cohen A, Kaushansky A, Marek I. Mechanistic Insights on the Selectivity of the Tandem Heck-Ring-Opening of Cyclopropyldiol Derivatives. JACS AU 2022; 2:687-696. [PMID: 35373195 PMCID: PMC8970019 DOI: 10.1021/jacsau.1c00547] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The preparation of a new class of alkenyl cyclopropyl diols, easily available through a copper-catalyzed carbometalation reaction of cyclopropenes, has enabled the study of key mechanistic aspects of the tandem Heck-cyclopropane ring-opening reaction. Utilizing these substrates containing two distinct hydroxyl groups allowed us to examine parameters affecting the reaction outcome and selectivity. The combination of these experimental results with detailed DFT studies shed light on the mechanism governing the regio- and stereoselectivity of the cyclopropane ring-opening. A thorough investigation displayed the dual roles fulfilled by the hydroxyl group during the reaction, which is key to this remarkable transformation. In addition to its mechanistic implication, the reaction granted access to various lactones possessing up to four stereocenters as a single diastereomer, conveniently prepared in only two catalytic steps from easily accessible achiral cyclopropenes.
Collapse
|
5
|
Giofrè S, Keller M, Lo Presti L, Beccalli EM, Molteni L. Switchable Oxidative Reactions of N-allyl-2-Aminophenols: Palladium-Catalyzed Alkoxyacyloxylation vs an Intramolecular Diels-Alder Reaction. Org Lett 2021; 23:7698-7702. [PMID: 34570517 PMCID: PMC8524420 DOI: 10.1021/acs.orglett.1c02539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The Pd(II)-catalyzed
reaction of N-allyl-2-aminophenols
in the presence of PhI(OCOR)2 as the oxidant resulted in
an alkoxyacyloxylation process, with the formation of functionalized
dihydro-1,4-benzoxazines. The reaction performed in the absence of
palladium catalyst switched to an intramolecular Diels–Alder
reaction (IMDA) pathway, which was the result of an oxidative dearomatization
of the 2-aminophenol, nucleophilic addition, and Diels–Alder
reaction cascade, highlighting the role of the oxidant as both a nucleophilic
donor and an oxidizing agent.
Collapse
Affiliation(s)
- Sabrina Giofrè
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Manfred Keller
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Leonardo Lo Presti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Egle M Beccalli
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Letizia Molteni
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
6
|
Mechanistically guided survey of enantioselective palladium-catalyzed alkene functionalization. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Tian B, Li X, Chen P, Liu G. Asymmetric Palladium-Catalyzed Oxycarbonylation of Terminal Alkenes: Efficient Access to β-Hydroxy Alkylcarboxylic Acids. Angew Chem Int Ed Engl 2021; 60:14881-14886. [PMID: 33904235 DOI: 10.1002/anie.202104252] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/15/2022]
Abstract
A novel PdII -catalyzed enantioselective oxycarbonylation of alkenes has been established. The ligand with an ethyl group at the C-6 position of Pyox plays a significant role in the intermolecular oxypalladation process, leading to high reactivity and excellent enantioselective control. Compared to the conventional methods, the reaction itself features alkenes as easily prepared starting materials, mild and operationally simple reaction conditions, and insensitivities to air and water. Moreover, this method allows for broad alkene substrate scope, excellent regio- and enantioselectivities, scalabilities and a wide array of applications, and provides a useful route for the convenient and straightforward synthesis of chiral β-hydroxy alkylcarboxylic acids/esters.
Collapse
Affiliation(s)
- Bing Tian
- State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiang Li
- State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
8
|
Tian B, Li X, Chen P, Liu G. Asymmetric Palladium‐Catalyzed Oxycarbonylation of Terminal Alkenes: Efficient Access to β‐Hydroxy Alkylcarboxylic Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bing Tian
- State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiang Li
- State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Chang-Kung Chuang Institute East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
9
|
Zhang T, Li WA, Shen HC, Chen SS, Han ZY. Chiral-Anion-Mediated Asymmetric Heck–Matsuda Reaction of Acyclic Alkenyl Alcohols. Org Lett 2021; 23:1473-1477. [DOI: 10.1021/acs.orglett.1c00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | | | | | | | - Zhi-Yong Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Richers CP, Roediger S, Laserna V, Hartwig JF. Effects of ligands on the migratory insertion of alkenes into rhodium-oxygen bonds. Chem Sci 2020; 11:10449-10456. [PMID: 34123185 PMCID: PMC8162318 DOI: 10.1039/d0sc04402d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 12/05/2022] Open
Abstract
Migratory insertions of olefins into metal-oxygen bonds are elementary steps of important catalytic processes, but well characterised complexes that undergo this reaction are rare, and little information on the effects of ancillary ligands on such reactions has been gained. We report a series of alkoxo alkene complexes of rhodium(i) that contain a range of bidentate ligands and that undergo insertion of the alkene. Our results show that complexes containing less electron-donating ancillary ligands react faster than their counterparts containing more electron-donating ancillary ligands, and that complexes possessing ligands with larger bite angles react faster than those with smaller bite angles. External added ligands had several effects on the reactions, including an inhibition of olefin isomerisation in the product and acceleration of the displacement of the product from complexes of ancillary ligands with small bite angles. Complementary computational studies help elucidate the details of these insertion processes.
Collapse
Affiliation(s)
- Casseday P Richers
- Department of Chemistry, University of California, United States and Chemical Sciences Division, Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- Department of Chemistry, University of Illinois, Urbana-Champaign 600 South Mathews Urbana IL 61801 USA
| | - Sven Roediger
- Department of Chemistry, University of California, United States and Chemical Sciences Division, Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - Victor Laserna
- Department of Chemistry, University of California, United States and Chemical Sciences Division, Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
| | - John F Hartwig
- Department of Chemistry, University of California, United States and Chemical Sciences Division, Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA
- Department of Chemistry, University of Illinois, Urbana-Champaign 600 South Mathews Urbana IL 61801 USA
| |
Collapse
|
11
|
Ross SP, Rahman AA, Sigman MS. Development and Mechanistic Interrogation of Interrupted Chain-Walking in the Enantioselective Relay Heck Reaction. J Am Chem Soc 2020; 142:10516-10525. [PMID: 32412759 PMCID: PMC7376753 DOI: 10.1021/jacs.0c03589] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of alkyl-palladium complexes via the nucleopalladation of alkenes is the entry point for a wide range of diverse reactions. One possibility is that the intermediate alkyl-Pd complexes can undergo a "chain-walking" event, to allow for remote functionalization through various termination processes. However, there are few methods to selectively interrupt the chain-walking process at a prescribed location. Herein, we demonstrate that a variety of homoallylic protected amines undergo an interrupted enantioselective relay Heck reaction to give enantioenriched allylic amine products. The selectivity of this process can be diverted to exclusively yield the ene-amide products by virtue of changing the nature of the amine protecting group. To rationalize this observation, we combine experiment and computation to investigate the mechanism of the chain-walking process and termination events. Isotopic labeling experiments and the computed reaction pathways suggest that the system is likely under thermodynamic control, with the selectivity being driven by the relative stability of intermediates encountered during chain-walking. These results illustrate that the chain-walking of alkyl-palladium complexes can be controlled through the alteration of thermodynamic processes and provides a roadmap for exploiting these processes in future reaction development.
Collapse
Affiliation(s)
- Sean P. Ross
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah, 84112, United States
| | | | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah, 84112, United States
| |
Collapse
|
12
|
Ho GM, Segura L, Marek I. Ru-catalyzed isomerization of ω-alkenylboronates towards stereoselective synthesis of vinylboronates with subsequent in situ functionalization. Chem Sci 2020; 11:5944-5949. [PMID: 34094086 PMCID: PMC8159340 DOI: 10.1039/d0sc02542a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The stereoselective preparation of synthetically versatile vinylboronates from ω-alkenylboronates is achieved through a ruthenium-catalyzed isomerization reaction. A variety of di- and trisubstituted vinylboronates were conveniently produced and could be used as a new starting point for subsequent in situ remote functionalization through either a sequential Ru/Pd or Ru/Cu double catalytic system. A regio- and stereoselective ruthenium-catalyzed isomerization of ω-alkenyl boronates into stereodefined di- and trisubstituted alkenylboronate derivatives is reported.![]()
Collapse
Affiliation(s)
- Guo-Ming Ho
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City 3200009 Haifa Israel
| | - Lucas Segura
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City 3200009 Haifa Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City 3200009 Haifa Israel
| |
Collapse
|
13
|
Teng S, Jiao Z, Chi YR, Zhou JS. Asymmetric Wacker‐Type Oxyallenylation and Azaallenylation of Cyclic Alkenes. Angew Chem Int Ed Engl 2020; 59:2246-2250. [DOI: 10.1002/anie.201911961] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Shenghan Teng
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Zhiwei Jiao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical GenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate School 2199 Lishui Road, Room F-312 Nanshan District Shenzhen 518055 China
| |
Collapse
|
14
|
Teng S, Jiao Z, Chi YR, Zhou JS. Asymmetric Wacker‐Type Oxyallenylation and Azaallenylation of Cyclic Alkenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shenghan Teng
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Zhiwei Jiao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical OncogenomicsKey Laboratory of Chemical GenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate School 2199 Lishui Road, Room F-312 Nanshan District Shenzhen 518055 China
| |
Collapse
|
15
|
Chen ZM, Liu J, Guo JY, Loch M, DeLuca RJ, Sigman MS. Palladium-catalyzed enantioselective alkenylation of alkenylbenzene derivatives. Chem Sci 2019; 10:7246-7250. [PMID: 31588293 PMCID: PMC6685350 DOI: 10.1039/c9sc02380a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
A regioselective and enantioselective palladium-catalyzed relay Heck alkenylation of alkenylbenzene derivatives to construct remote stereocenters is disclosed. Various β-substituted styrenes were readily obtained in moderate yields with good to excellent levels of enantioselectivity. This strategy provides rapid access to enantioenriched δ, ε, ζ, and η-alkenyl aryl compounds from simple starting materials. Mechanistic studies suggest that termination of the relay reaction is controlled by affinity of the arene for the Pd complex during migration.
Collapse
Affiliation(s)
- Zhi-Min Chen
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA .
| | - Jianbo Liu
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA .
| | - Jing-Yao Guo
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA .
| | - Maximillan Loch
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA .
| | - Ryan J DeLuca
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA .
| | - Matthew S Sigman
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , USA .
| |
Collapse
|
16
|
Yuan Q, Sigman MS. Palladium-Catalyzed Enantioselective Alkenylation of Enelactams Using a Relay Heck Strategy. Chemistry 2019; 25:10823-10827. [PMID: 31216370 DOI: 10.1002/chem.201902813] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 01/14/2023]
Abstract
In this report, a palladium-catalyzed redox-relay Heck process to access optically active alkenylated α,β-unsaturated lactams is described. Under mild reaction conditions, electron-deficient alkenyl triflates and electron-rich alkenyl iodonium salts undergo enantioselective and site-selective coupling with enelactams to deliver the products in high yields and excellent enantioselectivities. Furthermore, the products allow facile access to natural products such as (+)-calvine and (+)-2-epicalvine in addition to the bioactive molecule aza-goniothalamin.
Collapse
Affiliation(s)
- Qianjia Yuan
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah, 84112, USA
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
17
|
Lux MC, Boby ML, Brooks JL, Tan DS. Synthesis of bicyclic ethers by a palladium-catalyzed oxidative cyclization-redox relay-π-allyl-Pd cyclization cascade reaction. Chem Commun (Camb) 2019; 55:7013-7016. [PMID: 31147660 DOI: 10.1039/c9cc03775f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bicyclic ether scaffolds are found in a variety of natural products and are of interest in probe and drug discovery. A palladium-catalyzed cascade reaction has been developed to provide efficient access to these scaffolds from readily available linear diene-diol substrates. A Pd redox-relay process is used strategically to transmit reactivity between an initial oxypalladative cyclization and a subsequent π-allyl-Pd cyclization at remote sites. The reaction affords a variety of bicyclic ether scaffolds with complete diastereoselectivity for cis-ring fusion.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Melissa L Boby
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Joshua L Brooks
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA and Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA and Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.
| |
Collapse
|
18
|
Bahamonde A, Rifaie BA, Martín-Heras V, Allen JR, Sigman MS. Enantioselective Markovnikov Addition of Carbamates to Allylic Alcohols for the Construction of α-Secondary and α-Tertiary Amines. J Am Chem Soc 2019; 141:8708-8711. [PMID: 31124676 PMCID: PMC6583784 DOI: 10.1021/jacs.9b03438] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we describe the development of a Pd-catalyzed enantioselective Markovnikov addition of carbamates to allylic alcohols for the construction of α-tertiary and α-secondary amines. The reaction affords a range of β-amino alcohols, after reduction of the aldehyde in situ, which contain a variety of functional groups in moderate yields and moderate to good enantioselectivities. These products can be readily oxidized to β-amino acids, valuable building blocks for the synthesis of biologically active compounds. Mechanistic studies indicate that the C-N bond formation occurs via a syn amino-palladation mechanism, an insight which may guide future reaction development given the limited number of enantioselective syntheses of α-tertiary amines.
Collapse
Affiliation(s)
| | | | - Victor Martín-Heras
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, United States
| | - Jamie R. Allen
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, United States
| |
Collapse
|
19
|
Allen JR, Bahamonde A, Furukawa Y, Sigman MS. Enantioselective N-Alkylation of Indoles via an Intermolecular Aza-Wacker-Type Reaction. J Am Chem Soc 2019; 141:8670-8674. [PMID: 31117643 DOI: 10.1021/jacs.9b01476] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of an intermolecular and enantioselective aza-Wacker reaction is described. Using indoles as the N-source and a selection of alkenols as the coupling partners selective β-hydride elimination toward the alcohol was achieved. This strategy preserves the newly formed stereocenter by preventing the formation of traditionally observed enamine products. Allylic and homoallylic alcohols with a variety of functional groups are compatible with the reaction in high enantioselectivity. Isotopic-labeling experiments support a syn amino-palladation mechanism for this new class of aza-Wacker reactions.
Collapse
Affiliation(s)
- Jamie R Allen
- Department of Chemistry , University of Utah , 315 S 1400 E , Salt Lake City , Utah 84112 , United States
| | - Ana Bahamonde
- Department of Chemistry , University of Utah , 315 S 1400 E , Salt Lake City , Utah 84112 , United States
| | - Yukino Furukawa
- Department of Chemistry , University of Utah , 315 S 1400 E , Salt Lake City , Utah 84112 , United States
| | - Matthew S Sigman
- Department of Chemistry , University of Utah , 315 S 1400 E , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
20
|
Kochi T, Ichinose K, Shigekane M, Hamasaki T, Kakiuchi F. Metal‐Catalyzed Sequential Formation of Distant Bonds in Organic Molecules: Palladium‐Catalyzed Hydrosilylation/Cyclization of 1,
n
‐Dienes by Chain Walking. Angew Chem Int Ed Engl 2019; 58:5261-5265. [DOI: 10.1002/anie.201814558] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Takuya Kochi
- Department of ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| | - Kazuya Ichinose
- Department of ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| | - Masayuki Shigekane
- Department of ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| | - Taro Hamasaki
- Department of ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| | - Fumitoshi Kakiuchi
- Department of ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
21
|
Kochi T, Ichinose K, Shigekane M, Hamasaki T, Kakiuchi F. Metal‐Catalyzed Sequential Formation of Distant Bonds in Organic Molecules: Palladium‐Catalyzed Hydrosilylation/Cyclization of 1,
n
‐Dienes by Chain Walking. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Takuya Kochi
- Department of ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| | - Kazuya Ichinose
- Department of ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| | - Masayuki Shigekane
- Department of ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| | - Taro Hamasaki
- Department of ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| | - Fumitoshi Kakiuchi
- Department of ChemistryFaculty of Science and TechnologyKeio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
22
|
Kou X, Shao Q, Ye C, Yang G, Zhang W. Asymmetric Aza-Wacker-Type Cyclization of N-Ts Hydrazine-Tethered Tetrasubstituted Olefins: Synthesis of Pyrazolines Bearing One Quaternary or Two Vicinal Stereocenters. J Am Chem Soc 2018; 140:7587-7597. [PMID: 29804449 DOI: 10.1021/jacs.8b02865] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have developed an asymmetric aza-Wacker-type cyclization of N-Ts hydrazine-tethered tetrasubstituted olefins, affording optically active pyrazolines bearing chiral tetrasubstituted carbon stereocenters. This reaction is tolerant to a broad range of substrates under mild reaction conditions, giving the desired chiral products with high enantioselectivities. Generation of two vicinal stereocenters on the C═C double bonds was also achieved with high selectivities, a process which has been rarely studied for Wacker-type reactions. A mechanistic study revealed that this aza-Wacker-type cyclization undergoes a syn-aminopalladation process. It was also found that for substrates bearing two linear alkyl substituents on the outer carbon atom of the olefin, both of which are larger than a methyl group, the alkyl substituent that is cis to the intranucleophilic group participates more readily in β-hydride elimination. When one of the two alkyl substituents on the outer carbon atom of the olefin is a methyl group, β-hydride elimination proceeds selectively at the methylene side, thus both diastereomers can be prepared via switching the configuration of the olefin. Furthermore, the product can be converted to a pharmaceutical compound in high yields over three steps.
Collapse
Affiliation(s)
- Xuezhen Kou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Qihang Shao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Chenghao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Guoqiang Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| |
Collapse
|
23
|
Yuan Q, Sigman MS. Palladium-Catalyzed Enantioselective Relay Heck Arylation of Enelactams: Accessing α,β-Unsaturated δ-Lactams. J Am Chem Soc 2018; 140:6527-6530. [PMID: 29746119 PMCID: PMC5993423 DOI: 10.1021/jacs.8b02752] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this Communication, we describe the construction of chiral α,β-unsaturated δ-lactams, widely used as pharmacophores, in high yields and excellent enantioselectivities using an oxidative relay Heck arylation reaction. This strategy also allows facile access to 7-substituted α,β-unsaturated ε-lactam products and δ-lactams containing a tetrasubstituted nitrogen-bearing stereocenter.
Collapse
Affiliation(s)
- Qianjia Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
24
|
Patel HH, Prater MB, Squire SO, Sigman MS. Formation of Chiral Allylic Ethers via an Enantioselective Palladium-Catalyzed Alkenylation of Acyclic Enol Ethers. J Am Chem Soc 2018; 140:5895-5898. [PMID: 29665329 PMCID: PMC5968819 DOI: 10.1021/jacs.8b02751] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This report details a palladium-catalyzed process to access highly functionalized, optically active allylic aryl ethers. A number of electron-deficient alkenyl triflates underwent enantioselective and site-selective coupling with acyclic aryl enol ethers in the presence of a chiral palladium catalyst. This transform provides chiral allylic ether products in high yields and excellent enantiomeric ratios, furnishing a unique disconnection to incorporate heteroatoms at a stereocenter. Finally, the applicability of the products to target synthesis was demonstrated through the formation of a chiral allylic alcohol and the generation of a flavone-inspired product.
Collapse
Affiliation(s)
- Harshkumar H. Patel
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B. Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Scott O. Squire
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
25
|
Yang G, Zhang W. Renaissance of pyridine-oxazolines as chiral ligands for asymmetric catalysis. Chem Soc Rev 2018; 47:1783-1810. [PMID: 29469141 DOI: 10.1039/c7cs00615b] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxazoline-containing ligands have been widely employed in numerous asymmetric catalytic reactions. Pyridine-oxazoline-type ligands, a class of hybrid ligands, were designed earlier than bisoxazoline and phosphine-oxazoline ligands; however, their unique properties have only been discovered recently. Pyridine-oxazoline-type chiral ligands are rapidly becoming popular for use in asymmetric catalysis, especially for several new and efficient asymmetric methodologies. Several types of challenging asymmetric reactions have been discovered recently using pyridine-oxazoline-type ligands showing their special properties and potential for future application in a wide range of new catalytic methodologies. This review provides an overview of this field, with the aim of highlighting both ligand design and synthetic methodology development.
Collapse
Affiliation(s)
- Guoqiang Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | | |
Collapse
|
26
|
Alam R, Molander GA. Direct Synthesis of Secondary Benzylic Alcohols Enabled by Photoredox/Ni Dual-Catalyzed Cross-Coupling. J Org Chem 2017; 82:13728-13734. [PMID: 29172494 PMCID: PMC5732067 DOI: 10.1021/acs.joc.7b02589] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An operationally simple, mild, redox-neutral method for the cross-coupling of α-hydroxyalkyltrifluoroborates is reported. Utilizing an Ir photocatalyst, α-hydroxyalkyl radicals are generated from the single-electron oxidation of the trifluoroborates, and these radicals are subsequently engaged in a nickel-catalyzed C-C bond-forming reaction with aryl halides. The process is highly selective, functional group tolerant, and step economical, which allows the direct synthesis of secondary benzylic alcohol motifs.
Collapse
Affiliation(s)
- Rauful Alam
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323
| |
Collapse
|
27
|
Jiang ZZ, Gao A, Li H, Chen D, Ding CH, Xu B, Hou XL. Enantioselective Synthesis of Chromenes via a Palladium-Catalyzed Asymmetric Redox-Relay Heck Reaction. Chem Asian J 2017; 12:3119-3122. [PMID: 29152880 DOI: 10.1002/asia.201701504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/13/2017] [Indexed: 12/12/2022]
Abstract
A palladium-catalyzed asymmetric redox-relay Heck reaction of 4H-chromenes and arylboronic acids has been successfully developed. The reaction proceeded in moderate to good yields with good to high enantioselectivities. The resulting product is an advanced intermediate of bio-active compound BW683C.
Collapse
Affiliation(s)
- Ze-Zhen Jiang
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai, 200444, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ang Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hao Li
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai, 200444, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Di Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Chang-Hua Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai, 200444, China
| | - Xue-Long Hou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
28
|
Wu X, Geng X, Zhao P, Wu YD, Wu AX. Iodine-Catalyzed Oxidative Coupling To Construct C–O Bonds for the Synthesis of 2,3-Dihydrooxepines. Org Lett 2017; 19:4584-4587. [DOI: 10.1021/acs.orglett.7b02182] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xia Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
29
|
Guo JY, Minko Y, Santiago CB, Sigman MS. Developing Comprehensive Computational Parameter Sets To Describe the Performance of Pyridine-Oxazoline and Related Ligands. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00739] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jing-Yao Guo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Yury Minko
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Celine B. Santiago
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
30
|
Chen J, Han X, Lu X. Atom-Economic Synthesis of Pentaleno[2,1-b]indoles via Tandem Cyclization of Alkynones Initiated by Aminopalladation. J Org Chem 2017; 82:1977-1985. [DOI: 10.1021/acs.joc.6b02817] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiuling Han
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiyan Lu
- State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
31
|
Ouyang L, Huang J, Li J, Qi C, Wu W, Jiang H. Palladium-catalyzed oxidative amination of homoallylic alcohols: sequentially installing carbonyl and amino groups along an alkyl chain. Chem Commun (Camb) 2017; 53:10422-10425. [DOI: 10.1039/c7cc06077g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel Pd-catalyzed intermolecular oxidative amination of homoallylic alcohols affording valuable β-amino acetones under mild conditions has been developed.
Collapse
Affiliation(s)
- Lu Ouyang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Jiuzhong Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|